

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	BASIC	BASIC SIMULATION WITH MAT LABORATORY					
Course Code	AAEB	01					
Programme	B.Tech						
Semester	Π	AE					
Course Type	Core						
Regulation	IARE -	R18					
	Theory				Practical		
Course Structure	Lectu	res	Tutorials	Credits	Laboratory	Credits	
	-		-	-	3	1.5	
Chief Coordinator	Dr. Prasanta Kumar Mohanta, Professor						
Course Faculty	Dr. Pra	santa	Kumar Mohanta	, Professor			

I. COURSE OVERVIEW:

The aim of this lab complements the basic knowledge of MATLAB programing and working environment. The students will be able to know the various application developments and various logics and available functions in the MATLAB.

II. COURSE PRE-REQUISITES: Nil

Level	Course Code	Semester	Prerequisites	Credits

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
BSML	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

X	Chalk & Talk	X	Quiz	X	Assignments	X	MOOCs
---	--------------	---	------	---	-------------	---	-------

~	LCD / PPT	X	Seminars	X	Mini Project	×	Videos
\checkmark	Open Ended Experiment	ts					

V. EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE):The semester end labexamination for 70 marks shall be conducted by two examiners, one of them beingInternal Examiner and the other being External Examiner, both nominated by thePrincipal from the panel of experts recommended by Chairman, BOS.

20 %	To test the preparedness for the experiment.
20 %	To test the performance in the laboratory.
20 %	To test the calculations and graphs related to the concern experiment.
20 %	To test the results and the error analysis of the experiment.
20 %	To test the subject knowledge through viva – voce.

The er	nnhasis	on the e	neriments	is broadly	v based	on the	following	criteria.
I IIC CI	npnasis	on the e	sperments	15 DI Oudi	y buseu	on the	10110 willig	criteria.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component	L	Total Marika	
Type of Assessment	Day to day performance	Final internal lab assessment	I otal Marks
CIA Marks	20	10	30

Table 1: Assessment pattern for CIA

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 12thweek of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

Preparation	Performance	Calculations and Graph	Results and Error Analysis	Viva	Total
2	2	2	2	2	10

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Identify, formulate, and solve complex aerospace	2	Discussion
	engineering problems by applying advanced principles of		
	engineering		
PO 2	Apply aerospace engineering design to produce solutions	3	Laboratory Practices
	that meet specified needs with frontier technologies.		
PO 5	Independently carry out research / investigation and	3	Projects
	development work to solve practical problems		

3 = **High**; **2** = **Medium**; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES AREASSESSED:

Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1 Professional skillsAble to utilize the knowledge	of 1	Lab exercises
and challenging environment for design and development new products	t of	
PSO 2 Professional skills Imparted through simulation langu skills and general purpose MATLAB.	age -	-
PSO 3 Practical implementation and coding skills in MATL Providing different types of in house and training.	AB _	-
PSO 4 Successful career and entrepreneurship To prepare students with broad aerospace knowledge to use MATLAB	the _	-

3 = High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES (COs):

The o	course should enable the students to:
Ι	Understand the procedures, algorithms, and concepts require to solve specific problems
II	Analyze the concepts of algebra, calculus and numerical solutions using MATLAB software.
III	Enrich the knowledge in MATLAB and can apply for project works.
IV	Interpret and visualize simple mathematical functions and operations thereon using plots/display
2	- High: 2 - Modium: 1 - Low

3 = High; 2 = Medium; 1 = Low

IX. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome				
CO 1	Understand the need for	CLO 1	Understand the basic of MATLAB				
	simulation/implementation for	CLO 2	Understand the basic of features of Matlab				
	the verification of						
	mathematical functions						
	Understand the main features						
	of the MATLAB program						
	development environment to						
	enable their usage in the						
	higher learning						
CO 2	Implement simple	CLO 3	Understand the steps involved in developing				
	mathematical		MATLAB				

	functions/equations in	CLO 4	Wring code of MATLAB code with .m extension
	numerical computing	CLO 5	Execution of .m file and analysis the results
	environment such as		
	MATLAB.		
	Interpret and visualize simple		
	mathematical functions and		
	nlots/disnlay		
	pious dispidy		
CO 3	Understand the need for	CLO 6	Executing the .m file and syntax analysis
	simulation/implementation for	CL0.7	Puntime change the variable to analyze the
	the verification of	CLO /	properties
	mathematical functions		properties
	of the MATLAB program		
	development environment to		
	enable their usage in the		
	higher learning		
CO 4	Implement simple	CLO 8	Algebraic operations with Matrix
	mathematical	CLO 9	Analyze the errors and fixing.
	numerical computing		
	environment such as		
	MATLAB.		
	Interpret and visualize simple		
	mathematical functions and		
	operations thereon using		
	plots/display		
CO 5	Analyze the program for	CLO 10	Plotting options with various data structure
	correctness and		0 · F · · · · · · · · · · · · · · · · ·
	determine/estimate/predict the	CLO 11	Writing application from Aeronautical problems
	output and verify it under		
	simulation environment using		
	MATLAB tools.		
	simulation environment using MATLAB tools.		

