

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	COMPU	COMPUTER AIDED MANUFACTURING LABORATORY					
Course Code	AAE110						
Programme	B. Tech	B. Tech					
Semester	VI .	VI AE					
Course Type	Core	Core					
Regulation	IARE - H	216					
			Theory		Practio	al	
Course Structure	Lectur	es	Tutorials	Credits	Laboratory	Credits	
	-		-	-	3	2	
Chief Coordinator	Mr. M. Vijay Kumar, Assistant Professor						
Course Faculty	Mr. R. S	ure	sh Kumar, Assist	ant Professor			

I. COURSEOVERVIEW:

The aim of this course is to conduct experiments on basic principles of cnc machine and it is further extended to cover the application of aerospace domain in industrial applications. The aim is to understand concepts and developments in the machining process, and improve your understanding of a range of specialized subjects practically and global best practices. Learn how a modern machining process is important with current regulatory. The course deals with the different machining processes, like cnc milling and cnc turning etc. This course includes experiments deal with the study of materials and itsapplications.

II. COURSEPRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AME001	Ι	Engineering Drawing	4
UG	AME101	Ι	Basic Work Shop	2
UG	AAE005	IV	Aircraft materials and production.	3

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Computer Aided Manufacturing Laboratory	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONALMETHODOLOGIES:

×	Chalk & Talk	×	Quiz	×	Assignments	×	MOOCs
×	LCD / PPT	×	Seminars	×	Mini Project	~	Videos
~	Open Ended Experiments						

V. EVALUATIONMETHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

20 %	To test the preparedness for the experiment.			
20 %	To test the performance in the laboratory.			
20 %	To test the calculations and graphs related to the concern experiment.			
20 %	To test the results and the error analysis of the experiment.			
20 %	To test the subject knowledge through viva – voce.			

The emphasis on the experiments is broadly based on the following criteria:

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Table 1: Assessment	pattern for CIA
---------------------	-----------------

Component	La		
Type of Assessment	Day to day performance	Final internal lab assessment	Total Marks
CIA Marks	20	10	30

Continuous Internal Examination(CIE):

One CIE exams shall be conducted at the end of the 16thweek of the semester. The CIE exam is conducted for 10 marks of 3 hoursduration.

Pre	eparation	Performance	Calculations and Graph	Results and Error Analysis	Viva	Total
	2	2	2	2	2	10

VI. HOW PROGRAM OUTCOMES AREASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2	Calculations of the observations
PO 2	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Term observations
PO 3	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	2	CAD Programming

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES AREASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional skills: Able to utilize the knowledge of aeronautical/aerospace engineering in innovative, dynamic and challenging environment for design and development of new products	2	Videos
PSO2	Problem-solving Skills: Imparted through simulation language skills and general purpose CAE packages to solve practical, design and analysis problems of components to complete the challenge of airworthiness for flight vehicles.		
PSO 3	Practical implementation and testing skills: Providing different types of in house and training and industry practice to fabricate and test and develop the products with more innovative technologies	2	Presentation on real- world problems
PSO 4	Successful career and entrepreneurship: To prepare the students with broad aerospace knowledge to design and develop systems and subsystems of aeronautical/aerospace allied systems to become technocrats.		

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES:

Ι	Gain knowledge about software equipment, tools and machines associated withcomputer aided manufacturing.
II	Execute simple operations using computer numerical control codes
III	Identify parameters and tools suitable for manufacturing a component on computer numerical control machines
IV	Create a computer aided manufacturing (CAM) model and generate the machining codes automatically using the CAM system

IX. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Understand the features and specifications of CNC	CLO 1	Remember procedures for CNC machine start-up.
	machines.	CLO 2	Understand CNC machining and uses, and applications of CNC program.
	-	CLO 3	Describe the capabilities and limitations of computer numerical control (CNC)/computer assisted manufacturing (CAM) equipment.
	-	CLO 4	Understand the Cartesian coordinate system as used in a CNC machine program.
CO 2	Develop the process planning sheets and tool layouts.	CLO 5	Understand the differences in absolute and incremental dimensioning as related to programming of a CNC machine.
	layouts.	CLO 6	Understand the purpose or function of the preparatory commands for a CNC machine (G-codes) and miscellaneous commands used with a CNC machine (M-codes).
		CLO 7	Remember the purpose of other alphabetical commands used in programming operations of a CNC machine.
CO 3	Understand the CAM software and its programming	CLO 8	Knowledge about selecting tool for CNC operations and use CNC mill, CNC lathe, and CNC machine centers to project specifications.
	programming	CLO 9	Remember different types of tooling required for CNC mills, CNC lathes, and CNC machine centers.
	-	CLO 10	Select tooling required for specific job on CNC mill, CNC machine centers, and CNC lathe.
CO 4	Use the CAM software and prepare CNC part	CLO 11	Write a program for a given operation to be executed for the required machining operation.
	programs.	CLO 12	Execute programs for CNC mill, CNC lathe, and CNC machine center according to project specifications.
	-	CLO 13	Understand differences between CNC and VMC.
CO 5	Execute the part program and machine the	CLO 14	Knowledge about selecting tool for VMC operations and use VMC machine.
	component as per the production drawing.	CLO 15	Understand different operations that are to be executed to get a final product which include drilling and reaming operations.
		CLO 16	Understand importance of feed and rate of cut and how to control each parameter in CNC based on the project specifications.

