

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

MECHANICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	COMPU	COMPUTER AIDED NUMERICAL CONTROL LABORATORY				
Course Code	AME115					
Programme	B Tech	B Tech				
Semester	VII M	VII ME				
Course Type	Core					
Regulation	IARE - R16					
		Theory		Practio	cal	
Course Structure	Lectures	5 Tutorials	Credits	Laboratory	Credits	
	-	-	-	3	2	
Chief Coordinator	Mr. M Prashanth Reddy, Assistant Professor					
Course Faculty		ghu Ram Mohan R Ishanth Reddy, Ass				

I. COURSE OVERVIEW:

In this laboratory the students learn the fundamentals of numerical control (NC) technology, programming of computer numerical control (CNC) machines in NC codes and APT language and with CAD/CAM systems. Students also gain experience in NC postprocessors and distributed numerical control, operation of CNC lathe and milling machines, and programming and machining complex engineering parts.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AME010	V	Machine Tools and Metrology Lab	2

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Computer Aided Numerical Control Laboratory	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	~	Quiz	×	Assignments	×	MOOCs
~	LCD / PPT	×	Seminars	×	Mini Project	~	Videos
~	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

Semester End Examination (SEE):

Each laboratory is evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done 20 marks for day to day performance and 10 marks for the final lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall conducted by two examiners, one of them being internal examiners and other being External Examiner both nominated by the principal from the panel of experts recommended by chairman BOS.

The emphasis on	the questions is	s broadly based or	n the following criteria:
r · r · · · ·	· · · · · · · · · · · · · · · · · · ·		

20 %	To test the preparedness for the experiment.	
20 %	To test the performance in the laboratory.	
20 %	To test the calculation and graph related to the concern experiment.	
20 %	To test the results and error analysis of the experiment.	
20 %	To test the subject knowledge through viva-voce	

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Table 1: Assessment pattern for CIA

Component	Lal		
Type of Assessment	Day to day performance	Final internal lab assessment	Total Marks
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE examination shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

Preparation	Performance	Calculations and Graph	Results and error analysis	Viva	Total
2	2	2	2	2	10

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	Exercise, Discussion and Seminars
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	2	Lab Experiments
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. 3 = High; 2 = Medium; 1 = Low	1	Lab Experiments

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	ProfessionalSkills: Toproduceengineeringprofessionalcapableofsynthesizingandanalyzingmechanicalsystemsincludingalliedengineeringstreams.	1	Experiments, Discussion and Seminars
PSO 2	Software Engineering Practices: An ability to adopt and integrate current technologies in the design and manufacturing domain to enhance the employability.	-	_
PSO 3	Successful Career and Entrepreneurship: To build the nation, by imparting technological inputs and managerial skills to become technocrats.	-	-

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES :

The course should enable the students to:

The course should enable the students to:					
Ι	Understand the features and specifications of CNC and 3D printing machines.				
II	Develop the process planning sheets and tool layouts.				
III	Use the CAM software and prepare CNC part programs.				
IV	Execute the part program and machine the component as per the production drawing				

IX. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Understand the features and specifications of	CLO 1	Understand the concept of numerical control and advantages of CNC machine tools.
	CNC and 3D printing machines.	CLO 2	Know the various types of CNC machine tools and CNC machining centers.
		CLO 3	Understand Basic fundamentals of CNC milling and familiarization of machine control panel.
CO 2	Develop the process planning sheets and tool	CLO 4	Understand Fundamentals of CNC programming, Part programming and interpolation techniques
	layouts	CLO 5	Performance of Machining practice on CNC milling
		CLO 6	Generation of part programming through CAM software.
CO 3	Use the CAM software and prepare CNC part	CLO 7	Generation of CAM-CNC programming and execution.
	programs.	CLO 8	Understand various Work piece setting methods and tool setting methods
		CLO 9	Practice on CNC turning and exercises on machine.
CO 4	Execute the part program and machine	CLO 10	Understand CNC programming and execution on milling and turning machines.
	the component as per the production drawing.	CLO 11	Prepare simple prototype models using 3D Printing.
		CLO 12	Perform Practice session at industry

X. COURSE LEARNING OUTCOMES (CLOs):

CLO	CLO's		PO's	Strength of
Code		the ability to:	Mapped	Mapping
AME115.01	CLO 1	Understand the concept of numerical control and	PO 1	3
		advantages of CNC machine tools.		
AME115.02	CLO 2	Know the various types of CNC machine tools and	PO 2	2
		CNC machining centers.		
AME115.03	CLO 3	Understand Basic fundamentals of CNC milling	PO 1	3
		and familiarization of machine control panel.		
AME115.04	CLO 4	Understand Fundamentals of CNC programming,	PO 1	3
		Part programming and interpolation techniques		
AME115.05	CLO 5	Performance of Machining practice on CNC milling	PO 2	2
AME115.06	CLO 6	Generation of part programming through CAM	PO 2	2
		software.		
AME115.07	CLO 7	Generation of CAM-CNC programming and	PO 2	2
		execution.		
AME115.08	CLO 8	Understand various Work piece setting methods and	PO 2	2
		tool setting methods		
AME115.09	CLO 9		PO 4	1
		C		
AME115.10	CLO 10	Understand CNC programming and execution on	PO 4	1
		milling and turning machines.		
AME115.11	CLO 11	Prepare simple prototype models using 3D Printing.	PO 2	2
	_	1 I I I I I I I I I I I I I I I I I I I	-	
AME115.12	CLO 12	Perform Practice session at industry	PO 2	2
				_
L				I

