FLUID THERMAL MODELING AND SIMULATION LABORATORY

VI Semester: ME								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
AME113	Core	L	T	P	C	CIA	SEE	Total
		-	-	3	2	30	70	100
Contact Classes: Nil	Tutorial Classes: Nil	Practical Classes: 42			ses: 42	Total Classes: 42		

OBJECTIVES:

The course should enable the students to:

- I. Analyze the fluid flow through pipes.
- II. Understand the external fluid flow.
- III. Apply simulation techniques to heat flow problems.
- IV. Evaluate the thermal stresses of real time problems.
- V. Demonstrate the 3D Heat conduction for real time problems.

COURSE LEARNING OUTCOMES (CLOs):

The students should enable to:

- 1 Understand basic units of measurement, convert units, and appreciate their magnitudes.
- 2 Understand the basic principles of FEM
- 3 Utilize the governing equation for solving the fluid flow through the pipe
- 4 Model the 3D pipe flow domain using ansys
- 5 Mesh the 3D pipe flow domain using Ansys
- 6 Validate the results of analytical models introduced in lecture to the actual behavior of real fluid flows
- 7 Plot the variation velocity through the branch of pipes using Mat lab
- 8 Learn the creation of geometry using key point
- 9 Plot the analysis of external fluid flow problem
- 10 Determine the drag coefficient of a circular cylinder
- 11 Modelling and assemble of ball valve
- 12 Simulation of flow through ball valve
- 13 Plot the temperature distribution through the solid using Ansys APDL
- 14 Plot the vector distribution of thermal gradient and thermal flux of solid
- 15 Temperature distribution of fin element.
- 16 Treatment of boundary conditions.
- 17 Plot the 3Dheat conduction distribution.
- 18 Calculation of the efficiency of the counter flow heat exchanger using Ansys Flow Simulation.
- 19 Conjugate heat transfer problem using Ansys Flow Simulation.
- 20 3D Thermal Analysis, Finned Pipe using Ansys
- 21 Thermal stress analysis of piston
- 22 Plot the nodal as well elemental distribution of process parameters

LIST OF EXPERIMENTS				
Week-1	INTERNAL PIPE FLUID FLOW – FEM			
Internal Pipe flow problem Using theoretical FEM.				
Week-2	INTERNAL PIPE FLUID FLOW - ANSYS			
Analyzing Flow in a System of Pipes using ANSYS.				

Week-3	INTERNAL PIPE FLUID FLOW – MATLAB			
Internal Pip	pe flow problem using MAT LAB.			
Week-4	EXTERNAL FLUID FLOW			
	ion of the drag coefficient of a circular cylinder immersed in a uniform fluid stream using slidWorks Flow Simulation.			
Week-5	FLOW THROUGH BALL VALVE			
Flow of wa	ter through a ball valve assembly using ANSYS/ SolidWorks Flow Simulation.			
Week-6	HEAT CONDUCTION			
Heat Cond	action within a Solid using ANSYS.			
Week-7	TEMPERATURE DISTRIBUTION			
Temperatur	re distribution in a fin cooled electronic component using ANSYS.			
Week-8	3D HEAT CONDUCTION			
3D Heat Co	onduction within a Solid-Cell Phone using ANSYS.			
Week-9	COUNTER FLOW HEAT EXCHANGER			
Calculation Simulation	of the efficiency of the counter flow heat exchanger using ANSYS/SolidWorks Flow			
Week-10	CONJUGATE HEAT TRANSFER			
Conjugate	heat transfer problem using ANSYS/ Solid Works Flow Simulation.			
Week-11	3D THERMAL ANALYSIS			
3D Therma	l Analysis, Finned Pipe using ANSYS.			
Week-12	THERMAL STRESS ANALYSIS			
Text Books				
	a, W.S., —Design of Fluid Thermal Systems, Cengage Learning, 3 rd Edition, 2011.			
2. Jalu	ria, Y., —Design and Optimization of Thermal Systems, McGr aw-Hill, 2 nd Edition, 2007.			

Reference Books:

- 1. Suryanarayana, N. V. and Arici, Ö., —Design and Simulation of Thermal Systems[∥], McGraw-Hill,1st Edition, 2003.
- 2. McDonald, A. G., and Magande, H. L., —Thermo-Fluids Systems Designl, John Wiley, 1st Edition, 2012
- 3. Robert Cook, —Concepts and Applications of Finite Element Analysisl, Wiley, 1st Edition, 2013.