INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
Dundigal, Hyderabad -500 043
CIVIL ENGINEERING
COURSE DESCRIPTOR

Course Title	ENGINEERING GRAPHICS AND DESIGN LABORATORY						
Course Code	AMEB02						
Programme	B.Tech						
Semester	I CE	CE \| ECE	EEE				
	II AE	AE \| ME	CSE	IT			
Course Type	Core						
Regulation	IARE - R18						
Course Structure	Theory			Practical			
	Lectures	Tutorials	Credits	Laboratory	Credits		
	1	-	-	4	3		
Chief Coordinator	Mr. B V Satya Narayana Rao, Associate Professor						
Course Faculty	Mr. K. Anand Goud, Assistant Professor Mr. GNV Sai Teja, Assistant Professor						

I. COURSE OVERVIEW:

One of the best ways to communicate one's ideas is through some form of picture or drawing. This is especially true for the engineer. An engineering drawing course focuses on usage of drawing instruments, lettering, construction of geometric shapes, etc. Students study use of dimensioning, shapes and angles or views of such drawings. Dimensions feature prominently, with focus on interpretation, importance and accurate reflection of dimensions in an engineering drawing. Other areas of study in this course may include projected views, pictorial projections and development of surfaces. This course also gives basic concepts for studying machine drawing, building drawing, circuit drawings etc.
II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Level
UG	AHS002	1	Linear Algebra and Differential Equations	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Engineering graphics and design laboratory	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

\boldsymbol{x}	Chalk \& Talk	\boldsymbol{x}	Quiz	\boldsymbol{x}	Assignments	\boldsymbol{x}	MOOCs
$\boldsymbol{\sim}$	LCD / PPT	\boldsymbol{v}	Seminars	\boldsymbol{x}	Mini Project	\boldsymbol{v}	Videos
\boldsymbol{x}	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

The emphasis on the experiments is broadly based on the following criteria:

20%	To test the preparedness for the experiment.
20%	To test the performance in the laboratory.
20%	To test the calculations and graphs related to the concern experiment.
20%	To test the results and the error analysis of the experiment.
20%	To test the subject knowledge through viva - voce.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Table 1: Assessment pattern for CIA

Component	Laboratory		Total Marks
Type of Assessment	Day to day performance	Final internal lab assessment	
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the $16^{\text {th }}$ week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

Preparation	Performance	Calculations and Graph	Results and Error Analysis	Viva	Total
2	2	2	2	2	10

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

Program Outcomes (POs)		Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals and engineering specialization to the solution of complex engineering problems.	3	Lab exercises
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	2	Seminar/ Exams
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. .	1	Presentation on real-world problems

3 = High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

Program Specific Outcomes (PSOs)		Strength	Proficiency assessed by
PSO 1	Engineering Knowledge: Graduates shall demonstrate sound knowledge in analysis, design, laboratory investigations and construction aspects of civil engineering infrastructure, along with good foundation in mathematics, basic sciences and technical communication.	1	Seminar
PSO 2	Broadness and Diversity: Graduates will have a broad understanding of economical, environmental, societal, health and safety factors involved in infrastructural development, and shall demonstrate ability to function within multidisciplinary teams with competence in modern tool usage.	-	-
PSO 3	Self-Learning and Service: Graduates will be motivated for continuous self-learning in engineering practice and/ or pursue research in advanced areas of civil engineering in order to offer engineering services to the society, ethically and responsibly.	-	-

3 $=$ High; 2 = Medium; 1 = Low
VIII. COURSE OBJECTIVES (COs):

The course should enable the students to:	
I	Understand the basic principles of engineering drawing and construction of curves used in engineering field.
II	Apply the knowledge of interpretation of projection in different quadrants.
III	Understand the projections of solids, when it is inclined to both planes simultaneously.
IV	Convert the pictorial views into orthographic view and vice versa.
V	Create intricate details of components through sections and develop its surfaces.

