

## **INSTITUTE OF AERONAUTICAL ENGINEERING**

(Autonomous)

Dundigal, Hyderabad -500 043

#### **ELECTRONICS AND COMMUNICATION ENGINEERING**

## **COURSE DESCRIPTOR**

| Course Title                           | DIGITAL SIGNAL PROCESSING LABORATORY |                       |                                               |                          |                            |                |
|----------------------------------------|--------------------------------------|-----------------------|-----------------------------------------------|--------------------------|----------------------------|----------------|
| Course Code                            | AEC107                               | AEC107                |                                               |                          |                            |                |
| Programme                              | B. Tech                              |                       |                                               |                          |                            |                |
| Semester                               | VI                                   | ECE                   | ,                                             |                          |                            |                |
| Course Type                            | Core                                 |                       |                                               |                          |                            |                |
| Regulation                             | IARE - R16                           |                       |                                               |                          |                            |                |
|                                        | Theory Practical                     |                       |                                               |                          |                            |                |
|                                        |                                      |                       | Theory                                        |                          | Practio                    | cal            |
| Course Structure                       | Lectur                               | res                   | Theory<br>Tutorials                           | Credits                  | Practic<br>Laboratory      | cal<br>Credits |
| Course Structure                       | Lectur<br>-                          | res                   | Theory<br>Tutorials<br>-                      | Credits<br>-             | Practic<br>Laboratory<br>3 | Credits 2      |
| Course Structure<br>Course Coordinator | Lectur<br>-<br>Mr. K C               | r <b>es</b><br>Chaita | Theory<br>Tutorials<br>-<br>anya, Assistant P | Credits<br>-<br>rofessor | Practic<br>Laboratory<br>3 | cal Credits 2  |

#### I. COURSEOVERVIEW:

This course covers the analyze and implementing digital signal processing systems in time domain, and software development. It is aimed at helping students understand the reasons for choosing Sample and reconstruct analog signals. Topics covered include Compute circular convolution, linear convolution and the discrete Fourier transform (DFT) of discrete-time signals. The main objective of the course is to teach the students how to select and design frequency-selective digital filters and algorithms that are appropriate for problems that they might encounter in real life. This course in reached to student by power point presentations, lecture notes, and lab involve the problem solving in mathematical and engineeringareas. This lab use MATLAB for DSP system analysis and design.

#### **II.** COURSEPRE-REQUISITES:

| L | evel | Course Code | Semester | Prerequisites                  | Credits |
|---|------|-------------|----------|--------------------------------|---------|
|   | UG   | AECB17      | IV       | Signals and Systems Laboratory | 2       |

## **III. MARKSDISTRIBUTION:**

| Subject                                 | SEE Examination | CIA Examination | Total Marks |
|-----------------------------------------|-----------------|-----------------|-------------|
| Digital Signal Processing<br>Laboratory | 70 Marks        | 30 Marks        | 100         |

## IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| × | Chalk & Talk             | × | Quiz     | × | Assignments  | × | MOOCs  |
|---|--------------------------|---|----------|---|--------------|---|--------|
| ~ | LCD / PPT                | ~ | Seminars | × | Mini Project | ~ | Videos |
| ~ | ✓ Open Ended Experiments |   |          |   |              |   |        |

## V. EVALUATIONMETHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

**Semester End Examination (SEE):** The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

| 20 % | To test the preparedness for the experiment.                           |  |  |  |
|------|------------------------------------------------------------------------|--|--|--|
| 20 % | To test the performance in the laboratory.                             |  |  |  |
| 20 % | To test the calculations and graphs related to the concern experiment. |  |  |  |
| 20 % | To test the results and the error analysis of the experiment.          |  |  |  |
| 20 % | To test the subject knowledge through viva – voce.                     |  |  |  |

The emphasis on the experiments is broadly based on the following criteria:

#### **Continuous Internal Assessment (CIA):**

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Table 1: Assessment pattern for CIA

| Component          | Lab                    |                                  |              |
|--------------------|------------------------|----------------------------------|--------------|
| Type of Assessment | Day to day performance | Final internal lab<br>assessment | I otal Marks |
| CIA Marks          | 20                     | 10                               | 30           |

## **Continuous Internal Examination(CIE):**

One CIE exams shall be conducted at the end of the 16<sup>th</sup> week of the semester. The CIE exam is conducted for 10 marks of 3 hoursduration.

