

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE DESCRIPTOR

Course Title	DATA	DATA STRUCTURES LABORATORY					
Course Code	ACSB	05					
Programme	B. Tec	B. Tech					
	III	CSE	E IT ECE CE	ME			
Semester	IV	AE	EEE				
Course Type	Core						
Regulation	IARE	- R 18					
			Theory		Practio	cal	
Course Structure	Lectu	ires	Tutorials	Credits	Laboratory	Credits	
	3 1.5					1.5	
Chief Coordinator	Ms. Y Harika Devi, Assistant Professor						
Course Faculty	Mr. U Shivaji, Assistant Professor Ms. Y Harika Devi, Assistant Professor						

I. COURSEOVERVIEW:

This course covers some of the general-purpose data structures and algorithms, and software development. It is aimed at helping students understand the reasons for choosing structures or algorithms. Topics covered include managing complexity, analysis, lists, stacks, queues, trees, graphs, balanced search trees and hashing mechanisms. The main objective of the course is to teach the students how to select and design data structures and algorithms that are appropriate for problems that they might encounter in real life. This course in reached to student by power point presentations, lecture notes, and lab involve the problem solving in mathematical and engineering areas.

II. COURSEPRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	ACSB01	II	Programming For Problem Solving	3

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Data Structures Laboratory	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	×	Quiz	×	Assignments	×	MOOCs
~	LCD / PPT	~	Seminars	×	Mini Project	~	Videos
~	Open Ended Experiments						

V. EVALUATIONMETHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

20 %	To test the preparedness for the experiment.			
20 %	To test the performance in the laboratory.			
20 %	To test the calculations and graphs related to the concern experiment.			
20 %	To test the results and the error analysis of the experiment.			
20 %	To test the subject knowledge through viva – voce.			

The emphasis on the experiments is broadly based on the following criteria:

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Table 1: Assessment pattern for CIA

Component	Lab	T-4-1M-sha	
Type of Assessment	Day to day performance	Final internal lab assessment	Total Marks
CIA Marks	20	10	30

Continuous Internal Examination(CIE):

One CIE exams shall be conducted at the end of the 16^{th} week of the semester. The CIE exam is conducted for 10 marks of 3 hoursduration.

Preparation	Performance	Calculations and Graph	Results and Error Analysis	Viva	Total
2	2	2	2	2	10

VI. HOW PROGRAM OUTCOMES AREASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO1	Engineering knowledge: Apply the knowledge of	3	Videos/ Student Viva
	mathematics, science, engineering fundamentals, and		
	an engineering specialization to the solution of		
	complex engineering problems.		
PO2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	3	Lab Exercises/ StudentViva
PO3	Design/development of solutions: Design solutions	2	Videos/ StudentViva
PUS	for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	videos/ Student viva
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	2	Lab Exercises
PO12	Life-long learning: Recognize the need for, and have the preparation and ability to engage independent and life-long learning in the broadest context of technological change.	2	Presentation on real-world problems

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES AREASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO1	Professional Skills: The ability to understand, analyze and develop computer programs in the areas related to algorithms, system software, multimedia, web design, big data analytics, and networking for efficient design of computer-based systems of varying complexity.	3	Videos
PSO2	Problem-Solving Skills: The ability to apply standard practices and strategies in software project development using open-ended programming environments to deliver a quality product forbusiness success.	3	Lab Exercises

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO3	Successful Career and Entrepreneurship: The ability to employ modern computer languages, environments, and platforms in creating innovative career paths to be an entrepreneur, and a zest forhigher studies.	1	Presentation on real-world problems

3 = High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES(COs):

The cour	The course should enable the students to:				
Ι	Understand various data representation techniques in the real world.				
Π	Implement linear and non-linear data structures.				
III	Analyze various algorithms based on their time and space complexity				
IV	Develop real-time applications using suitable data structure				
V	Identify suitable data structure to solve various computing problems.				

