

# **INSTITUTE OF AERONAUTICAL ENGINEERING**

(Autonomous)

Dundigal, Hyderabad -500 043

## **AERONAUTICAL ENGINEERING**

## **COURSE DESCRIPTOR**

| Course Title      | BASIC ELECTRICAL AND ELECTRONICS ENGINEERING LABORATORY                      |         |           |         |            |         |  |
|-------------------|------------------------------------------------------------------------------|---------|-----------|---------|------------|---------|--|
| Course Code       | AEE103                                                                       | AEE103  |           |         |            |         |  |
| Programme         | B. Tech                                                                      | B. Tech |           |         |            |         |  |
| Semester          | III AE   ME                                                                  |         |           |         |            |         |  |
| Course Type       | Foundation                                                                   |         |           |         |            |         |  |
| Regulation        | IARE - R16                                                                   |         |           |         |            |         |  |
|                   |                                                                              |         | Theory    |         | Practio    | cal     |  |
| Course Structure  | Lectur                                                                       | es      | Tutorials | Credits | Laboratory | Credits |  |
|                   | 3                                                                            |         | 1         | 4       | 3          | 2       |  |
| Chief Coordinator | Mrs. T. Saritha Kumari, Assistant Professor                                  |         |           |         |            |         |  |
| Course Faculty    | Mrs. T. Saritha Kumar, Professor<br>Mr. N. Shiva Prasad, Assistant Professor |         |           |         |            |         |  |

## I. COURSE OVERVIEW:

The aim of this course is to conduct experiments on basic concepts of electrical circuits and it is further extended to cover the application of basic concepts by the inclusion of series and parallel electrical circuits. The course deals with the alternating quantities and DC machines, AC machines in power stations. This course includes experiments deal with the study of characteristics of electronic components.

## II. COURSE PRE-REQUISITES:

| Level | Course Code | Semester | Prerequisites                                      | Credits |
|-------|-------------|----------|----------------------------------------------------|---------|
| UG    | AHS002      | I        | Linear Algebra and Ordinary Differential equations | 4       |

## III. MARKS DISTRIBUTION:

| Subject                                                    | SEE Examination | CIA<br>Examination | Total Marks |
|------------------------------------------------------------|-----------------|--------------------|-------------|
| Basic Electrical and Electronics Engineering<br>Laboratory | 70 Marks        | 30 Marks           | 100         |

#### IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| × | Chalk & Talk             | × | Quiz     | × | Assignments  | × | MOOCs  |
|---|--------------------------|---|----------|---|--------------|---|--------|
| ~ | LCD / PPT                | × | Seminars | × | Mini Project | ~ | Videos |
| ~ | ✓ Open Ended Experiments |   |          |   |              |   |        |

#### V. EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

**Semester End Examination (SEE):** The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

The emphasis on the experiments is broadly based on the following criteria:

| 20 % | To test the preparedness for the experiment.                           |
|------|------------------------------------------------------------------------|
| 20 % | To test the performance in the laboratory.                             |
| 20 % | To test the calculations and graphs related to the concern experiment. |
| 20 % | To test the results and the error analysis of the experiment.          |
| 20 % | To test the subject knowledge through viva – voce.                     |

#### **Continuous Internal Assessment (CIA):**

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Table 1: Assessment pattern for CIA

| Component          | L                      | Laboratory                    |             |  |
|--------------------|------------------------|-------------------------------|-------------|--|
| Type of Assessment | Day to day performance | Final internal lab assessment | Total Marks |  |
| CIA Marks          | 20                     | 10                            | 30          |  |

#### **Continuous Internal Examination (CIE):**

One CIE exams shall be conducted at the end of the  $16^{th}$  week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

| Preparation | Performance | Calculations and Graph | Results and<br>Error Analysis | Viva | Total |
|-------------|-------------|------------------------|-------------------------------|------|-------|
| 2           | 2           | 2                      | 2                             | 2    | 10    |

#### VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

|      | Program Outcomes (POs)                                         | Strength | Proficiency assessed by |
|------|----------------------------------------------------------------|----------|-------------------------|
| PO 1 | Engineering knowledge: Apply the knowledge of                  | 3        | Calculations of the     |
|      | mathematics, science, engineering fundamentals, and an         |          | observations            |
|      | engineering specialization to the solution of complex          |          |                         |
|      | engineering problems.                                          |          |                         |
| PO 2 | <b>Problem analysis</b> : Identify, formulate, review research | 3        | Characteristics curves  |
|      | literature, and analyze complex engineering problems           |          |                         |
|      | reaching substantiated conclusions using first principles of   |          |                         |
|      | mathematics, natural sciences, and engineering sciences        |          |                         |
| PO 4 | Conduct investigations of complex problems: Use                | 2        | Term observations,      |
|      | research-based knowledge and research methods                  |          | Discussion              |
|      | including design of experiments, analysis and                  |          |                         |
|      | interpretation of data, and synthesis of the information to    |          |                         |
|      | provide valid conclusions.                                     |          |                         |

**3 = High; 2 = Medium; 1 = Low** 

## VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|       | Program Specific Outcomes (PSOs)                        | Strength | Proficiency assessed by |
|-------|---------------------------------------------------------|----------|-------------------------|
| PSO 1 | Professional skills: Able to utilize the knowledge of   | 1        | Presentation on real    |
|       | aeronautical/aerospace engineering in innovative,       |          | world problems          |
|       | dynamic and challenging environment for design and      |          |                         |
|       | development of new products                             |          |                         |
| PSO 2 | T                                                       | -        | -                       |
|       | language skills and general purpose CAE packages to     |          |                         |
|       | solve practical, design and analysis problems of        |          |                         |
|       | components to complete the challenge of airworthiness   |          |                         |
|       | for flight vehicles                                     |          |                         |
| PSO 3 | •                                                       | -        | -                       |
|       | different types of in house and training and industry   |          |                         |
|       | practice to fabricate and test and develop the products |          |                         |
|       | with more innovative technologies                       |          |                         |
| PSO 4 | Successful Career And Entrepreneurship: To Prepare      | -        | -                       |
|       | The Students With Broad Aerospace Knowledge To          |          |                         |
|       | Design And Develop Systems And Subsystems Of            |          |                         |
|       | Aerospace And Allied Systems And Become                 |          |                         |
|       | Technocrats                                             |          |                         |

**<sup>3 =</sup> High; 2 = Medium; 1 = Low** 

# VIII. COURSE OBJECTIVES (COs):

| The c | The course should enable the students to:                |  |  |  |  |  |
|-------|----------------------------------------------------------|--|--|--|--|--|
| I     | Analyze the basic concepts of electrical circuits.       |  |  |  |  |  |
| II    | Study the performance of DC machines and AC machines.    |  |  |  |  |  |
| III   | Understand the characteristics of electronic components. |  |  |  |  |  |

## IX. COURSE LEARNING OUTCOMES (CLOs):

| CLO<br>Code | CLO's | At the end of the course, the student will have the ability to:                                                  | PO's Mapped | Strength<br>of<br>Mapping |
|-------------|-------|------------------------------------------------------------------------------------------------------------------|-------------|---------------------------|
| AEEB08.01   | CLO 1 | Understand the application of basic concept of electrical circuits KCL and KVL in series and parallel circuits.  | PO 1,PO 2   | 2                         |
| AEEB08.02   | CLO 2 | Understand the basic concept of electrical circuits Ohm's law.                                                   | PO 1,PO 2   | 2                         |
| AEEB08.03   | CLO 3 | Draw the performance characteristics of DC shunt generator.                                                      | PO 1        | 3                         |
| AEEB08.04   | CLO 4 | Calculate the performance<br>analysis in DC shunt machine<br>as both generator and motor<br>by Swinburne's test. | PO 1, PO 4  | 3                         |
| AEEB08.05   | CLO 5 | Calculate the performance analysis in single phase transformer.                                                  | PO 1, PO 4  | 3                         |
| AEEB08.06   | CLO 6 | Draw and analysis of performance characteristics of three phase induction motor by brake test.                   | PO 1, PO 4  | 2                         |
| AEEB08.07   | CLO 7 | Determine the regulation of alternator using synchronous impedance method.                                       | PO 1,PO 2   | 2                         |