| Preparation | Performance | Calculations<br>and Graph | Results and<br>Error Analysis | Viva | Total |
|-------------|-------------|---------------------------|-------------------------------|------|-------|
| 2           | 2           | 2                         | 2                             | 2    | 10    |

## VI. HOW PROGRAM OUTCOMES AREASSESSED:

|      | Program Outcomes (POs)                                 | Strength | Proficiency assessed<br>by |
|------|--------------------------------------------------------|----------|----------------------------|
| PO1  | Engineering knowledge: Apply the knowledge of          | 3        | Videos/ Student Viva       |
|      | mathematics, science, engineering fundamentals, and    |          |                            |
|      | an engineering specialization to the solution of       |          |                            |
|      | complex engineering problems.                          |          |                            |
| PO2  | Problem analysis: Identify, formulate, review          | 3        | Lab Exercises/             |
|      | research literature, and analyze complex engineering   |          | StudentViva                |
|      | problems reaching substantiated conclusions using      |          |                            |
|      | first principles of mathematics, natural sciences, and |          |                            |
|      | engineering sciences                                   |          |                            |
| PO3  | Design/development of solutions: Design solutions      | 2        | Videos/ StudentViva        |
|      | for complex engineering problems and design system     |          |                            |
|      | components or processes that meet the specified needs  |          |                            |
|      | with appropriate consideration for the public health   |          |                            |
|      | and safety, and the cultural, societal, and            |          |                            |
|      | environmental considerations.                          |          |                            |
| PO5  | Modern tool usage: Create, select, and apply           | 2        | Lab Exercises              |
|      | appropriate techniques, resources, and modern          |          |                            |
|      | engineering and IT tools including prediction and      |          |                            |
|      | modeling to complex engineering activities with an     |          |                            |
|      | understanding of the limitations.                      |          |                            |
| PO12 | Life-long learning: Recognize the need for, and have   | 2        | Presentation on            |
|      | the preparation and ability to engage independent and  |          | real-world problems        |
|      | life-long learning in the broadest context of          |          |                            |
|      | technological change.                                  |          |                            |

**3** = High; **2** = Medium; **1** = Low

## VII. HOW PROGRAM SPECIFIC OUTCOMES AREASSESSED:

|      | Program Specific Outcomes (PSOs)                               | Strength | Proficiency assessed |
|------|----------------------------------------------------------------|----------|----------------------|
|      |                                                                |          | by                   |
| PSO1 | <b>Professional Skills:</b> The ability to understand, analyze | 3        | Videos               |
|      | and develop computer programs in the areas related to          |          |                      |
|      | algorithms, system software, multimedia, web design,           |          |                      |
|      | big data analytics, and networking for efficient design        |          |                      |
|      | of computer-based systems of varying complexity.               |          |                      |
| PSO2 | Problem-Solving Skills: The ability to apply standard          | 3        | Lab Exercises        |
|      | practices and strategies in software project                   |          |                      |
|      | development using open-ended programming                       |          |                      |
|      | environments to deliver a quality product forbusiness          |          |                      |
|      | success.                                                       |          |                      |

|      | Program Specific Outcomes (PSOs)                                                                                                                                                                              | Strength | Proficiency assessed<br>by             |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------|
| PSO3 | Successful Career and Entrepreneurship: The ability to employ modern computer languages, environments, and platforms in creating innovative career paths to be an entrepreneur, and a zest forhigher studies. | 1        | Presentation on<br>real-world problems |

**3 = High; 2 = Medium; 1 = Low** 

## VIII. COURSE OBJECTIVES:

| The cour | The course should enable the students to:                              |  |  |  |  |
|----------|------------------------------------------------------------------------|--|--|--|--|
| I        | Implementation of convolution inMATLAB.                                |  |  |  |  |
| II       | Implementation of digital signal processing algorithms in MATLAB andC. |  |  |  |  |
| III      | Understand the real-time operation of digitalfilters.                  |  |  |  |  |
| IV       | Analyze the Multirate signal processing algorithms.                    |  |  |  |  |
| V        | Implementation of filters using DSP Kits                               |  |  |  |  |

