DIGITAL SYSTEM DESIGN LABORATORY

IV Semester: ECE									
Course Code	Category	Hours / Week			Credits	Maximum Marks			
AEC103	Core	L	Т	Р	С	CIA	SEE	Total	
		-	2	3	2	30	70	100	
Contact Classes: Nil	Tutorial Classes: 24	Practical Classes: 45				Total Classes: 69			

OBJECTIVES:

The course should enable the students to:

- I. Design of combinational circuits using Verilog Hardware Description Language.
- II. Implementation of Sequential circuits using Verilog Hardware Description Language.
- III. Demonstration of different case studies for Verilog HDL implementation.

COURSE LEARNING OUTCOMES (CLOs):

The students should enable to:

- 1. Knowledge and use of hardware description language (VHDL) for system modeling and simulation.
- 2. Describe and explain the operation of fundamental digital gates.
- 3. Minimize the Boolean expression using Boolean algebra and design it using logic gates.
- 4. Analyze the operation of medium complexity standard combinational circuits like the encoder, decoder.
- 5. Analyze the operation of medium complexity standard combinational circuits like the multiplexer, demultiplexers.
- 6. Analyze the operation of medium complexity standard combinational circuits like the code converters.
- 7. Design complex digital systems at several level of abstractions; behavioral and structural, synthesis and rapid system prototyping.
- 8. Design complex digital system such as ALU.
- 9. Analyze the operation of a flip-flop and examine relevant timing diagrams.
- 10. Analyze the operation of counters and shift registers.
- 11. Develop and simulate register-level models of hierarchical digital systems.
- 12. Design and model complex digital system.
- 13. Consolidation of the design methodologies for combinational and sequential digital systems.
- 14. Implementation of digital systems on reconfigurable programmable logic devices (FPGA).
- 15. Analyze and synthesize digital modules and circuits for a wide application range.

LIST OF EXPERIMENTS

WEEK - 1 REALIZATION OF A BOOLEAN FUNCTION

Design and simulate the HDL code to realize three and three variable Boolean functions

WEEK-2 DESIGN OF DECODER AND ENCODER

Design and simulate the HDL code for the following combinational circuits

a. 3 to 8 Decoder

b. 8 to 3 Encoder (With priority and without priority)

WEEK-3	DESIGN OF MULTIPLEXER AND DEMULTIPLEXER				
Design and simulate the HDL code for the following combinational circuits a. Multiplexer b. De-multiplexer					
WEEK -4	DESIGN OF CODE CONVERTERS				
Design and simulate the HDL code for the following combinational circuits a. 4 - Bit binary to gray code converter b. 4 - Bit gray to binary code converter c. Comparator					
WEEK -5	FULL ADDER AND FULL SUBTRACTOR DESIGN MODELING				
Write a HDL code to describe the functions of a full Adder and full subtractor using three modeling styles					
WEEK -6	DESIGN OF 8-BIT ALU				
Design a model to implement 8-bit ALU functionality					
WEEK -7	HDL MODEL FOR FLIP FLOPS				
Write HDL codes for the flip-flops - SR, D, JK, T					
WEEK -8	DESIGN OF COUNTERS				
Write a HDL code for the following countersa. Binary counterb. BCD counter (Synchronous reset and asynchronous reset)					
WEEK-9	HDL CODE FOR UNIVERSAL SHIFT REGISTER				
Design and simulate the HDL code for universal shift register					
WEEK-10	HDL CODE FOR CARRY LOOK AHEAD ADDER				
Design and simulate the HDL code for carry look ahead adder					
WEEK-l1	HDL CODE TO DETECT A SEQUENCE				
Write a HDL code to detect the sequence 1010101 and simulate the code					
WEEK-12	CHESS CLOCK CONTROLLER FSM USING HDL				
Design a chess clock controller FSM using HDL and simulate the code					
WEEK-13	TRAFFIC LIGHT CONTROLLER USING HDL				
Design a tra	Design a traffic light controller using HDL and simulate the code				

WEEK-14 ELEVATOR DESIGN USING HDL CODE

Write HDL code to simulate Elevator operations and simulate the code

Text Books:

- 1. Stephen Brown, Zvonko Vranesic, Fundamentals of Digital Logic Design with VHDL, TMH, 2nd Edition, 2009.
- 2. Samir Palnitkar, Verilog HDL: A Guide to Digital Design and Synthesis, Sun Microsystems Press, 2nd Edition, 2003.

Reference Books:

- 1. T.R. Padmanabhan, B. Bala Tripura Sundari, Design Through Verilog HDL, New Jersey, Wiley-IEEE Press, 2009.
- 2. Zainalabedin Navabi, Verilog Digital System Design, TMH, 2nd Edition, 2008.

Web References:

- 1. https://inst.eecs.berkeley.edu/~cs150/fa06/Labs/verilog-ieee.pdf
- 2. http://www.asic-world.com/ www.sxecw.edu.in

SOFTWARE AND HARDWARE REQUIREMENTS FOR A BATCH OF 24 STUDENTS:

HARDWARE: Desktop Computer Systems 24 nos

SOFTWARE: Xilinx Vivado 2018.1