| CLO<br>Code | CLO's  | At the end of the course, the student will have the ability to:                      | PO's Mapped | Strength<br>of<br>Mapping |
|-------------|--------|--------------------------------------------------------------------------------------|-------------|---------------------------|
| AEEB08.08   | CLO 8  | Draw and analysis of performance characteristics of PN junction diode.               | PO 1, PO 4  | 1                         |
| AEEB08.09   | CLO 9  | Draw and analysis of performance characteristics of Zener diode.                     | PO 1, PO 4  | 1                         |
| AEEB08.10   | CLO 10 | Demonstrate practical understanding of Half wave rectifier.                          | PO 1        | 3                         |
| AEEB08.11   | CLO 11 | Demonstrate practical understanding of Full wave rectifier.                          | PO 1        | 3                         |
| AEEB08.12   | CLO 12 | Draw and analysis of performance characteristic curves of common emitter transistor. | PO 1, PO 4  | 2                         |
| AEEB08.13   | CLO 13 | Draw and analysis of performance characteristic curves of common base transistor.    | PO 1, PO 4  | 2                         |
| AEEB08.14   | CLO 14 | Demonstrate practical understanding of CRO.                                          | PO 1        | 2                         |

**3 = High; 2 = Medium; 1 = Low** 

# X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

| Course<br>Learning |     | Program Outcomes (POs) |     |     |     |     |     |     |     | Program Specific<br>Outcomes (PSOs) |      |      |      |      |      |      |
|--------------------|-----|------------------------|-----|-----|-----|-----|-----|-----|-----|-------------------------------------|------|------|------|------|------|------|
| Outcomes<br>(CLOs) | PO1 | PO2                    | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10                                | PO11 | PO12 | PSO1 | PSO2 | PSO3 | PSO4 |
| CLO 1              | 2   | 2                      |     |     |     |     |     |     |     |                                     |      |      |      |      |      |      |
| CLO 2              | 2   | 2                      |     |     |     |     |     |     |     |                                     |      |      |      |      |      |      |
| CLO 3              | 3   |                        |     |     |     |     |     |     |     |                                     |      |      |      |      |      |      |
| CLO 4              | 1   |                        |     | 3   |     |     |     |     |     |                                     |      |      | 1    |      |      |      |
| CLO 5              | 1   |                        |     | 3   |     |     |     |     |     |                                     |      |      | 1    |      |      |      |
| CLO 6              | 1   |                        |     | 2   |     |     |     |     |     |                                     |      |      |      |      |      |      |
| CLO 7              | 1   | 2                      |     |     |     |     |     |     |     |                                     |      |      |      |      |      |      |
| CLO 8              | 1   |                        |     | 1   |     |     |     |     |     |                                     |      |      |      |      |      |      |
| CLO 9              | 1   |                        |     | 1   |     |     |     |     |     |                                     |      |      |      |      |      |      |
| CLO 10             | 3   |                        |     |     |     |     |     |     |     |                                     |      |      |      |      |      |      |
| CLO 11             | 3   |                        |     |     |     |     |     |     |     |                                     |      |      |      |      |      |      |
| CLO 12             | 1   |                        |     | 2   |     |     |     |     |     |                                     |      |      |      |      |      |      |

| Course<br>Learning |     | Program Outcomes (POs) |     |     |     |     |     |     | Program Specific<br>Outcomes (PSOs) |      |      |      |      |      |      |      |
|--------------------|-----|------------------------|-----|-----|-----|-----|-----|-----|-------------------------------------|------|------|------|------|------|------|------|
| Outcomes<br>(CLOs) | PO1 | PO2                    | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9                                 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 | PSO4 |
| CLO 13             | 1   |                        |     | 2   |     |     |     |     |                                     |      |      |      |      |      |      |      |
| CLO 14             | 2   |                        |     |     |     |     |     |     |                                     |      |      |      |      |      |      |      |

