

(Autonomous)

Dundigal, Hyderabad -500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE DESCRIPTOR

Course Title	ENGINEERING CHEMISTRY LABORATORY								
Course Code	AHSB	AHSB09							
Programme	B.Tecl	B.Tech							
Semester	Ι	CSE	IT EEE						
	II	AE	CE ECE ME						
Course Type	Found	Foundation							
Regulation	IARE - R18								
			Theory	Practical					
Course Structure	Lect	ures	Tutorials	Credits	Laboratory	Credits			
Course Structure	Lect	ures	Tutorials -	Credits -	Laboratory 3	Credits 1.5			
Course Structure Chief Coordinator	Lect - Mr. G	ures Mahe	Tutorials - sh Kumar, Assist	Credits - tant Professor	Laboratory 3	Credits 1.5			

I. COURSE OVERVIEW:

The primary objective of an Engineering Chemistry laboratory is to develop the analytical ability of the students by better understanding the concepts experimental chemistry. The experiments carried out like conductometry, potentiometry, physical properties like adsorption of acetic acid on charcoal, viscosity and surface tension of liquids. The analytical experiments like determination of hardness of water, chloride content in the water and hydrolysis of ester cartelized by an acid can be carried out in the laboratory.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Level	
-	-	-	Basic principles of chemistry laboratory	-	

2000

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks	
Engineering Chemistry Laboratory	70 Marks	30 Marks	100	

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	×	Quiz	×	Assignments	×	MOOCs			
>	LCD / PPT	7	Seminars	×	Mini Project	~	Videos			
>	Open Ended Experiments									

V. EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

20 %	To test the preparedness for the experiment.
20 %	To test the performance in the laboratory.
20 %	To test the calculations and graphs related to the concern experiment.
20 %	To test the results and the error analysis of the experiment.
20 %	To test the subject knowledge through viva – voce.

The emphasis on the experiments is broadly based on the following criteria:

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Table 1: Assessment pattern for CIA

Component	L	Total Marks				
Type of Assessment	Day to day performance	Day to day performance Final internal lab assessment				
CIA Marks 20		10	30			

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

Preparation Performance		Calculations and Graph	Results and Error Analysis	Viva	Total	
2	2	2	2	2	10	

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of	2	Seminar
	mathematics, science, engineering fundamentals, and an		
	engineering specialization to the solution of complex		
	engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research	2	Seminar
	literature, and analyze complex engineering problems		
	reaching substantiated conclusions using first principles of		
	mathematics, natural sciences, and engineering sciences		
	Environment and sustainability: Understand the impact	2	Presentation on
PO 7	of the professional engineering solutions in societal and		real-world problems
107	environmental contexts, and demonstrate the knowledge		
	of, and need for sustainable development.		

3 = High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills: An ability to understand the basic	1	Seminar
	concepts in Electronics & Communication Engineering		
	and to apply them to various areas, like Electronics,		
	Communications, Signal processing, VLSI, Embedded		
	systems etc., in the design and implementation of		
	complex systems.		
PSO 2	Problem-Solving Skills: An ability to solve complex	-	-
	Electronics and communication Engineering problems,		
	using latest hardware and software tools, along with		
	analytical skills to arrive cost effective and appropriate		
	solutions.		
PSO 3	Successful Career and Entrepreneurship: An	-	-
	understanding of social-awareness & environmental-		
	wisdom along with ethical responsibility to have a		
	successful career and to sustain passion and zeal for		
	real-world applications using optimal resources as an		
	Entrepreneur.		

3 = High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES (COs):

The co	ourse should enable the students to:
Ι	The course intends to provide an overview of the working principles and mechanism of reactions.
II	This course relies on elementary treatment and qualitative analysis and makes use of simple models and equation to illustrate the concepts involved.
III	To provide an overview of preparation and identification of organic compounds.
IV	To gain the knowledge on existing future upcoming devices, materials and methodology.