IX. COURSE OUTCOMES(COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Understand the concept of data structures, python and apply algorithm for	CLO 1 CLO 2	Understand the basic concepts of python. Explore an algorithm to find the location of an element in a given list.
	solving problems like sorting, searching, insertion and deletion of data.	CLO 3	Choose a suitable algorithm to organize the data in ascending or descending order.
CO 2	Understand linear data	CLO 4	Implementation of stack and queues using lists.
	structures forprocessing of ordered or unordered data.		Understand application of stacks in arithmetic expression conversion and evaluation.
CO 3	Explore various operations on dynamic	CLO 6	Understand working and implementation of single linked list.
	data structures like single linked list, circular linked list and doubly linkedlist.	CLO 7	Understand the basic operations like insertion and deletion operations associated with double linked list.
		CLO 8	Understand the basic operations like insertion and deletion operations associated with circular linked list.
		CLO 9	Understand working and implementation of stack and queue using linked list
CO 4	Explore the concept of non linear data structures	CLO 10	Understand the concept of non-linear data structures viz. trees and graphs.
	such as trees andgraphs.	CLO 11	Understand graphs and graph traversal techniques like Depth first search and Breadth first search.
CO 5	Understand the binary search trees, hash function, and concepts of collision and its resolution methods.	CLO 12	Understand the operations of binary search tree like tree traversals and counting the number of nodes in the binary searchtree.

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
ACSB05.01	CLO 1	Understand the basic concepts of python.	PO1	3
ACSB05.02	CLO 2	Explore an algorithm to find the location of an element in a given list.	PO3	3
ACSB05.03	CLO 3	Choose a suitable algorithm to organize the data in ascending or descending order.	PO3,PO5	3
ACSB05.04	CLO 4	Implementation of stack and queues using lists.	PO1, PO5	3
ACSB05.05	CLO 5	Understand application of stacks in arithmetic expression conversion and evaluation.	PO1,PO 5	3
ACSB05.06	CLO 6	Understand working and implementation of single linked list.	PO3,PO5	3
ACSB05.07	CLO 7	Understand the basic operations like insertion and deletion operations associated with double linked list.	PO3,PO5	3
ACSB05.08	CLO 8	Understand working and implementation ofstack and queue using linked list	PO3,PO5	3
ACSB05.09	CLO 9	Understand working and implementation ofstack and queue using linked list	PO1,PO 5	3
ACSB05.10	CLO 10	Understand the concept of non-linear data structures viz. trees and graphs.	PO2,PO5	3
ACSB05.11	CLO 11		PO2,PO5	3
ACSB05.12	CLO 12	Understand the operations of binary search tree like tree traversals and counting the number of nodes in the binary search tree.	PO2, PO3	3

X. COURSE LEARNING OUTCOMES(CLOs):

3= High; 2 = Medium; 1 = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFICOUTCOMES:

Course Outcomes (COs)		Program Ou	tcomes (P	Program Specific Outcomes(PSOs)			
	PO1	PO2	PO3	PO5	PSO1	PSO2	PSO3
CO 1	3		3	2	3		
CO 2	3			2			2
CO 3	3		3	2			2
CO 4		3		2			
CO 5		3	3	2			2

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFICOUTCOMES:

Course Learning	Program Outcomes (POs)								ProgramSpecific Outcomes(PSOs)						
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3														
CLO 2			3										3		
CLO 3			3		2								3		
CLO 4	3				2										
CLO 5	3				2										2
CLO 6	3				2								3		
CLO 7			3		2								3		
CLO 8			3		2								3		
CLO 9	3				2								3		
CLO 10		3			2								3		
CLO 11		3			2										
CLO 12		3	3		2										2

3 = High; **2** = Medium; **1** = Low

XIII. ASSESSMENT METHODOLOGIES -DIRECT

CIE Exams	-	SEE Exams	PO 1, PO2 PO 3, PO5	Lab Exercises	PO 5	Seminars	PO 1, PO2
Laboratory Practices	PO 1, PO 5	Student Viva	PO 1, PO 2 PO 3	Mini Project	-	Certification	-

XIV. ASSESSMENT METHODOLOGIES -INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS

WEEK-1	BASICS OF PYTHON				
Write Python programs for the following:					
a. To find the biggest of given n numbers using control statements and lists					
b. To print the Fibonacci series usingfunctions					
c. To find GCI	O of twonumbers				