**<sup>3 =</sup> High; 2 = Medium; 1 = Low** 

## XI. ASSESSMENT METHODOLOGIES – DIRECT

| CIE Exams               | PO 1       | SEE<br>Exams    | PO 1 | Assignments     | - | Seminars      | - |
|-------------------------|------------|-----------------|------|-----------------|---|---------------|---|
| Laboratory<br>Practices | PO 1, PO 4 | Student<br>Viva | PO 1 | Mini<br>Project | - | Certification | - |

## XII. ASSESSMENT METHODOLOGIES - INDIRECT

| ~ | Early Semester Feedback                | <b>'</b> | End Semester OBE Feedback |
|---|----------------------------------------|----------|---------------------------|
| × | Assessment of Mini Projects by Experts |          |                           |

## XIII. SYLLABUS

| LIST OF EXPERIMENTS |                                                                            |  |  |  |  |  |  |
|---------------------|----------------------------------------------------------------------------|--|--|--|--|--|--|
| Week-1              | KCL & KVL                                                                  |  |  |  |  |  |  |
| Verification of     | of Kirchhoff's current and voltage laws.                                   |  |  |  |  |  |  |
| Week-2              | OHMS LAW                                                                   |  |  |  |  |  |  |
| Verification of     | of ohms law.                                                               |  |  |  |  |  |  |
| Week-3              | MAGNETIZATION CHARACTERISTICS                                              |  |  |  |  |  |  |
| Magnetizatio        | n characteristics of DC shunt generator.                                   |  |  |  |  |  |  |
| Week-4              | SWINBURNE'S TEST                                                           |  |  |  |  |  |  |
| Swinburne's         | Swinburne's test on DC shunt machine.                                      |  |  |  |  |  |  |
| Week-5              | OPEN CIRCUIT & SHORT CIRCUIT TEST                                          |  |  |  |  |  |  |
| Open circuit        | and short circuit test on single phase transformer.                        |  |  |  |  |  |  |
| Week-6              | BRAKE TEST                                                                 |  |  |  |  |  |  |
| Study the per       | formance characteristics of three phase induction motor by brake test.     |  |  |  |  |  |  |
| Week-7              | SYNCHRONOUS IMPEDANCE METHOD                                               |  |  |  |  |  |  |
| Determine th        | Determine the regulation of alternator using synchronous impedance method. |  |  |  |  |  |  |
| Week-8              | Week-8 PN JUNCION DIODE                                                    |  |  |  |  |  |  |
| PN junction of      | PN junction diode characteristics.                                         |  |  |  |  |  |  |

| Week-9        | ZENER DIODE         |
|---------------|---------------------|
| Zener diode   | characteristics.    |
| Week-10       | HALF WAVE RECTIFIER |
| Half wave re  | ectifier circuit.   |
| WeeK-11       | FULL WAVE RECTIFIER |
| Full wave red | etifier circuit.    |
|               |                     |

Week-12 COMMON EMITTER

Transistor common emitter characteristics.

Week-13 | COMMON BASE

Transistor common base characteristics.

Week-14 CRO

Study of CRO.

#### **Text Books:**

- 1 A Chakrabarti, "Circuit Theory", Dhanpat Rai Publications, 6<sup>th</sup> Edition, 2004.
- 2 K S Suresh Kumar, "Electric Circuit Analysis", Pearson Education, 1st Edition, 2013.
- 3 Williamm Hayt, Jack E Kemmerly S M Durbin, "Engineering Circuit Analysis", Tata McGraw Hill, 7<sup>th</sup> Edition, 2010.
- 4 J P J Millman, C C Halkias, Satyabrata Jit, "Millman"s Electronic Devices and Circuits", Tata McGraw Hill, 2<sup>nd</sup> Edition, 1998.
- 5 R L Boylestad, Louis Nashelsky, "Electronic Devices and Circuits", PEI / PHI, 9<sup>th</sup> Edition, 2006.
- 6 R L Boylestad, Louis Nashelsky, "Electronic Devices and Circuits", PEI / PHI, 9<sup>th</sup> Edition, 2006.