## IX. COURSE OUTCOMES(COs):

| COs                     | Course Outcome                                  | CLOs   | Course Learning Outcome                                                                              |
|-------------------------|-------------------------------------------------|--------|------------------------------------------------------------------------------------------------------|
| CO 1                    | Analyze and implement digital signal processing | CLO 1  | To generate elementary signals/ waveforms and perform arithmetic operations on signals               |
| systems in time domain. |                                                 | CLO 2  | Calculate and Plot DFT / IDFT of given DT signal and to generate Sinusoidal signal through filtering |
|                         |                                                 | CLO 3  | Able to plot frequency response of a given system and verify the properties of LTI system.           |
| CO 2                    | Develop and implement digital systems using the | CLO 4  | Implement FFT of given sequence and identify the reduction of computations using FFT.                |
|                         | DFT and the Fast Fourier                        | CLO 5  | Implementation of Linear convolution using DFT                                                       |
|                         | Transform<br>(FFT).                             | CLO 6  | Implementation of Decimation-in-time radix-2 FFT algorithm                                           |
| CO 3                    | Compute circular<br>convolution, linear         | CLO 7  | Generation of linear convolution without using built in function and the function conv               |
|                         | convolution and the discrete Fourier transform  | CLO 8  | Generation of circular convolution without using built in function                                   |
|                         | (DFT) of discrete-time signals.                 | CLO 9  | Compute the Discrete Fourier Transform and IDFT with and without fft and ifft                        |
| CO 4                    | Construct the digital filters using windows.    | CLO 10 | To Implement LP FIR filter for a given sequence and calculate the filter coefficients.               |
|                         |                                                 | CLO 11 | Able to Implement IIR filter for a given sequence and plot the response of the same.                 |
|                         |                                                 | CLO 12 | Implementation of FIR digital filter using window (Rectangular, Hamming, Hanning, Bartlett) methods  |
| CO 5                    | Design frequency-                               | CLO 13 | Understand the operation to generate DTMF signals                                                    |
|                         | selective digital filters and                   | CLO 14 | Able to Implement I/D sampling rate converters and                                                   |
|                         | Sample and reconstruct                          |        | identify the importance of multi rate sampling                                                       |
|                         | analog signals.                                 | CLO 15 | Construct IIR and FIR Filter Implementation using DSP Kits                                           |
|                         |                                                 |        |                                                                                                      |
| 1                       |                                                 |        |                                                                                                      |

| X. | COURSE | LEARNING | <b>OUTCOMES(CI</b> | LOs): |
|----|--------|----------|--------------------|-------|
|----|--------|----------|--------------------|-------|

| CLO       | CLO's         | At the end of the course, the student will have            | PO's     | Strength of |
|-----------|---------------|------------------------------------------------------------|----------|-------------|
| Code      |               | the ability to:                                            | Mapped   | Mapping     |
| AEC107.01 | CLO 1         | To generate elementary signals/ waveforms and              | PO1      | 3           |
|           |               | perform arithmetic operations on signals                   |          |             |
| AEC107.02 | CLO 2         | Calculate and Plot DFT / IDFT of given DT signal           | PO3      | 3           |
|           |               | and to generate Sinusoidal signal through filtering        |          |             |
| AEC107.03 | CLO 3         | Able to plot frequency response of a given system          | PO3,PO5  | 3           |
|           |               | and verify the properties of LTI system.                   |          | _           |
| AEC107.04 | CLO 4         | Implement FFT of given sequence and identify the           | PO1, PO5 | 3           |
|           | ~~~~~         | reduction of computations using FFT.                       |          |             |
| AEC107.05 | CLO 5         | Implementation of Linear convolution using DFT             | PO1,PO 5 | 3           |
|           | <b>at a c</b> |                                                            |          |             |
| AEC107.06 | CLO 6         | Implementation of Decimation-in-time radix-2 FFT algorithm | PO3,PO5  | 3           |
| AEC107.07 | CLO 7         | Generation of linear convolution without using             | PO3.PO5  | 3           |
|           |               | built in function and the function conv                    |          | -           |
|           |               |                                                            |          |             |
| AEC107.08 | CLO 8         | Generation of circular convolution without using           | PO3,PO5  | 3           |
|           |               | built in function                                          |          |             |
| AEC107.09 | CLO 9         | Compute the Discrete Fourier Transform and IDFT            | PO1,PO 5 | 3           |
|           |               | with and without fft and ifft                              |          |             |
| AEC107.10 | CLO 10        | to Implement LP FIR filter for a given sequence            | PO2,PO5  | 3           |
|           |               | and calculate the filter coefficients.                     |          |             |
| AEC107.11 | CLO 11        | Able to Implement IIR filter for a given sequence          | PO2,PO5  | 3           |
|           |               | and plot the response of the same.                         |          |             |
| AEC107.12 | CLO 12        | Understand the operations of binary search tree like       | PO2, PO3 | 3           |
|           |               | tree traversals and counting the number of nodes in        |          |             |
|           |               | the binary search tree.                                    |          |             |
| AEC107.13 | CLO 13        | Implementation of FIR digital filter using window          | PO3,PO5  | 3           |
|           |               | (Rectangular, Hamming, Hanning, Bartlett)                  |          |             |
|           |               | methods                                                    |          |             |
| AEC107.14 | CLO 14        | Understand the operation to generate DTMF                  | PO1,PO 5 | 3           |
|           |               | signals                                                    |          |             |
| AEC107.15 | CLO 15        | Able to Implement I/D sampling rate converters             | PO2, PO3 | 3           |
|           |               | and identify the importance of multi-rate sampling         |          |             |