WEEK-2 SEA	ARCHING TECHNIQUES						
	ams for implementing the following searching techniques.						
a. Linearsearch b. Binarysearch							
WEEK-3 SOI	RTING TECHNIQUES						
Write Python progra	ams for implementing the following sorting techniques to arrange a list of integers in						
ascending order.							
a. Bubblesort							
b. Insertionsort							
c. Selectionsort							
	PLEMENTATION OF STACK AND QUEUE						
a. Design and imple	Write Python programs toa. Design and implement Stack and its operations usingList.b. Design and implement Queue and its operations usingList						
WEEK-5 API	PLICATIONS OF STACK						
• • •	ams for the following:						
-	tions to convert infix expression into postfixexpression.						
b. Uses Stack opera	tions for evaluating the postfixexpression.						
	PLEMENTATION OF SINGLE LINKED LIST						
	grams for the following operations on Single Linked List. ertion (iii) deletion (iv) traversal						
WEEK-7 IMI	PLEMENTATION OF CIRCULAR SINGLE LINKED LIST						
	ams for the following operations on Circular Linked List. ertion (iii) deletion (iv) traversal						
WEEK-8 IMI	PLEMENTATION OF DOUBLE LINKED LIST						
Write Python progra	ams for the following:						
	erform the following operations on Double Linked List. rtion (iii) deletion (iv) traversal in both ways.						
	PLEMENTATION OF STACK USING LINKED LIST						
	gram to implement Stack using linked list.						
WEEK-10 IMI	DI EMENTATION OF OTHETHE LICING I INIZED I ICT						
	PLEMENTATION OF QUEUE USING LINKED LIST gram to implement Linear Queue using linked list.						
white a Fytholi prog	gain to implement Linear Queue using iniked list.						
	APH TRAVERSAL TECHNIQUES						
Write Python prograa. Depth firstsearch.b. Breadth firstsearch							
	PLEMENTATION OF BINARY SEARCH TREE						
	ram to perform the following:						
a. Create a binary s	earchtree.						
	ve binary search tree recursively in pre-order, post-order and in-order. of nodes in the binary searchtree.						
TEXT BOOKS:							
	ise, "Data Structures and Algorithms using Python", Wiley StudentEdition. , David Julian, "Python Data Structures and Algorithms", Packt Publishers,2017.						
REFERENCE BO	OKS:						
	Introduction to Programming using Python", Pearson.						
	 Benjamin Baka, David Julian, "Python Data Structures and Algorithms", PacktPublishers,2017. Rance D. Necaise, "Data Structures and Algorithms using Python", Wiley StudentEdition. 						

- 4. Martin Jones, "Python for Complete Beginners", 2015.
- 5. ZedA.Shaw, "LearnPythontheHardWay:averysimple introductiontotheterrifyinglybeautiful world of computers and code", 3e, Addison-Wesley, 2014.
- 6. HemantJain, "ProblemSolvinginDataStructuresandAlgorithmsusingPython:programming interview guide", 2016.

WEB REFERENCES:

- 1. https://docs.python.org/3/tutorial/datastructures.html
- 2. http://interactivepython.org/runestone/static/pythonds/index.html
- 3. http://www.tutorialspoint.com/data_structures_algorithms
- 4. http://www.geeksforgeeks.org/data-structures/
- 5. http://www.studytonight.com/data-structures/
- 6. http://www.coursera.org/specializations/data-structures-algorithms

XVI. COURSEPLAN:

The course plan is meant as a guideline. Probably there may be changes.

Week No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Basics of Python	CLO 1	R1:15.1
2	Searching Techniques	CLO 2	T1:5.1
3	Sorting Techniques	CLO 3	T1:5.2 R2 : 10.2
4	Implementation of Stack And Queue	CLO 4	T1:7.1 T1:8.1
5	Applications of Stack	CLO 5	T2:26.8
6	Implementation of Single Linked List	CLO 6	T1:9.2
7	Implementation of Circular Single Linked List	CLO 7	T2:26.14 R2:21.55
8	Implementation of Double Linked List	CLO 8	T1:7.2
9	Implementation of Stack Using Linked List	CLO 9	T1:7.2 R2:21.61
10	Implementation of Queue Using Linked List	CLO 10	T2:25.12 R2:21.24
11	Graph Traversal Techniques	CLO 11	T2:25.16 R2:21.29
12	Implementation of Binary Search Tree	CLO 12	T1:8.1

XVII. GAPS IN THE SYLLABUS-TO MEET INDUSTRY / PROFESSIONREQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Updating latest version and new features of the Python language	Laboratory Sessions	PO 5	PSO 1
2	Familiarizing the AVL Trees in developing application level programs.	Laboratory Sessions	PO 1, PO 2	-
3	Familiarizing different hashing techniques	Seminars	PO 5	PSO 3

4	Solving different problems	Extra Lab	PO 2	PSO 3	
	and Practicing various	Sessions,			
	debugging strategies to	Participating in			
	become a good programmer	Codingcontests.			

Prepared by: Ms. Y Harika Devi, Assistant Professor

HOD, EEE