#### **Reference Books:**

- David A Bell, "Electric Circuits", Oxford University Press, 9<sup>th</sup> Edition, 2016
- 2 U A Bakshi, Atul P Godse "Basic Electrical and Electronics Engineering", Technical Publications, 9<sup>th</sup> Edition, 2016.
- 3 A Bruce Carlson, "Circuits", Cengage Learning, 1<sup>st</sup> Edition, 2008.
- 4 M Arshad, "Network Analysis and Circuits", Infinity Science Press, 9 th Edition, 2016.

#### **Web References:**

- 1 https://www.kuet.ac.bd/webportal/ppmv2/uploads/1364120248DC%20Machines2.pdftextof video.nptel.iitm.ac.in
- 2 https://www.eleccompengineering.files.wordpress.com/2014/08/a-textbook-of-electrical-technology volume-ii-ac-and-dc-machines-b-l-thferaja.pdf
- 3 https://www.geosci.uchicago.edu/~moyer/GEOS24705/Readings/Klempner\_Ch1.pdf
- 4 https://www.ibiblio.org/kuphaldt/electricCircuits/DC/DC.pdf
- 5 https://www.users.ece.cmu.edu/~dwg/personal/sample.pdf.
- 6 https://www.djm.cc/library/Principles of Alternating Current Machinery Lawrence edite d.pdf

## XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| Week<br>No | Topics to be covered                                  | Course Learning Outcomes (CLOs) | Reference                        |
|------------|-------------------------------------------------------|---------------------------------|----------------------------------|
| 1          | Verification of Kirchhoff's current and voltage laws. | CLO 1                           | T2:1.12 & 2.6<br>R2:1.7,1.8&1.14 |

| Week<br>No | Topics to be covered                                                                | Course Learning Outcomes (CLOs) | Reference                                              |
|------------|-------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------|
| 2          | Verification of ohms law.                                                           | CLO 2                           | T2:1.9                                                 |
| 3          | Magnetization characteristics of DC shunt generator.                                | CLO 3                           | R2:1.5<br>T2: 7.6.3<br>R2:5.10,5.11,5.1<br>2,5.13,5.14 |
| 4          | Swinburne's test on DC shunt machine.                                               | CLO 4                           | T2: 7.7.6<br>R2:5.21,5.22,5.23,5<br>. 24               |
| 5          | Open circuit and short circuit test on single phase transformer.                    | CLO 5                           | T2: 6.9-6.10<br>R2:6.13,6.15                           |
| 6          | Study the performance characteristics of three phase induction motor by brake test. | CLO 6                           | T2: 9.3.1 R2:7.8                                       |
| 7          | Determine the regulation of alternator using synchronous impedance method.          | CLO 7                           | T2: 8.8 R2:7.21                                        |
| 8          | PN junction diode characteristics.                                                  | CLO 8                           | T4: 4.11 R2:8.1                                        |
| 9          | Zener diode characteristics.                                                        | CLO 9                           | T4:4.19,5.2<br>R2:8.22.5                               |
| 10         | Half wave rectifier circuit.                                                        | CLO 10                          | T4: 4.23<br>R2:8.8,8.17,                               |
| 11         | Full wave rectifier circuit.                                                        | CLO 11                          | T4: 4.23 R2:8.8,8.18                                   |
| 12         | Transistor common emitter characteristics.                                          | CLO 12                          | T4: 6.6<br>R2:9.21,9.22,9.23                           |
| 13         | Transistor common base characteristics.                                             | CLO 13                          | T4: 6.6<br>R2:9.21,9.22,9.23                           |
| 14         | Study of CRO.                                                                       | CLO 14                          | R2: 2.2-2.6                                            |

# XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

| S No | Description                                                                                      | Proposed actions | Relevance with POs | Relevance with PSOs |
|------|--------------------------------------------------------------------------------------------------|------------------|--------------------|---------------------|
| 1    | To improve standards and analyze the concepts.                                                   | Seminars         | PO 1, PO 4         | PSO 1               |
| 2    | Encourage students to solve real time applications and prepare towards competitive examinations. | NPTEL            | PO 2               | PSO 1               |

# Prepared by:

Mrs. T Saritha Kumari, Assistant Professor

HOD, FREHMAN ENGINEERING