3= High; 2 = Medium; 1 = Low

# XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFICOUTCOMES:

| Course |     | Program Ou | tcomes (P | Program Specific Outcomes(PSOs) |      |      |      |
|--------|-----|------------|-----------|---------------------------------|------|------|------|
| (COs)  | PO1 | PO2        | PO3       | PO5                             | PSO1 | PSO2 | PSO3 |
| CO 1   | 3   |            | 3         | 2                               | 3    |      |      |
| CO 2   | 3   |            |           | 2                               |      |      | 2    |
| CO 3   | 3   |            | 3         | 2                               |      |      | 2    |
| CO 4   |     | 3          |           | 2                               |      |      |      |
| CO 5   |     | 3          | 3         | 2                               |      |      | 2    |

#### XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFICOUTCOMES:

| Course   |     |     |     |     | Drogr | om O | ntoom | og ( <b>D</b> O |     |      |      |      | Prog           | ramSp | ecific |
|----------|-----|-----|-----|-----|-------|------|-------|-----------------|-----|------|------|------|----------------|-------|--------|
| Learning |     |     |     |     | Tiogi |      | utcom | es (1 U         | 5)  |      |      |      | Outcomes(PSOs) |       | PSOs)  |
| Outcomes | PO1 | PO2 | PO3 | PO4 | PO5   | PO6  | PO7   | PO8             | PO9 | PO10 | PO11 | PO12 | PSO1           | PSO2  | PSO3   |
| (CLOs)   |     |     |     |     |       |      |       |                 |     |      |      |      |                |       |        |
| CLO 1    | 3   |     |     |     |       |      |       |                 |     |      |      |      |                |       |        |
| CLO 2    |     |     | 3   |     |       |      |       |                 |     |      |      |      | 3              |       |        |
| CLO 3    |     |     | 3   |     | 2     |      |       |                 |     |      |      |      | 3              |       |        |
| CLO 4    | 3   |     |     |     | 2     |      |       |                 |     |      |      |      |                |       |        |
| CLO 5    | 3   |     |     |     | 2     |      |       |                 |     |      |      |      |                |       | 2      |
| CLO 6    | 3   |     |     |     | 2     |      |       |                 |     |      |      |      | 3              |       |        |
| CLO 7    |     |     | 3   |     | 2     |      |       |                 |     |      |      |      | 3              |       |        |
| CLO 8    |     |     | 3   |     | 2     |      |       |                 |     |      |      |      | 3              |       |        |
| CLO 9    | 3   |     |     |     | 2     |      |       |                 |     |      |      |      | 3              |       |        |
| CLO 10   |     | 3   |     |     | 2     |      |       |                 |     |      |      |      | 3              |       |        |
| CLO 11   |     | 3   |     |     | 2     |      |       |                 |     |      |      |      |                |       |        |
| CLO 12   |     | 3   | 3   |     |       |      |       |                 |     |      |      |      |                |       | 2      |
| CLO 13   |     |     | 3   |     | 2     |      |       |                 |     |      |      |      | 3              |       |        |
| CLO 14   | 3   |     |     |     | 2     |      |       |                 |     |      |      |      | 3              |       |        |
| CLO 15   |     | 3   | 3   |     |       |      |       |                 |     |      |      |      | 3              |       | 2      |