X. COURSE LEARNING OUTCOMES(CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AAE110.01	CLO 1	Remember procedures for CNC machine start- up.	PO1	3
AAE110.02	CLO 2	Understand CNC machining and uses, and applications of CNC program.	PO1	3
AAE110.03	CLO 3	Describe the capabilities and limitationsof computer numerical control(CNC)/computer assisted manufacturing (CAM)equipment.	PO1	2
AAE110.04	CLO 4	Understand the Cartesian coordinate system as used in a CNC machine program.	PO1	1

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AAE110.05	CLO 5	Understand the differences in absolute and incremental dimensioning as related to programming of a CNC machine.	PO1	1
AAE110.06	CLO 6	Understand the purpose or function of the preparatory commands for a CNC machine (G- codes) and miscellaneous commands used with a CNC machine (M-codes).	PO1	2
AAE110.07	CLO 7	Remember the purpose of other alphabetical commands used in programming operations of a CNC machine.	PO2	2
AAE110.08 CLO 8 Knowledge about selecting tool for CNC operations and use CNC mill, CNC lathe, and CNC machine centers to project specifications.		PO2	2	
AAE110.09	AAE110.09 CLO 9 Remember different types of tooling required for CNC mills, CNC lathes, and CNC machine centers.		PO3	2
AAE110.10	AE110.10 CLO 10 Select tooling required for specific job on CNC mill, CNC machine centers, and CNC lathe.		PO3	1
AAE110.11	CLO 11	Write a program for a given operation to be executed for the required machining operation.	PO3	1
AAE110.12	CLO 12	Execute programs for CNC mill, CNC lathe, and CNC machine center according to project specifications.	PO3	2
AAE110.13	CLO 13	Understand differences between CNC and VMC.	PO3	1
AAE110.14	CLO 14	Knowledge about selecting tool for VMC operations and use VMC machine	PO3	2
AAE110.15			PO3	1
AAE110.16	CLO 16	Understand importance of feed and rate of cut and how to control each parameter in CNC based on the project specifications.	PO3	1

3 = High; 2 = Medium; 1 = Low XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF **PROGRAM OUTCOMES**

Course Outcomes		Pro	gram Outcom	gram Outcomes (POs)					
(COs)	PO 1	PO 2	PO 3	PSO1	PSO3				
CO 1	3	2		2					
CO 2	1	2		2					
CO 3	2	2			2				
CO 4	2		1		2				
CO 5	2	2	2	1	2				

Course Learning				I	Progr	am O	outcor	nes (I	POs)				Pr Ot	rogram utcome	Specif es(PSO	ïc s)
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 1	3												2			
CLO 2	3												2			
CLO 3	2												3			
CLO 4	1												1			
CLO 5	1												1			
CLO 6	2												3			
CLO 7		2											2			
CLO 8		2											2			
CLO 9			2												2	
CLO 10			3												3	
CLO 11			1												2	
CLO 12			2												1	
CLO 13			1												1	
CLO 14			2												3	
CLO 15			1												2	
CLO 16			1												2	

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFICOUTCOMES:

3 = High; 2 = Medium; 1 = Low

XIII. ASSESSMENT METHODOLOGIES –DIRECT

CIE Exams	PO 1, PO 2 PO 3	SEE Exams	PO 1, PO 2	Assignments	-	Seminars	-
Laboratory Practices	PO 1, PO 2 PO 3	Student Viva	-	Mini Project	-	Certification	-

XIV. ASSESSMENT METHODOLOGIES -INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS

LIST OF EXPERIMENTS					
Week-1	SIMULATION OF SIMPLE STEP TURNING AND FACING USING CNC MACHINE				
To write the manual part program as per given dimensions for step turning and facing operations and simulate					
Week-2 MACHINING OF SIMPLE STEP TURNING AND FACING USING CNC MACHINE					

