

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

CIVIL ENGINEERING

COURSE DESCRIPTOR

Course Title	ADVANCED MATERIAL TESTING LABORATORY						
Course Code	ACE109	ACE109					
Programme	B.Tech	B.Tech					
Semester	VI	VI CE					
Course Type	Core						
Regulation	IARE - R16						
			Theory		Practio	cal	
Course Structure	Lectur	es	Tutorials	Credits	Laboratory	Credits	
	3 2						
Chief Coordinator	Mr. G. Rama Krishna, Associate Professor, CE						
Course Faculty			a Krishna, Assoc 1d Goud, Assista				

I. COURSE OVERVIEW:

Advanced material testing laboratory provides a comprehensive coverage of practical aspects of the subject and include the latest developments in the field of concrete construction and students also understand the material behavior. The properties of concrete and its constituent materials of traditional concrete and self-compacting concrete and the role of various admixtures in modifying these properties to suit specific requirements, such as ready mix concrete, NDT techniques are used to locating defects as well as distinguish material properties. Understand the basic principles of various NDT techniques, nature of defects, standards and specifications related to NDT Testing.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	ACE010	V	Concrete Technology	3
UG	ACE108	V	Concrete Technology Laboratory	2

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Advanced Material Testing Laboratory	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	×	Quiz	×	Assignments	×	MOOCs
~	LCD / PPT	×	Seminars	×	Mini Project	~	Videos
~	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

20 %	To test the preparedness for the experiment.
20 %	To test the performance in the laboratory.
20 %	To test the calculations and graphs related to the concern experiment.
20 %	To test the results and the error analysis of the experiment.
20 %	To test the subject knowledge through viva – voce.

The emphasis on the experiments is broadly based on the following criteria:

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component	Lab		
Type of Assessment	Day to day performance	Final internal lab assessment	Total Marks
CIA Marks	20	10	30

Table 1: Assessment pattern for CIA

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16^{th} week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

Preparation	Performance	Calculations and Graph	Results and Error Analysis	Viva	Total
2	2	2	2	2	10

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2	Tutorials
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	Calculations of the observations
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	1	Practical's and problem solving from observations
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2	Practical's
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	1	Practical's
PO7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	1	Tutorial
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.	2	Tutorials
PO9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	1	Practical's

3 = High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Engineering knowledge: Graduates shall demonstrate sound knowledge in analysis, design, laboratory investigations and construction aspects of civil engineering infrastructure, along with good foundation in mathematics, basic sciences and technical communication.	3	Tutorials
PSO 2	Broadness and diversity: Graduates will have a broad understanding of economic, environmental, societal, health and safety factors involved in infrastructural development, and shall demonstrate ability to function within multidisciplinary teams with competence in modern tool usage.	2	Tutorials/ Practicals

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 3	Self-learning and service: Graduates will be motivated	-	-
	for continuous self-learning in engineering practice and/		
	or pursue research in advanced areas of civil engineering		
	in order to offer engineering services to the society,		
	ethically and responsibly.		
	3 - High: 2 - Modium: 1 - Low		

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES :

The co	The course should enable the students to:					
Ι	Assess the physical properties of cement, sand and aggregate					
II	Describe properties of various types of admixtures and their utility.					
III	Measure important properties of fresh and hardened cement concrete.					
IV	Understand the basic principles of various NDT techniques and various applications of NDT techniques.					

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
ACE109.01	CLO 1	Determine the consistency, soundness, setting time and compressive strength of cement.	PO1, PO2,PO3, PO5, PO7, PO8, PO9	2
ACE109.02	CLO 2	Determine the Fineness modulus of aggregates.PO1, PO2,PO3, PO5, PO9		2
ACE109.03	CLO 3	Understand the bulking of fine aggregates.	PO1, PO2,PO3, PO4, PO5, PO7, PO9	2
ACE109.04	CLO 4	Determine the aggregate crushing and impact value.	PO1, PO2,PO3, PO4, PO5, PO7, PO9	1
ACE109.05	CLO 5	Understand the workability of self- compacting concrete.	PO1, PO2,PO3, PO5, PO7, PO9	1
ACE109.06	CLO 6	Determine the air content of freshly mixed concrete from observations.	PO1, PO2,PO3, PO4, PO5, PO9	1
ACE109.07	CLO 7	Understand the fluidity of cement	PO1, PO4, PO5, PO7, PO9	2
ACE109.08	CLO 8	Determine the optimum dosage of super plasticizer.	PO1, PO3, PO5, PO7, PO9	1
ACE109.09	CLO 9	Determine the permeability of the concrete specimen.	PO1, PO2,PO3, PO5, PO7, PO9	1
ACE109.10	CLO 10	Apply scientific and technical knowledge to the field of Non-Destructive Testing	PO1, PO2,PO3, PO4, PO5, PO9	1
ACE109.11	CLO 11	Analyze the Accelerated Curing of concrete.	PO1, PO2,PO3, PO5	2
ACE109.12	CLO 12	Evaluate the Influence of water cement ratio on strength and aggregate/cement ratio on workability and strength.	PO1, PO4, PO5, PO7, PO9	2
ACE109.13	CLO 13	Synthesis the influence of different chemical admixtures on concrete.	PO, PO3, PO4, PO5, PO7, PO9	2

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
ACE109.14	CLO 14	Understand the concept of water cement	PO1, PO2,PO3,	1
		ratio	PO4, PO5, PO7,	
			PO9	