**3** = High; **2** = Medium; **1** = Low

## XIII. ASSESSMENT METHODOLOGIES -DIRECT

| CIE Exams               | -          | SEE<br>Exams    | PO 1, PO2<br>PO 3, PO5 | Lab<br>Exercises | PO 5 | Seminars      | PO 1,<br>PO2 |
|-------------------------|------------|-----------------|------------------------|------------------|------|---------------|--------------|
| Laboratory<br>Practices | PO 1, PO 5 | Student<br>Viva | PO 1, PO 2<br>PO 3     | Mini<br>Project  | -    | Certification | -            |

## XIV. ASSESSMENT METHODOLOGIES -INDIRECT

| ~ | Early Semester Feedback                | ~ | End Semester OBE Feedback |
|---|----------------------------------------|---|---------------------------|
| × | Assessment of Mini Projects by Experts |   |                           |

## XV. SYLLABUS

| WEEK -1 CONVOLUTION                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a) Generation of linear convolution without using built in function and the function conv                                                                                                   |
| in MATLAB                                                                                                                                                                                   |
| b) Generation of circular convolution without using built in function inwiATLAB                                                                                                             |
| WEEK-2 DISCRETE FOURIER TRANSFORM                                                                                                                                                           |
| Compute the Discrete Fourier Transform and IDFT with and without fft and ifft in MATLAB                                                                                                     |
| WEEK-3 APPLICATION OF DFT                                                                                                                                                                   |
| Implementation of Linear convolution using DFT (Overlap-add and Overlap-Save methods)                                                                                                       |
| WEEK -4 DIT - FAST FOURIER TRANSFROM                                                                                                                                                        |
| Implementation of Decimation-in-time radix-2 FFT algorithm                                                                                                                                  |
| WEEK -5 DIF - FAST FOURIER TRANSFROM                                                                                                                                                        |
| Implementation of Decimation-in-frequency radix-2 FFT algorithm                                                                                                                             |
| WEEK -6 IIR - BUTTERWORTH FILTER                                                                                                                                                            |
| Implementation of IIR digital filter using Butterworth method and bilinear transformation                                                                                                   |
| WEEK -7 IIR - CHEBYSHEV FILTER                                                                                                                                                              |
| Implementation of IIR digital filter using Chebyshev (Type I and II) method                                                                                                                 |
| WEEK -8 FIR FILTER - WINDOW TECHNIQUES                                                                                                                                                      |
| Implementation of FIR digital filter using window (Rectangular, Hamming, Hanning, Bartlett) methods                                                                                         |
| WEEK-9 FIR FILTER – SAMPLING TECHNIQUE                                                                                                                                                      |
| Implementation of FIR digital filter using frequency sampling method                                                                                                                        |
| WEEK-10 FIR FILTER – OPTIMUM EQUIRIPPLE                                                                                                                                                     |
| Implementation of optimum equiripple FIR digital filter using window methods                                                                                                                |
| WEEK-I1 DUAL TONE MULTI FREQUENCY                                                                                                                                                           |
| DTMF Tone Generation and Detection Using Goertzel Algorithm                                                                                                                                 |
| WEEK-12 SAMPLING RATE CONVERTERS                                                                                                                                                            |
| Implementation of sampling rate conversion by decimation, interpolation and a rational factor using MATLAB                                                                                  |
| WEEK-13 DFT AND SINEWAVE USING TMS320C6713 KIT                                                                                                                                              |
| a) Implementation of DFT                                                                                                                                                                    |
| b) Sine wave generation using lookup table with values generated fromMATLAB                                                                                                                 |
| WEEK-I4 FILTERS USING TMS320C6713 KIT                                                                                                                                                       |
| IIR and FIR Filter Implementation using DSP Kits                                                                                                                                            |
| TEXT BOOKS:                                                                                                                                                                                 |
| <ol> <li>John G.Proakis, DimitrisG. Manolakis, -Digital signal processing, Principles, Algorithms<br/>and Applications<sup>II</sup>, Prentice Hall, 4<sup>th</sup> Edition,2007.</li> </ol> |
| REFERENCE BOOKS:                                                                                                                                                                            |
| 1. P Ramesh babu, Digitalsignal processing, Principles, Algorithms, SCITECH, 6 <sup>th</sup><br>Edition 2014                                                                                |

Edition,2014. 2. B.PreethamKumar,-DigitalSignalProcessingLaboratory∥,CRCPress,2<sup>nd</sup> Edition,2010. 3. B. Venkata Ramani, M.Bhaskar, — Digital Signal Processors- Architecture, Programming and applications<sup>||</sup>, TMH, 2<sup>nd</sup> Edition,2002.

