INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE DESCRIPTOR

Course Title	DIGITAL SYSTEM DESIGN LABORATORY							
Course Code	AECB	AECB10						
Programme	B.Tech	B.Tech						
Semester	III	III ECE						
Course Type	Core							
Regulation	IARE - R18							
			Theory		Practic	cal		
Course Structure	Lectures Tutorials Credits Laborator					Credits		
	3							
Chief Coordinator	Mr. N Nagaraju, Assistant Professor							
Course Faculty	Dr. V Viajy, Professor Mrs. J Sravana, Assistant Professor Mrs. V Bindusree, Assistant Professor							

I. COURSE OVERVIEW:

2000

This course gives knowledge about the design, analysis, simulation of circuits used as building blocks in Very Large Scale Integration (VLSI) devices. Students can apply the concepts learnt in the lectures towards design of actual VLSI subsystem all the way from specification, modeling, synthesis and physical design. This lab provides hands-on experience on implementation of digital circuit designs using HDL language, which are required for development of various projects and research work.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AECB07	III	Digital System Design	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Digital Systems Design Laboratory	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	×	Quiz	×	Assignments	×	MOOCs
~	LCD / PPT	×	Seminars	×	Mini Project	~	Videos
~	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

20 %	To test the preparedness for the experiment.
20 %	To test the performance in the laboratory.
20 %	To test the calculations and graphs related to the concern experiment.
20 %	To test the results and the error analysis of the experiment.
20 %	To test the subject knowledge through viva – voce.

The emphasis on the experiments is broadly based on the following criteria:

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Table 1: Assessment pattern for CIA

Component	L	T-4-1 M1-			
Type of Assessment	Day to day performance	Final internal lab assessment	lotal Marks		
CIA Marks	20	10	30		

Continuous Internal Examination (CIE): One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

Preparation	Performance	Calculations and Graph	Results and Error Analysis	Viva	Total
2	2	2	2	2	10

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of	3	Observations of the
	mathematics, science, engineering fundamentals, and an		Timing diagrams
	engineering specialization to the solution of complex		
	engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research	2	Lab related Exercises
	literature, and analyze complex engineering problems		
	reaching substantiated conclusions using first principles of		
	mathematics, natural sciences, and engineering sciences.		
PO 5	Modern tool usage: Create, select, and apply appropriate	2	Design Exercises
	techniques, resources, and modern engineering and IT		
	tools including prediction and modeling to complex		
	engineering activities with an understanding of the		
	limitations.		

3 = **High**; **2** = **Medium**; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills: An ability to understand the basic	2	Lab related Exercises
	concepts in Electronics & Communication Engineering		
	and to apply them to various areas, like Electronics,		
	Communications, Signal processing, VLSI, Embedded		
	systems etc., in the design and implementation of		
	complex systems.		
PSO 2	Problem-Solving Skills: An ability to solve complex	-	-
	Electronics and communication Engineering problems,		
	using latest hardware and software tools, along with		
	analytical skills to arrive cost effective and appropriate		
	solutions.		
PSO 3	Successful Career and Entrepreneurship: An	-	-
	understanding of social-awareness & environmental-		

Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
wisdom along with ethical responsibility to have a		
successful career and to sustain passion and zeal for		
real-world applications using optimal resources as an		
Entrepreneur.		

3 = High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES (COs):

The course should enable the students to:				
Ι	Design of combinational circuits using Verilog Hardware Description Language.			
II	Implementation of Sequential circuits using Verilog Hardware Description Language.			
III	Demonstration of different case studies for Verilog HDL implementation.			

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO	CLO's	At the end of the course, the	l of the course, the PO's Mapped	
Code		student will have the ability to:		of
				Mapping
AECB10.01	CLO 1	Understand the concept of Boolean	PO 1, PO 2	3
		functions using VHDL		
AECB10.02	CLO 2	Understand the encoder and	PO 1, PO 2, PO 5	3
		decoder using VHDL		
AECB10.03	CLO 3	Design of multiplexer and	PO 1, PO 2	3
		demultiplexer using VHDL		
AECB10.04	CLO 4	Design of code converters using	PO 1, PO 2, PO 5	2
		VHDL		
AECB10.05	CLO 5	Implement full adder and full	PO 1, PO 2	2
		subtractor using VHDL		
AECB10.06	CLO 6	Construct the 8-bit ALU using	PO 1, PO 2, PO 5	2
		VHDL		
AECB10.07	CLO 7	Implement the flip flops using	PO 1, PO 2	2
		VHDL		
AECB10.08	CLO 8	Design of counters using VHDL	PO 1, PO 5	3
AECB10.09	CLO 9	Construct universal shift register	PO 1, PO 5	3
		using VHDL		
AECB10.10	CLO 10	Design carry look ahead adder	PO 1, PO 5	2
		using VHDL		
AECB10.11	CLO 11	Construct a VHDL code detect a	PO 1, PO 2, PO 5	2
		sequence		
AECB10.12	CLO 12	Design Chess clock controller FSM	PO 1, PO 2, PO 5	2
		using HDL		
AECB10.13	CLO 13	Design Traffic light controller using	PO 1	3
		HDL		
AECB10.14	CLO 14	Construct Elevator design using	PO1, PO 2, PO 5	2
		HDL code		

