INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

MECHANICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	COM	COMPUTER AIDED MACHINING AND ROBOTICS LABORATORY				
Course Code	BCCB	BCCB19				
Programme	M.Tec	M.Tech(CAD/CAM)				
Semester	Π	II ME				
Course Type	Core	Core				
Regulation	IARE	- R18				
	Lect	ures	Tutorials	Practical	Credits	
	-	3 2				
Course Faculty	Mr. C.	Labe	sh Kumar, Assista	ant Professor	·	

I. COURSE OVERVIEW:

2000

This course provides knowledge of machining and robotic simulations. It covers the concepts for Part programing for sequence of operation, tool setting, sub routines and use of cycles. Numerical control programing for tool path generation for milling and turning operations. 3-D simulation for operations like picks and place robot.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
PG	BCC005	II	Computer Aided Manufacturing	3

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Computer Aided Machining And Robotics Laboratory	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	CHALK &TALK	>	VIVA	×	ASSIGNMENTS	×	Moocs
~	LCD / PPT	×	SEMINARS	×	MINI PROJECT	×	VIDEOS
×	OPEN ENDED EXP	ERIM	ENTS				

V. EVALUATION METHODOLOGY:

Continuous internal assessment (CIA):

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, with 20 marks for day to day evaluation and 10 marks for Internal Examination (CIE).

Semester End Examination (SEE):

The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the this courses is contains 12 experiments. The question paper pattern is as follows: Two full questions with 'either' 'or' choice will be drawn from each set. Each set contains 4 questions.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 10 marks for Continuous Internal Examination (CIE), 20 marks for Day to Day Evaluation.

Component		Theory			
Type of Assessment	CIE Exam	Day to Day Evaluation	Total Marks		
CIA Marks	10	20	30		

Table 1: Assessment pattern	for CIA
-----------------------------	---------

Continuous Internal Examination (CIE):

Two CIE exam shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration consisting of two sets.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Apply the knowledge of mathematics, science, engineering	3	Lab related
	fundamentals, and an engineeringspecialization to the solution		Exercises
	of complex engineering problems.		
PO 2	Identify, formulate, review research literature, and analyze	2	Lab related
	complex engineering problemsreaching substantiated		Exercises
	conclusions using first principles of mathematics, natural		
	sciences, andengineering sciences		
PO 5	Create, select, and apply appropriate techniques, resources,	3	Lab related
	and modern engineering and IT toolsincluding prediction and		Exercises
	modeling to complex engineering activities with an		
	understanding of thelimitations.		

3= High; 2 = Medium; 1 = Low

VII. COURSEOBJECTIVES:

The	The course should enable the students to:				
Ι	Create the part model using CAM software.				
II	Generate computer numerically part program for computer numerically control turning and millingoperation.				
III	Demonstrate the tool path for turning operation using CAM software				

VIII. COURSEOUTCOMES (COs):

CO Code	CO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
BCC102.01	CO 1	Understanding the concepts of machining and robotic simulations	PO1	3
BCC102.02	CO 2	Understand Part programing for sequence of operation, tool setting, sub routines and	PO1 PO5	3

CO Code	CO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
		use of cycles.		
BCC102.03	CO 3	Numerical control programing for tool	PO1	3
		path generation for milling and turning	PO2	
		operations		
BCC102.04	CO 4	3-D simulation for operations like picks	PO1	2
		and place robot	PO2	
BCC102.05	CO 5	Practice of robotic languages	PO1	2
			PO2	

3= High; 2 = Medium; 1 = Low

IX. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Outcomes		Program Outcomes (POs)					
(COs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3						
CO 2	3				3		
CO 3	3	3					
CO 4	2	2					
CO5	2	2					

3= High; 2 = Medium; 1 = Low

X. ASSESSMENT METHODOLOGIES-DIRECT:

CIE Exams	PO 1, PO 2, PO 5	SEE Exams	PO 1, PO 2, PO5	Assignments	-	Seminars	-
Laboratory Practices	PO 1, PO 2, PO 5	Student Viva	PO 1, PO 2, PO 5	Mini Project	-	Certificati on	-
Term Paper	-						

XI. ASSESSMENT METHODOLOGIES-INDIRECT:

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XII. SYLLABUS:

S No.	Experiment
1	Tool planning and selection of sequences of operation, tool setting on machine-practice

2	Practice in part programming and operation of CNC turning machines, sub routines and use of cycles.	
3	Practice in part program and operation of a machine center, joining and selection of sequence of operation, tool setting on machine.	
4	Generate APT based NC programming and tool simulation for drilling operation.	
5	Practice in APT based NC programming and tool simulation for facing operation.	
6	Generate of NC code generation and tool path simulation for profile milling operation using CAMsoftware.	
7	Develop NC code and tool path simulation for thread operation using CAM software.	
8	Practice of robotic languages, 3-D Robot Simulation for operation of pick-place robot	

XIII. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No.	Learning Objectives	Topics to be covered
1-3	Over view of Tool planning and selection of sequences of operation, tool setting on machine-practice.	Tool planning and selection of sequences of operation, tool setting on machine-practice.
4-6	Understand part programming and operation of CNC turning machines	Part programming on CNC Turning.
7-9	Understand sub routines and use of cycles	Part programming on CNC Turning.
10-12	Understand APT based NC programming and tool simulation for drilling operation.	NC programming and tool simulation for drilling operation.
13-15	Understand APT based NC programming and tool simulation for facing operation	NC programming and tool simulation for facing operation.
16-18	Understand the NC code generation and tool path simulation for profile milling operation using CAM software.	NC code generation and tool path simulation for profile milling operation using CAM software.
19-21	Understand NC code and tool path simulation for thread operation using CAM software.	NC code and tool path simulation for thread operation using CAM software.
22-24	Understand the characteristics of 3-D Robot Simulation	Demo on 3-D Robot Simulation
25-27	Understand the concepts of operations in 3-D Robot.	3-D Robot Simulation operation
28-30	Understand the functionality of 3-D Robot Simulation operation	Practice of robotic languages
31-33	Understand robotic languagesfor operation of pick-place.	Designing a program for operation of pick- place.
34-36	Understand 3-D Robot operation and timers.	Designing a program to understand the operation of 3-D Robot.
37-39	Internal Lab Exam	CIE-I

Prepared by: Mr. C. Labesh Kumar HOD, ME