

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE DESCRIPTOR

Course Title	DATA	DATA STRUCTURES LABORATORY					
Course Code	ACSB0	5					
Programme	B. Tech	B. Tech					
Semester	III	CSF	E IT ECE CE	ME			
	IV	IV AE EEE					
Course Type	Core						
Regulation	IARE - R18						
			Theory		Practio	al	
Course Structure	Lectu	res	Tutorials	Credits	Laboratory	Credits	
	-		-	-	3	1.5	
Chief Coordinator	Dr. J Sirisha Devi, Associate Professor						
Course Faculty	Mrs. K Radhika, Assistant Professor Mr. S Laxman Kumar, Assistant Professor Mrs. Y Harika Devi, Assistant Professor Mr. N Poornachandra Rao, Assistant Professor						

I. COURSE OVERVIEW:

This course covers some of the general-purpose data structures and algorithms, and software development. It is aimed at helping students understand the reasons for choosing structures or algorithms. Topics covered include managing complexity, analysis, lists, stacks, queues, trees, graphs, balanced search trees and hashing mechanisms. The main objective of the course is to teach the students how to select and design data structures and algorithms that are appropriate for problems that they might encounter in real life. This course in reached to student by power point presentations, lecture notes, and lab involve the problem solving in mathematical and engineering areas.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	ACSB01	II	Programming For Problem Solving	3

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Data Structures Laboratory	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	×	Quiz	×	Assignments	×	MOOCs
~	LCD / PPT	/	Seminars	×	Mini Project	~	Videos
~	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

The emphasis on the experiments is broadly based on the following criteria:

20 %	To test the preparedness for the experiment.	
20 %	To test the performance in the laboratory.	
20 %	To test the calculations and graphs related to the concern experiment.	
20 %	To test the results and the error analysis of the experiment.	
20 %	To test the subject knowledge through viva – voce.	

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Table 1: Assessment pattern for CIA

Component	Lab	m . 13.5 1	
Type of Assessment	Day to day performance	Final internal lab assessment	Total Marks
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

Preparation	Performance	Calculations and Graph	Results and Error Analysis	Viva	Total
2	2	2	2	2	10

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO1	Engineering knowledge: Apply the knowledge of	3	Videos/ Student Viva
	mathematics, science, engineering fundamentals, and		
	an engineering specialization to the solution of		
	complex engineering problems.		
PO2	Problem analysis: Identify, formulate, review	3	Lab Exercises/ Student
	research literature, and analyze complex engineering		Viva
	problems reaching substantiated conclusions using		
	first principles of mathematics, natural sciences, and		
	engineering sciences		
PO3	Design/development of solutions: Design solutions	2	Videos/ Student Viva
	for complex engineering problems and design system		
	components or processes that meet the specified needs		
	with appropriate consideration for the public health		
	and safety, and the cultural, societal, and		
	environmental considerations.		
PO5	Modern tool usage: Create, select, and apply	2	Lab Exercises
	appropriate techniques, resources, and modern		
	engineering and IT tools including prediction and		
	modeling to complex engineering activities with an		
	understanding of the limitations.		
PO12	Life-long learning: Recognize the need for, and have	2	Presentation on
	the preparation and ability to engage independent and		real-world problems
	life-long learning in the broadest context of		
	technological change.		

3 =High; 2 =Medium; 1 =Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed
			by
PSO1	Professional Skills: An ability to understand the basic	3	Videos
	concepts in Electronics & Communication Engineering		
	and to apply them to various areas, like Electronics,		
	Communications, Signal processing, VLSI, Embedded		
	systems etc., in the design and implementation of		
	complex systems.		

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO2	Problem-Solving Skills: An ability to solve complex Electronics and communication Engineering problems, using latest hardware and software tools, along with analytical skills to arrive cost effective and appropriate solutions.	3	Lab Exercises
PSO3	Successful Career and Entrepreneurship: An understanding of social-awareness & environmental-wisdom along with ethical responsibility to have a successful career and to sustain passion and zeal for real-world applications using optimal resources as an Entrepreneur.	1	Presentation on real-world problems

3 = High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES:

The course should enable the students to:				
I	Understand various data representation techniques in the real world.			
II	Implement linear and non-linear data structures.			
III	Analyze various algorithms based on their time and space complexity			
IV	Develop real-time applications using suitable data structure			
V	Identify suitable data structure to solve various computing problems.			