IX. COURSE LEARNING OUTCOMES (CLOs):

$\begin{aligned} & \text { CLO } \\ & \text { Code } \end{aligned}$	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AMEB02.01	CLO 1	Understand the BIS conventions of engineering drawing with basic concepts, ideas and methodology	PO 1	3
AMEB02.02	CLO 2	Principles of dimensions and their execution. Introduction to AutoCAD.	PO 1, PO 2	3
AMEB02.03	CLO 3	Apply the commands used in AutoCAD for different basic geometries	PO 1, PO 2	3
AMEB02.04	CLO 4	Visualize parabolic, Hyperbola and elliptical profiles in buildings and bridges	PO 1, PO 2, PO 4	2
AMEB02.05	CLO 5	Visualize cycloidal and involutes profiles in developing new products like gears and other engineering applications.	PO 1	2
AMEB02.06	CLO 6	Discuss the various types of scales for engineering application like maps, buildings, bridges.	$\begin{gathered} \text { PO 1, } \\ \text { PO 2, PO } 4 \end{gathered}$	2
AMEB02.07	CLO 7	Solve specific geometrical problems in plane geometry involving points and lines.	PO 1, PO 2	2
AMEB02.08	CLO 8	Understand the theory of projection in planes located in various quadrants and apply in manufacturing processes.	PO 1, PO 2	2
AMEB02.09	CLO 9	Understand the concept of projection of solids inclined to both the planes	PO 1, PO 2	2
AMEB02.10	CLO10	Understand the concept of projection of section of solids inclined to both the planes	PO 1	2
AMEB02.11	CLO11	Apply the terminology of development of surfaces in the area of chimneys and chutes.	PO 1, PO 2	3
AMEB02.12	CLO 12	Understand the orthographic projection concepts in solid modeling and apply the concepts in the areas of design.	PO 1, PO 2	3
AMEB02.13	CLO 13	Visualize the components by isometric projection by representing three dimensional objects in two dimensions in technical and engineering drawings.	PO 1	3

3 = High; 2 = Medium; 1 = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT

 OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:| Course
 Learning | Program Outcomes (POs) | | | | | | | | | | | | Program Specific Outcomes (PSOs) | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Outcomes } \\ \text { (CLOs) } \\ \hline \end{gathered}$ | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| CLO 1 | 3 | | | | | | | | | | | | 1 | | |
| CLO 2 | 3 | 2 | | | | | | | | | | | 1 | | |
| CLO 3 | 3 | 2 | | | | | | | | | | | 1 | | |
| CLO 4 | 3 | 2 | | 1 | | | | | | | | | 1 | | |
| CLO 5 | 2 | | | | | | | | | | | | | | |
| CLO 6 | 2 | 2 | | 1 | | | | | | | | | | | |
| CLO 7 | 2 | 2 | | | | | | | | | | | 1 | | |
| CLO 8 | 2 | 2 | | | | | | | | | | | 1 | | |
| CLO 9 | 2 | 2 | | | | | | | | | | | | | |
| CLO 10 | 2 | | | | | | | | | | | | | | |
| CLO 11 | 3 | 2 | | | | | | | | | | | | | |
| CLO 12 | 3 | 3 | | | | | | | | | | | | | |
| CLO 13 | 3 | | | | | | | | | | | | | | |

3 = High; 2 = Medium; 1 = Low
XI. ASSESSMENT METHODOLOGIES - DIRECT

CIE Exams	PO 1, PO 2, PO 4, PSO 1	SEE Exams	PO 1, PO 2, PO 4, PSO 1	Assignments	-	Seminars	PO 2, PSO 1
Laboratory Practices	PO 1, PO 2, PO 4	Student Viva	PO 1, PO 2, PO 4	Mini Project	-	Certification	-

XII. ASSESSMENT METHODOLOGIES - INDIRECT

$\boldsymbol{\iota}$	Early Semester Feedback	$\boldsymbol{\iota}$	End Semester OBE Feedback
\boldsymbol{x}	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

LIST OF EXPERIMENTS	
Week-1	CONSTRUCTION OF PARABOLA BY ALL METHODS
Draw the parabola by General Method, rectangle method, tangent method and parallelogram methods.	