³⁼ High; 2 = Medium; 1 = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

Course	Program Outcomes (POs)							
Outcomes (COs)	PO 1	PO 2	PO 4	PSO1				
CO 1	3	2		1				
CO 2		2	1					
CO 3	3	2		1				
CO 4	3	2		1				

3 = High; **2** = Medium; **1** = Low

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning	Program Outcomes (POs)									Program Specific Outcomes (PSOs)					
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3												1		
CLO 2		2													
CLO 3	3												1		
CLO 4	3												1		
CLO 5		2													
CLO 6		2													
CLO 7		2													
CLO 8		2													
CLO 9				1											
CLO 10				1											
CLO 11		2											1		
CLO 12		2											1		

3 = High; 2 = Medium; 1 = Low

XIII. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO1, PO2, PO4,PSO1	SEE Exams	PO1, PO2, PO4,PSO1	Assignments	-	Seminars	PO1, PO2, PO4,PSO1
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	PO1, PO2, PO4,PSO1						

XIV. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS

	LIST OF EXERCISES							
Week - 1	INTRODUCTION TO COMPUTER NUMERICAL CONTROL							
Numerical control, functions of a machine tool, concept of numerical control, historical development, definition, advantages of CNC machine tools.								
Week - 2	ek - 2 INTRODUCTION TO COMPUTER NUMERICAL CONTROL							
for CNC, cla	Evolution of CNC, advantages of CNC, limitations of CNC, features of CNC, machine control unit (MCU) for CNC, classification of CNC machine tools; CNC machining centers: classification, features of CNC machining centers							
Week - 3	CNC MILLING							
Basic funda	mentals of CNC milling, familiarization of machine control panel.							
Week - 4	CNC MILLING							
Fundamenta	ls of CNC programming, Part programming and interpolation techniques.							
Week - 5	CNC MILLING							
Machining ₁	practice on CNC milling.							
Week - 6	CAM SOFTWARE							
Generation	of part programming through CAM software package.							
Week - 7	CAM SOFTWARE							
CAM-CNC	programming and execution.							
Week - 8	CNC TURNING							
Work piece	setting methods, tool setting methods.							
Week - 9	CNC TURNING							
Practice on	CNC turning and exercises on machine.							
Week - 10	CAM SOFTWARE							
	of part programming through the CAM software package, CAM-CNC programming and n milling and turning machines.							

Week - 11 3D PRINTING

Prepare simple prototype models.

Week - 12 INDUSTRY–INSTITUTE INTERACTION

Practice session at industry

Text Books:

- 1. Kundra T. K., Rao P. N. and Tewari M. K., —Numerical Control and Computer Aided Manufacturingl, Tata McGraw-Hill, 1st Edition, 1999
- 2. Groover M.P., —Automation, Production Systems & Computer Integrated Manufacturing.^{II}, Prentice Hall, 1st Edition, 1989
- 3. Elanchezhian C, Selwyn Sunder T, Shanmuga Sundar G., —Computer Aided Manufacturingl, Laxmi Publications, New Delhi, 1st Edition, 2006
- 4. Rao P N., —CAD/CAM Principles and Applications^I, Tata McGraw-Hill, 1st Edition, 2006.

Reference Books:

- 1. FANUC and SIEMENS part programming manuals.
- 2. 3D printing manual ULTIMAKE

XVI. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Understand Numerical control, its function and advantages.	CLO 1	T2:26.3
2	Understand Evolution of CNC and classification of CNC machine tools	CLO 2	R2:21.48
3	Understand Basic fundamentals of CNC milling, familiarization of machine control panel.	CLO 3	T2:26.6 R2:21.50
4	Fundamentals of CNC programming, Part programming and interpolation techniques.	CLO 4	T2:26.7 R2:21.51
5	Machining practice on CNC milling.	CLO 5	T2:155-160
6	Generation of part programming through CAM software package.	CLO 6	T2:161-174
7	CAM-CNC programming and execution.	CLO 7	T2:175-208
8	Work piece setting methods, tool setting methods.	CLO 8	T2:224-226
9	Practice on CNC turning and exercises on machine.	CLO 9	T4:321-353
10	Generation of part programming through the CAM software package, CAM-CNC programming and execution on milling and turning machines.	CLO 10	T4:368-390
11	Prepare simple prototype models.	CLO 11	T4:368-390
12	Practice session at industry	CLO 12	T4:321-353

S NO	Description	Proposed Actions	Relevance With POs	Relevance With PSOs
1	For the better understanding can go through the addition of computer numerical control.	Seminars	PO 1	PSO 1
2	Understand the CNC Milling and Turning.	Seminars / NPTEL	PO 4	PSO 1
3	Introduce of 3D printing	Industrial Visit	PO 2	PSO 1

XVII. GAPS IN THE SYLLABUS-TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

Prepared by:

Mr. M Prashanth Reddy, Assistant Professor

HOD, ME