IX. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Understand the concept of	CLO 1	Understand the basic concepts of python.
	data structures, python and apply algorithm for	CLO 2	Explore an algorithm to find the location of an element in a given list.
	solving problems like sorting, searching, insertion and deletion of data.	CLO 3	Choose a suitable algorithm to organize the data in ascending or descending order.
CO 2	Understand linear data	CLO 4	Implementation of stack and queues using lists.
	structures for processing of ordered or unordered data.	CLO 5	Understand application of stacks in arithmetic expression conversion and evaluation.
CO 3	Explore various operations on dynamic	CLO 6	Understand working and implementation of single linked list.
	data structures like single linked list, circular linked list and doubly linked list.	CLO 7	Understand the basic operations like insertion and deletion operations associated with double linked list.
		CLO 8	Understand the basic operations like insertion and deletion operations associated with circular linked list.
		CLO 9	Understand working and implementation of stack and queue using linked list
CO 4	Explore the concept of non linear data structures	CLO 10	Understand the concept of non-linear data structures viz. trees and graphs.

COs	Course Outcome	CLOs	Course Learning Outcome
	such as trees and graphs.	CLO 11	Understand graphs and graph traversal techniques like Depth first search and Breadth first search.
CO 5	Understand the binary search trees, hash function, and concepts of collision and its resolution methods.	CLO 12	Understand the operations of binary search tree like tree traversals and counting the number of nodes in the binary search tree.

X. COURSE LEARNING OUTCOMES (CLOs):

CLO	CLO's	At the end of the course, the student will have	PO's	Strength of
Code		the ability to:	Mapped	Mapping
ACSB05.01	CLO 1	Understand the basic concepts of python.	PO1	3
ACSB05.02	CLO 2	Explore an algorithm to find the location of an element in a given list.	PO3	3
ACSB05.03	CLO 3	Choose a suitable algorithm to organize the data in ascending or descending order.	PO3,PO5	3
ACSB05.04	CLO 4	Implementation of stack and queues using lists.	PO1, PO5	3
ACSB05.05	CLO 5	Understand application of stacks in arithmetic expression conversion and evaluation.	PO1,PO 5	3
ACSB05.06	CLO 6	Understand working and implementation of single linked list.	PO3,PO5	3
ACSB05.07	CLO 7	Understand the basic operations like insertion and deletion operations associated with double linked list.	PO3,PO5	3
ACSB05.08	CLO 8	Understand working and implementation of stack and queue using linked list	PO3,PO5	3
ACSB05.09	CLO 9	Understand working and implementation of stack and queue using linked list	PO1,PO 5	3
ACSB05.10	CLO 10	Understand the concept of non-linear data structures viz. trees and graphs.	PO2,PO5	3
ACSB05.11	CLO 11	Understand graphs and graph traversal techniques like Depth first search and Breadth first search.	PO2,PO5	3
ACSB05.12	CLO 12	Understand the operations of binary search tree like tree traversals and counting the number of nodes in the binary search tree.	PO2, PO3	3

3= High; 2 = Medium; 1 = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course		Program Ou	tcomes (P	Program Specific Outcomes(PSOs)			
Outcomes (COs)	PO1	PO2	PO3	PO5	PSO1	PSO2	PSO3
CO 1	3		3	2	3		
CO 2	3			2			2
CO 3	3		3	2			2
CO 4		3		2			
CO 5		3	3	2			2

3= High; 2 = Medium; 1 = Low

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning	Program Outcomes (POs)								Program Specific Outcomes (PSOs)						
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3														
CLO 2			3										3		
CLO 3			3		2								3		
CLO 4	3				2										
CLO 5	3				2										2
CLO 6	3				2								3		
CLO 7			3		2								3		
CLO 8			3		2								3		
CLO 9	3				2								3		
CLO 10		3			2								3		
CLO 11		3			2										
CLO 12		3	3		2										2

^{3 =} High; 2 = Medium; 1 = Low

XIII. ASSESSMENT METHODOLOGIES - DIRECT

CIE Exams	PO 1, PO 2 PO 3, PO 5 PSO 1, PSO3		PO 1, PO 2 PO 3, PO 5 PSO 1, PSO3	Lab Exercises	PO 1, PO 2 PO 3, PO 5 PSO 1, PSO3	Seminars	-
Laboratory Practices	PO 1, PO 2 PO 3, PO 5 PSO 1, PSO3	Student Viva	PO 1, PO 2 PO 3, PO 5 PSO 1, PSO3	Mini Project	-	Certification	-

XIV. ASSESSMENT METHODOLOGIES - INDIRECT

•	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS

WEEK-1	BASICS OF PYTHON					
Write Python	Write Python programs for the following:					
	a. To find the biggest of given n numbers using control statements and lists					
b. To print the	Fibonacci series using functions					
c. To find GCl	c. To find GCD of two numbers					
WEEK-2	SEARCHING TECHNIQUES					

Write Python programs for implementing the following searching techniques.

- a. Linear search
- b. Binary search

WEEK-3 SORTING TECHNIQUES

Write Python programs for implementing the following sorting techniques to arrange a list of integers in ascending order.