3 = **High; 2** = **Medium; 1** = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning	Program Outcomes (POs)								Program Specific Outcomes (PSOs)						
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3	2											2		
CLO 2	3	2			2								2		
CLO 3	3	2											2		
CLO 4	2	2			2								2		
CLO 5	2	2											2		
CLO 6	2	2			2								2		
CLO 7	2	2													
CLO 8	3				2								2		
CLO 9	3				2								2		
CLO 10	2				2										
CLO 11	2	2			2								2		
CLO 12	2	2			2								2		
CLO 13	3														
CLO 14	3	2			2										

3 = **High**; **2** = **Medium**; **1** = Low

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO 1, PO 2	SEE	PO 1, PO 2	Assignments	-	Seminars	-
	PO 5, PSO 1	Exams	PO 5, PSO 1	U			1
Laboratory	PO 1, PO 2	Student	PO 1, PO 2	Mini		Contification	
Practices	PO 5, PSO 1	Viva	PO 5, PSO 1	Project	-	Certification	-

XII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

	LIST OF EXPERIMENTS
WEEK - I	REALIZATION OF A BOOLEAN FUNCTION
Design and s	simulate the HDL code to realize three and three variable Boolean functions
WEEK-2	DESIGN OF DECODER AND ENCODER
Design and s	simulate the HDL code for the following combinational circuits
a. $3 \text{ to } 8 \text{ D}$	ecoder
0. 8 10 5 E	incoder (with priority and without priority)
WEEK-3	DESIGN OF MULTIPLEXER AND DEMULTIPLEXER
Design and	simulate the HDL code for the following combinational circuits
a. Multiple	exer
0. De-mu	
WEEK -4	DESIGN OF CODE CONVERTERS
Design and s	simulate the HDL code for the following combinational circuits
a. 4 - Bit b	inary to gray code converter
c. Compar	rator
WEEK -5	FULL ADDER AND FULL SUBTRACTOR DESIGN MODELING
Write a HDI	code to describe the functions of a full Adder and full subtractor using three
modeling sty	vles
WEEK -6	DESIGN OF 8-BIT ALU
Design a mo	del to implement 8-bit ALU functionality
WEEK -7	HDL MODEL FOR FLIP FLOPS
Write HDL	codes for the flip-flops - SR, D, JK, T
WEEK -8	DESIGN OF COUNTERS
Write a HDI	code for the following counters
a. Binary	counter
b. BCD c	ounter (Synchronous reset and asynchronous reset)
WEEK-9	HDL CODE FOR UNIVERSAL SHIFT REGISTER
Design and s	simulate the HDL code for universal shift register
WEEK-10	HDL CODE FOR CARRY LOOK AHEAD ADDER
Design and s	simulate the HDL code for carry look ahead adder
WEEK-I1	HDL CODE TO DETECT A SEQUENCE
Write a HDI	code to detect the sequence 1010101 and simulate the code

Design a chess clock controller FSM using HDL and simulate the code

WEEK-13 TRAFFIC LIGHT CONTROLLER USING HDL

Design a traffic light controller using HDL and simulate the code

WEEK-14 ELEVATOR DESIGN USING HDL CODE

Write HDL code to simulate Elevator operations and simulate the code

Text Books:

1. J Bhaskar, "VHDL Primer", 3rd edition.

Reference Books:

- Samir Palnitkar, "Verilog HDL: "A Guide to Digital Design and Synthesis", Sun Microsystems Press, 2nd Edition, 2003.
- 2 T.R. Padmanabhan, B. Bala Tripura Sundari, "Design Through Verilog HDL", New Jersey, Wiley- IEEE Press, 2009. ISBN: 978-0-471-44148-9
- 3 Zainalabedin Navabi, "Verilog Digital System Design", TMH, 2nd Edition, 2008.
- 4 Peter Minns, Ian Elliott, "FSM-based Digital Design using Verilog HDL", John Wiley & Sons Ltd, 2008.

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Week	Topics to be covered	Course Learning	Reference
No.		Outcomes	
		(CLOs)	
1	Understand the concept of Boolean functions using VHDL	CLO 1	T1
2	Understand the encoder and decoder using VHDL	CLO 2	T1
3	Design of multiplexer and demultiplexer using VHDL	CLO 3	T1
4	Design of code converters using VHDL	CLO 4	T1
5	Implement full adder and full subtractor using VHDL	CLO 5	T1
6	Construct the 8-bit ALU using VHDL	CLO 6	T1
7	Implement the flip flops using VHDL	CLO 7	T1
8	Design of counters using VHDL	CLO 8	T1
9	Construct universal shift register using VHDL	CLO 9	T1
10	Design carry look ahead adder using VHDL	CLO 10	T1

Week No.	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
11	Construct a VHDL code detect a sequence	CLO 11	T1
12	Design Chess clock controller FSM using HDL	CLO 12	T1
13	Design Traffic light controller using HDL	CLO 13	T1
14	Construct Elevator design using HDL code	CLO 14	T1

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S. No	Description	Proposed	Relevance with	Relevance with
		actions	POs	PSOs
1	To improve standards and analyze	NPTEL	PO 1, PO 2	PSO 1
	the concepts.			
2	Implement parallel and serial	Seminars /	PO 1, PO5	PSO 1
	adders.	NPTEL		
3	Encourage students to solve real	NPTEL	PO 1, PO2, PO5	PSO 1
	time applications and prepare			
	towards competitive			
	examinations.			

Prepared by:

Mr. N Nagaraju, Assistant Professor

HOD, ECE