To execute step	turning and facing operations using the codes on CNC lathe
Week-3	SIMULATION OF TAPPER TURNING AND CHAMFERING USING CNC MACHINE
To write the m operations and	anual part program as per given dimensions for taper turning and chamfering simulate
Week-4	MACHINING OF TAPPER TURNING AND CHAMFERING USING CNC MACHINE
To execute tap	er turning and chamfering operations using the codes on CNC lathe.
Week-5	SIMULATION OF SIMPLE TURNING, CHAMFERING AND FILLET USING CNC MACHINE
To write the m fillet operation	anual part program to the given dimensions for simple turning, chamfering and simulate
Week-6	MACHINING OF SIMPLE TURNING, CHAMFERING AND FILLET USING CNC MACHINE
To execute sim	ple turning, chamfering and fillet operations using the codes on CNC lathe.
Week-7	SIMULATION OF SIMPLE TURNING AND THREADING CYCLE USING CNC MACHINE
To write the m simulate	anual part program to the given dimensions for simple turning and threading operations and
Week-8	MACHINING OF SIMPLE TURNING AND THREADING CYCLE USING CNC MACHINE
To execute sim	ple turning and threading operations using the codes on CNC lathe
Week-9	SIMULATION OF CONTOUR MILLING USING VMC MACHINE
To write the m simulate	anual part program to the given dimensions for contour milling operations and
Week-10	MACHINING OF CONTOUR MILLING USING VMC MACHINE
To execute con	tour milling operations using the codes on CNC lathe,
WeeK-11	SIMULATION OF DRILLING AND REAMING USING CNC MACHINE
To write the m operations in C	anual part program to the given dimensions and execute contour milling
Week-12	MACHINING OF DRILLING AND REAMING USING CNC MACHINE
To execute drill	ing and reaming operations using the codes on CNC.
Text Books:	
1 Computer Reprint20	Aided Manufacturing by T.K.Kundra, Tata McGraw-Hill Education, 13 th Soft cover 08.
2 Lalit Nara	yan, "Computer Aided Design and Manufacturing", Prentice-Hall IndiaLearning mited (2008).
Web Reference	20:
2. https://ww g_Basics.j	ngs.buffalo.edu/eng/mae/courses/460-564/Course-Notes/cnc-classnotes.pdf w.engr.uvic.ca/~mech410/CAM_references/CNC_Computer_Numerical_Control_Programmi pdf w.cnccookbook.com/CCCNCGCodeCourse.htm

XVI. COURSEPLAN:

Week	Topics to be covered	Course Learning Outcomes	Reference
No.		(CLOs)	
	To write the manual part program as per given	CLO 1, CLO 2, CLO 4,	T1:1.3
1	dimensions for step turning and facing	CLO 5	R1:1.4
	operations and simulate		
2	To execute step turning and facing operations	CLO 1, CLO 2, CLO 5,	T1:1.6
2	using the codes on CNC lathe	CLO 6	R1:2.1
	To write the manual part program as per given	CLO 3, CLO 5, CLO 7	T1:2.5
3	dimensions for taper turning and chamfering		R1:2.5
	operations and simulate		
4	To execute taper turning and chamfering	CLO 5, CLO 6, CLO 7,	T1:2.5
4	operations using the codes on CNC lathe.	CLO 9	R1:2.6
	To write the manual part program to the given	CLO 5, CLO 6, CLO 7	T1:3.2
5	dimensions for simple turning, chamfering and fillet		
	operations and simulate		
6	To execute simple turning, chamfering and	CLO 8, CLO 9	T1:6.3
6	fillet operations using the codes on CNC lathe.		R1:5.3
	To write the manual part program to the given	CLO 8, CLO 9	T1:7.5
7	dimensions for simple turning and threading		R1:6.3
	operations and simulate		
8	To execute simple turning andthreading	CLO 10, CLO 13, CLO 14	T1:8.5
0	operations using the codes on CNClathe		R1:6.8
	To write the manual part program to the given	CLO 10, CLO 13, CLO 14	T1:12.2
9	dimensions for contour milling operations and		R1:13.1
	simulate		
10	To execute contour milling operations using	CLO 13, CLO 14	T1:12.3
10	the codes on CNC lathe,		R1:13.2
	To write the manual part program to the given	CLO 15, CLO 16	T1:12.10
11	dimensions and execute contour milling operations in		R1:13.7
	CNC		
12	To execute drilling and reaming operations	CLO 15, CLO 16	T1:11.2
12	using the codes on CNC.		R1:10.2

The course plan is meant as a guideline. Probably there may be changes.

XVII.GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSIONREQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	To improve standards and analyze the concepts.	Guest lectures	PO 1, PO 2	PSO 1
3	Encourage students to solve real time applications and prepare towards competitive examinations.	NPTEL	PO 2	PSO 1

Prepared by: Mr. M. Vijay Kumar, AssistantProfessor

HOD, AE