LIST OF EXPERIMENTS	
Week-2	CONSTRUCTION OF ELLIPSE BY ALL METHODS
Draw the Ellipse by General method, concentric circle method, oblong method, arcs of circles method and parallelogram methods.	
Week-3	CONSTRUCTION OF HYPERBOLA BY ALL METHODS
Draw the Hyperbola by General Method and Rectangle method.	
Week-4	CONSTRUCTION OF CYCLOIDS AND INVOLUTES
Draw the Cycloid, Epi-Cycloid, Hypo-Cycloid, Involute for a thread wound around a circle and polygons.	
Week-5	CONSTRUCTION OF SCALES
Construct the Plain scale, Diagonal Scale, and Vernier scales.	
Week-6	PROJECTION OF POINTS AND LINES
Locate the projection of points in different quadrants. Draw the projection of the lines parallel, perpendicular and inclined to planes.	
Week-7	PROJECTION OF PLANES
Draw the projection of the Planes, parallel, perpendicular and inclined to planes.	
Week-8-9	PROJECTION OF SOLIDS
Draw the projection of the Solids whose axis is parallel, perpendicular and inclined to planes.	
Week-10	SECTION OF SOLIDS
Draw the projection of Solids cut by plane when the axis is parallel, perpendicular and inclined to planes.	
Week-11-1	DEVELOPMENT OF SURFACES
Draw the development of lateral surface of cube, cylinder, Prism, Pyramid and cone.	
WeeK-13-1	TRANSFORMATIONS
Conversion of Isometric Projections to Orthographic Projection and vice-versa	
Week-15	ISOMETRIC VIEWS
Draw the Isometric views of solids and castings.	

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Week	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Principles of engineering drawing - various drawing instruments and their uses. (General exercises). Geometrical constructions.	CLO 1	$\begin{aligned} & \text { T1:1.4 } \\ & \text { R1:1.2 } \end{aligned}$
2	Principles of dimensions and their execution. Introduction to AutoCAD.	CLO 2	$\begin{aligned} & \mathrm{T} 1: 1.5 \\ & \text { R1:2.4 } \end{aligned}$
3	Familiarization of AutoCAD. Draw and Modify commands, Dimensions, Line properties, Status bar, etc.	CLO 3	$\begin{aligned} & \text { T1:2.5 } \\ & \text { R1:2.5 } \end{aligned}$

Week	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
4	Construction of parabola curves. - Eccentricity Method, Rectangle Method, and Parallelogram Methods.	CLO 4	T1,T2
	Construction of Elliptical curves- Eccentricity Method, Rectangle Method, concentric circle method, and Parallelogram Methods.	T1:22.7	
6	Construction of Hyperbola curves- Eccentricity Method, Rectangle Method.	CLO 4	T1:6.3 R2:5.3
	Construction of various curves cycloid, epicycloids, hypocycloid and involutes	CLO 5	T1:7.5 R1:6.3
8	Construction of various scales for engineering use-Plain, Diagonal, and Vernier.	CLO 6	T1:8.5 R1:6.8
9	Projection of points and lines inclined to single plane and both the planes.	T1:12.2 R3:13.1	
10	Projection of planes- inclined to single plane and both the planes.	CLO 9	T1:12.3 R1:13.2
11	Projection of solids inclined to single plane and both the planes.	CLO 10	T1:12.10 R2:13.7
12	Projection of Section of Solids whose axis is, parallel and perpendicular to planes, and inclined to planes.	CLO 11	T2:2.5 R1:2.5
13	Draw the development of surfaces.	CLO 12	T2:22.7
14	Convert the pictorial views to orthographic views	CLO 13	T1:12.10 R2:13.7
15	Draw the basic isometric figures.		CLO

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S NO	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Learn to take data and transform it into graphic drawings	NPTEL	PO 4, PO 2	PSO 1
2	Students will become familiar with office practices and standards.	NPTEL	PO 2	PSO 1

Prepared by:
Mr. K. Anand Goud, Assistant Professor
HOD, CE