- a. Bubble sort
- b. Insertion sort
- c. Selection sort

WEEK-4 IMPLEMENTATION OF STACK AND QUEUE

Write Python programs to

- a. Design and implement Stack and its operations using List.
- b. Design and implement Queue and its operations using List

WEEK-5 APPLICATIONS OF STACK

Write Python programs for the following:

- a. Uses Stack operations to convert infix expression into postfix expression.
- b. Uses Stack operations for evaluating the postfix expression.

WEEK-6 IMPLEMENTATION OF SINGLE LINKED LIST

- a. Write Python programs for the following operations on Single Linked List.
- (i) Creation (ii) insertion (iii) deletion (iv) traversal

WEEK-7 IMPLEMENTATION OF CIRCULAR SINGLE LINKED LIST

Write Python programs for the following operations on Circular Linked List.

(i) Creation (ii) insertion (iii) deletion (iv) traversal

WEEK-8 IMPLEMENTATION OF DOUBLE LINKED LIST

Write Python programs for the following:

Uses functions to perform the following operations on Double Linked List.

(i) Creation (ii) insertion (iii) deletion (iv) traversal in both ways.

WEEK-9 IMPLEMENTATION OF STACK USING LINKED LIST

Write a Python program to implement Stack using linked list.

WEEK-10 IMPLEMENTATION OF QUEUE USING LINKED LIST

Write a Python program to implement Linear Queue using linked list.

WEEK-11 GRAPH TRAVERSAL TECHNIQUES

Write Python programs to implement the following graph traversal algorithms:

- a. Depth first search.
- b. Breadth first search.

WEEK-12 | IMPLEMENTATION OF BINARY SEARCH TREE

Write a Python program to perform the following:

- a. Create a binary search tree.
- b. Traverse the above binary search tree recursively in pre-order, post-order and in-order.
- c. Count the number of nodes in the binary search tree.

TEXT BOOKS:

- 1. Rance D. Necaise, "Data Structures and Algorithms using Python", Wiley Student Edition.
- 2. Benjamin Baka, David Julian, "Python Data Structures and Algorithms", Packt Publishers, 2017.

REFERENCE BOOKS:

- 1. Y Daniel Liang, "Introduction to Programming using Python", Pearson.
- 2. Benjamin Baka, David Julian, "Python Data Structures and Algorithms", Packt Publishers, 2017.
- 3. Rance D. Necaise, "Data Structures and Algorithms using Python", Wiley Student Edition.
- 4. Martin Jones, "Python for Complete Beginners", 2015.
- 5. Zed A. Shaw, "Learn Python the Hard Way: a very simple introduction to the terrifyingly beautiful world of computers and code", 3e, Addison-Wesley, 2014.

6. Hemant Jain, "Problem Solving in Data Structures and Algorithms using Python: programming interview guide", 2016.

WEB REFERENCES:

- 1. https://docs.python.org/3/tutorial/datastructures.html
- $2.\ http://interactive python.org/runestone/static/pythonds/index.html$
- 3. http://www.tutorialspoint.com/data_structures_algorithms
- 4. http://www.geeksforgeeks.org/data-structures/
- 5. http://www.studytonight.com/data-structures/
- 6. http://www.coursera.org/specializations/data-structures-algorithms

XVI. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Week No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Basics of Python	CLO 1	R1:15.1
2	Searching Techniques	CLO 2	T1:5.1
3	Sorting Techniques	CLO 3	T1:5.2 R2: 10.2
4	Implementation of Stack And Queue	CLO 4	T1:7.1 T1:8.1
5	Applications of Stack	CLO 5	T2:26.8
6	Implementation of Single Linked List	CLO 6	T1:9.2
7	Implementation of Circular Single Linked List	CLO 7	T2:26.14 R2:21.55
8	Implementation of Double Linked List	CLO 8	T1:7.2
9	Implementation of Stack Using Linked List	CLO 9	T1:7.2 R2:21.61
10	Implementation of Queue Using Linked List	CLO 10	T2:25.12 R2:21.24
11	Graph Traversal Techniques	CLO 11	T2:25.16 R2:21.29
12	Implementation of Binary Search Tree	CLO 12	T1:8.1

XVII. GAPS IN THE SYLLABUS-TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Updating latest version and new features of the Python language	Laboratory Sessions	PO 5	PSO 1
2	Familiarizing the AVL Trees in developing application level programs.	Laboratory Sessions	PO 1, PO 2	-
3	Familiarizing different hashing techniques	Seminars	PO 5	PSO 3
4	Solving different problems and Practicing various debugging strategies to become a good programmer	Extra Lab Sessions, Participating in Coding contests.	PO 2	PSO 3

Prepared by:

Dr. J Sirisha Devi, Associate Professor

HOD, CSE