#### WEB REFERENCES:

- 1. http://eceweb1.rutgers.edu/~orfanidi/ece348/
- 2. http://www.eecs.umich.edu/courses/eecs452/refs.html
- 3. http://www.dsp.sun.ac.za/lab-reference-guide/
- http://www.iare.ac.in

## XVI. COURSEPLAN:

The course plan is meant as a guideline. Probably there may be changes.

| Week | Topics to be covered                                                                                   | Course   | Reference |
|------|--------------------------------------------------------------------------------------------------------|----------|-----------|
| No   |                                                                                                        | Learning |           |
|      |                                                                                                        | (CLOs)   |           |
| 1    | a. Generation of linear convolution without using built                                                | CL0 1    | R1:15.1   |
|      | in function and the function conv in MATLAB                                                            |          |           |
|      | b. Generation of circular convolution without using                                                    |          |           |
|      | built in function inMATLAB                                                                             |          |           |
| 2    | Compute the Discrete Fourier Transform and IDFT with<br>and without fft and ifft in MATLAB             | CLO 2    | T1:5.1    |
| 3    | Implementation of Linear convolution using DFT (Overlap-                                               | CLO 3    | T1:5.2    |
|      | add and Overlap-Save methods)                                                                          |          | R2:10.2   |
| 4    | Implementation of Decimation-in-time radix-2 FFT                                                       | CLO 4    | T1:7.1    |
|      | algorithm                                                                                              | <u> </u> | T1:8.1    |
| 5    | algorithm                                                                                              | CLO 5    | 12:26.8   |
| 6    | Implementation of IIR digital filter using Butterworth method and bilinear transformation              | CLO 6    | T1:9.2    |
| 7    | Implementation of IIR digital filter using Chebyshev (Type                                             | CLO 7    | T2:26.14  |
|      | I and II) method                                                                                       |          | R2:21.55  |
| 8    | Implementation of FIR digital filter using window<br>(Rectangular, Hamming, Hanning, Bartlett) methods | CLO 8    | T1:7.2    |
| 9    | Implementation of FIR digital filter using frequency                                                   | CLO 9    | T1:7.2    |
|      | sampling method                                                                                        |          | R2:21.61  |
| 10   | Implementation of optimum equiripple FIR digital filter                                                | CLO 10   | T2:25.12  |
|      | using window methods                                                                                   |          | R2:21.24  |
| 11   | DTMF Tone Generation and Detection Using Goertzel                                                      | CLO 11   | T2:25.16  |
| 10   | Algorium<br>Implementation of compling note conversion by designation                                  | CL 0 12  | K2:21.29  |
| 12   | interpolation and a rational factor using MATLAB                                                       | CL0 12   | 11:8.1    |
| 13   | a. Implementation of DFT                                                                               | CLO 13   | T1:12.10  |
|      | b. Sine wave generation using lookup table with values                                                 |          | R1:13.7   |
|      | generated fromMATLAB                                                                                   |          |           |
| 14   | IIR and FIR Filter Implementation using DSP Kits                                                       | CLO 14   | T1:11.2   |
|      |                                                                                                        | CLO 15   | R1:10.2   |

|      |                                                                                                        |                          | -              |                       |
|------|--------------------------------------------------------------------------------------------------------|--------------------------|----------------|-----------------------|
| S No | Description                                                                                            | Proposed actions         | Relevance with | <b>Relevance</b> with |
|      |                                                                                                        |                          | POs            | PSOs                  |
| 1    | To improve standards and analyze the concepts.                                                         | Laboratory<br>Sessions   | PO 1, PO 2     | PSO 1                 |
| 2    | Design and develop DSP programs with advanced devices                                                  | Lab Practices /<br>NPTEL | PO 3, PO 4     | PSO 1                 |
| 3    | Encourage students to solve real<br>time applications and prepare<br>towards competitive examinations. | NPTEL                    | PO 3, PO 4     | PSO 1                 |

## XVII. GAPS IN THE SYLLABUS-TO MEET INDUSTRY / PROFESSIONREQUIREMENTS:

## Prepared by:

Mr. K Chaitanya, Assistant Professor

## HOD,ECE