3 = High; 2 = Medium; 1 = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning	Learning Program Outcomes (POs)							Program Specific Outcomes (PSOs)							
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3	3	1		3		2	2	1				3	2	
CLO 2	3	3	2		2				1				2		
CLO 3	3	2	2	2	2		1		1				3		
CLO 4	1	3	1	1	2		1		1				2		
CLO 5	1	1	2	3	1		2		1				3	1	
CLO 6	2	3	1	1	1				1				3		
CLO 7	3	2	2	3	2		1		1				3		
CLO 8	2		2		2		3		1				3	3	
CLO 9	3	1	2		1		1		1				3		
CLO 10	1	3	2	1	3				1				3		
CLO 11	3	2	1		1								3	1	
CLO 12	3	2	2	2	2		1		1				3		
CLO 13	3		1	3	1		3		1				3	2	
CLO 14	1	2	1	2	2		1		1				1		
	3 - High: 2 - Medium: 1 - Low														

3 = High; **2** = Medium; **1** = Low

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO1, PO2,PO3, PO4, PO5, PO7, PO9	SEE Exams	PO1,PO2,PO3, PO4, PO5, PO7, PO9	Assignments	-	Seminars	-
Laboratory Practices	PO3, PO4, PO5, PO9	Student Viva	PO1	Mini Project	-	Certification	-

XII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

	LIST OF EXPERIMENTS
Week-1	TESTS ON CEMENT
Tests on cen	nent - Consistency, setting times, soundness, compressive strength
Week-2	GRADATION CHARTS OF AGGREGATES
Study of grad	dation charts of aggregates.
Week-3	BULKING OF SAND
Study of bull	king of sand
Week-4	AGGREGATE CRUSHING AND IMPACT VALUE
Measuremen	t of aggregate impact test.
Week-5	WORKABILITY TESTS ON FRESH SELF-COMPACTING CONCRETE
Measuremen	t of workability tests on fresh self-compacting concrete
Week-6	AIR ENTRAINMENT TEST ON FRESH CONCRETE
Measuremen	t of air entrainment test on fresh concrete
Week-7	MARSH CONE TEST
Performing 1	narsh cone test on fresh concrete
Week-8	PERMEABILITY OF CONCRETE
Performing p	bermeability of concrete test on fresh concrete
Week-9	NON DESTRUCTIVE TESTING OF CONCRETE.
Performing r	nondestructive testing of concrete
Week-10	ACCELERATED CURING OF CONCRETE
Performing a	accelerated curing test on concrete
WeeK-11	INFLUENCE OF W/C RATIO ON STRENGTH AND AGGREGATE / CEMENT RATIO ON WORKABILITY AND STRENGTH
	W/C ratio on strength of concrete aggregate / cement ratio on workability and strength
Week-12	INFLUENCE OF DIFFERENT CHEMICAL ADMIXTURES ON CONCRETE
Finding the in	fluence of different chemical admixtures on concrete

Text Books:

- 1. M.S. Shetty, "Concrete Technology, theory and practice", S. Chand publishing, revised edition, 2012
- 2. H.S. Moondra, Rajiv Gupta, "Laboratory Manual for Civil Engineering", CBS Publishers, New Delhi, 4th Edition, 2015.

Reference Books:

- 1. S. K. Duggal, "Building materials" new age international publications, third revised edition, 2008
- 2. Hemant Sood, "Laboratory Manual on Testing of Engineering Materials", New Age International Publishers, New Delhi, 2nd Edition, 2007

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Week No.	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
	Tests on cement - Consistency, setting times,		T1:2.27,
1	soundness, compressive strength	CLO1	2.28,2.30,
1		CLOI	2.29
			R1:5.9
2	Study of gradation aborts of a garagetes	CLO2	T1:3.23
2	Study of gradation charts of aggregates.	CLO2	R1:6.12
3	Study of bulking of send	CLO3	T1:3.17
5	Study of bulking of sand	CL03	R1:6.8
4	Measurement of aggregate crushing value and	CLO4	T1:3.7,3.8
4	impact value.	CLO4	R1:6.12
5	Measurement of workability on fresh self-	CLO5	T1:13.2.1
3	compacting concrete	CLOS	R1:10.8
6	Measurement of air entrainment of fresh concrete	CLO6	T1:5.15.3
0	Measurement of an entrainment of fresh concrete	CLO0	R1:10.9
7	Performing marsh cone test on cement	CLO7, CLO8	T1:5.9.2
/	r chorming marsh cone test on cement	CL07, CL08	R1:10.17
8	Performing permeability of concrete test on fresh	CLO9	T1:9.7
0	concrete	CLO ₉	R1:10.9
9	Performing non destructive test of concrete	CLO10	T1:10.11
9	renorming non destructive test of concrete	CLOIO	R1:10.14
10	Performing accelerated curing test on concrete	CLO11	T1:7.5
10	I chorning accelerated curing test on coherete	CLOIT	R1:10.9
	Influence of W/C ratio on strength of concrete		T1:9.6
11	Influence of aggregate / cement ratio on	CLO12, CLO14	R1:10.4
	workability and strength		K1.10.4
12	Finding the influence of different chemical	CLO13	T1:5
12	admixtures on concrete	61015	R1:10.17

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Workability test on Fresh Self –	NPTEL & Exercise	PO1, PO2,PO3,	PSO1, PSO2
1	Compacting Concrete	Practices	PO5, PO7, PO9	1501,1502
2	Non-Destructive testing of	Seminars / NPTEL	PO1, PO2,PO3,	PSO1
2	concrete		PO4, PO5, PO9	1301
3	Influence of different chemical	NPTEL	PO, PO3, PO4,	PSO1, PSO2
3	admixtures on concrete	INFIEL	PO5, PO7, PO9	r301, r302

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

Prepared by:

Mr. Gude Rama Krishna, Associate Professor, CE Mr. K. Anand Goud, Assistant Professor, CE

HOD, CE