3 = High; **2** = Medium; **1** = Low

X. COURSE LEARNING OUTCOMES(CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AAEB01.01	CLO 1	Understand the basic of MATLAB	PO1, PO2	3
AAEB01.02	CLO 2	Understand the basic of features of Matlab	PO1, PO2	3
AAEB01.03	CLO 3	Understand the steps involved in developing MATLAB	PO3	3
AAEB01.04	CLO 4	Wring code of MATLAB code with .m extension	PO2, PO5	3
AAEB01.05	CLO 5	Execution of .m file and analysis the results	PO2, PO5	3
AAEB01.06	CLO 6	Executing the .m file and syntax analysis	PO2, PO5	3
AAEB01.07	CLO 7	Runtime change the variable to analyze the properties	PO2, PO5	3
AAEB01.08	CLO 8	Algebraic operations with Matrix	PO1, PO5	3
AAEB01.09	CLO 9	Analyze the errors and fixing.	PO2, PO5	3
AAEB01.10	CLO 10	Plotting options with various data structure	PO2, PO5	3

CLO Code	CLO's	At the e	end of the course, the student will have the ability to:		PO's Mapped	Strength of Mapping	
AAEB01.11	CLO 11	Writing problems	application	from	Aeronautical	PO2, PO5	3

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

Course Outcomes	Program Outcomes (POs)					
(COs)	PO 1	PO 2	PO 5			
CO 1	3	3				
CO 2			3			
CO 3	3	3				
CO 4	3					
CO 5		3	3			

3 = High; 2 = Medium; 1 = Low

XII. ASSESSMENT METHODOLOGIES-DIRECT

CIE Exams	PO1, PO2, PO5	SEE Exams	PO1, PO2, PO5	Assignments	-	Seminars	-
Laboratory Practices	PO1, PO2, PO5	Student Viva	PO1, PO2, PO5	Mini Project	-	Certification	-

XIII. ASSESSMENT METHODOLOGIES-INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIV. SYLLABUS

LIST OF					
	EXPERIMENTS				
Week-l	BASIC FEATURES				
a. Features and	lses.				
b. Local environ	nmentsetup.				
Week-2	ALGEBRA				
a. Solving basic	algebraicequations.				
b. Solving syste	em of equations.				
c. Two dimensi	onalplots.				
Week-3	Week-3 CONTROL STRUCTURES				
a. For Loop.					
b. WhileLoop.					
c. If- elseif- else controlstructure.					
Week-4	MATRICES				

a. Addition, subtraction and multiplication of matrices.						
b. Transpose of amatrix.						
c. Inverse of amatrix.						
Week-5 SYSTEM OF LINEAR EQUATIONS						
a. Rank of amatrix.						
b. Gauss Jordanmethod.						
c. LU decompositionmethod.						
Week-6 LINEAR TRANSFORMATION						
a. Characteristicequation.						
b. Eigenvalues.						
c. Eigen vectors.						
Week-7 DIFFERENTIATION AND INTEGRATION						
a. Higher order differential equations.						
b. Doubleintegrals.						
c. Tripleintegrals.						
Week-8 NUMERICAL DIFFERENTION AND INTEGRATION						
a. Trapezoidal, Simpson'smethod.						
b. Eulermethod.						
c. RungeKutta method						
Week-9 3D PLOTTING						
a. Lineplotting.						
b. Surfaceplotting.						
c. Volumeplotting.						
Week-10 DEFLECTION OF SIMPLY SUPPORTED BEAM						
a. Calculating vertical displacement with pointload.						
b. Calculating vertical displacement with uniformly distributed load.						
c. Calculating vertical displacement with uniformly varyingload.						
Week-11 DEFLECTION OF CANTILEVER BEAM						
a. Calculating vertical displacement with pointload.						
b. Calculating vertical displacement with uniformly distributedload.						
c. Calculating vertical displacement with uniformly varying load						
Week-12 FORMULATION OF IDEAL AND REAL GAS EQUATIONS						
a. Calculating the pressure, temperature, density for Earth's atmospheric conditions						
atdifferent altitudes.						
b. Calculating the pressure, temperature, density for other planets at differentaltitudes.						

XV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Week No.	Topics to be covered	Course Learning Outcomes
1.	• Features and uses.	CLO 1
	Local environmentsetup.	
	• Solving basic algebraic equations.	
2.	• Solving system of equations.	CLO 2
	Two dimensionalplots.	
	• For Loop.	
3.	• While Loop.	CLO 3
	• If- elseif- else control structure.	
4.	• Addition, subtraction and multiplication of matrices.	CLO 4

Week No.	Topics to be covered	Course Learning Outcomes
	Transpose of amatrix.Inverse of amatrix.	
5.	Rank of amatrix.Gauss Jordanmethod.LU decompositionmethod.	CLO 5
6.	 Characteristicequation. Eigenvalues. Eigen vectors. 	CLO 6
7.	Higher order differentialequations.Doubleintegrals.Tripleintegrals.	CLO 7
8.	Trapezoidal, Simpson'smethod.Eulermethod.RungeKutta method	CLO 8
9.	Lineplotting.Surfaceplotting.Volumeplotting.	CLO 9
10.	 Calculating vertical displacement with pointload. Calculating vertical displacement with uniformly distributedload. Calculating vertical displacement with uniformly varyingload. 	CLO 10
11.	 Calculating vertical displacement with pointload. Calculating vertical displacement with uniformly distributedload. c. Calculating vertical displacement with uniformly varying load 	CLO 11
12.	 Calculating the pressure, temperature, density for Earth's atmospheric conditions atdifferent altitudes. Calculating the pressure, temperature, density for other planets at differentaltitudes. 	CLO 11

XVI. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S.NO	DESCRIPTION	PROPOSED ACTIONS	RELEVANCE WITH POs	Relevance with PSOs
1	Encourage students to solve real time applications and prepare towards competitive examinations.	NPTEL	PO1, PO3	PSO 1

Prepared By: Dr. Prasanta Kumar Mohanta, Professor

HOD, AE