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AHSB09.01	CLO 1	Extrapolate the knowledge of preparation of acetyl salycilic acid.	PO 1, PO 7	2
AHSB09.02	CLO 2	Use innovative methods to improve the quality of soft water for industrial purpose at cheaper cost.	PO 1, PO 2, PO 7	2
AHSB09.03	CLO 3	Evaluate conductometry and conductometric titrations	PO 1	1
AHSB09.04	CLO 4	Estimate potentiometry and potantiometric titrations.	PO 1	1
AHSB09.05	CLO 5	Compare the results of experiments with potentiometry	PO 1	1
AHSB09.06	CLO 6	Describe potentiometry and potantiometric titrations	PO 1	1
AHSB09.07	CLO 7	Identify the formula for viscosity, and explain each variable	PO 1, PO 7	3
AHSB09.08	CLO 8	Explain certain properties of water using the concepts of cohesive forces and surface tension.	PO 1, PO7	3
AHSB09.09	CLO 9	Develop theoretical aquatic chemistry basis and use the principles for the evaluation of water quality.	PO 1, PO 7	2
AHSB09.10	CLO10	Describe the rate constant for a reaction and elementary steps in the reaction mechanism.	PO 1	1
AHSB09.11	CLO11	Explore the basic knowledge of adsorption.	PO 1	1
AHSB09.12	CLO 12	Understand principles and their practical application chromatographic separation	PO 1	1

IX. COURSE LEARNING OUTCOMES (CLOs):

3 = High; **2** = Medium; **1** = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course		Program Outcomes (POs)											Program Specific Outcomes (PSOs)		
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	2						2								
CLO 2	2	2											1		
CLO 3	1														
CLO 4	1														
CLO 5	1														
CLO 6	1														
CLO 7	3						2						2		

Course Learning Outcomes (CLOs)		Program Outcomes (POs)									Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 8	3						2						2		
CLO 9	2						2						1		
CLO 10	1														
CLO 11	1														
CLO 12	1														

3 = High; 2 = Medium; 1 = Low

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO 1	SEE	PO 1 Assignments		-	Seminars	-
		Exams					
Laboratory	PO 1, PO 7	Student	PO 1	Mini	-	Certification	-
Practices		Viva		Project			

XII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

LIST OF EXPERIMENTS							
Week-1	PREPARATIONS OF ORGANIC COMPOUNDS						
Synthesis of A	Synthesis of Aspirin						
Week-2	VOLUMETRIC ANALYSIS						
Detmination of	Detmination of total hardness of water by complexometric method using EDTA						
Week-3	CONDUCTOMETRIC TITRATIONS						
Estimation of	an HCl by conductometric titrations.						
Week-4	POTENTIOMETRIC TITRATIONS						
Estimation of	HCl by potentiometric titrations.						
Week-5	CONDUCTOMETRIC TITRATIONS						
Estimation of	Acetic acid by Conductometric titrations.						
Week-6	POTENTIOMETRIC TITRATIONS						
Estimation of Fe ²⁺ by Potentiometry using KMnO ₄ titrations.							
Week-7	PHYSICAL PROPERTIES						
Determination of surface tension of a given liquid using stalagmometer.							
Week-8	Week-8 PHYSICAL PROPERTIES						
Determination of viscosity of castor oil and ground nut oil by using Ostwald's viscometer							

Week-9	VOLUMETRIC ANALYSIS OF ARGENTOMETRY						
Determination	Determination of chloride content of water by Argentometry.						
Week-10	Week-10 CHEMICAL KINETICS						
Determination	Determination of rate constant of acid catalyzed hydrolysis of methyl acetate.						
WeeK-11	WeeK-11 ADSORPTION TECHNIQUES						
Verification of freundlich adsorption isotherm-adsorption of acetic acid on charcoal							
Week-12 CHROMOGRAPHY TECHNIQUES							
Thin layer chromatography calculation of R _f values.							

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Week No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Synthesis of Aspirin	CL01	T1,T2
2	Detmination of total hardness of water by complexometric method using EDTA	CLO 2	T1,T2
3	Estimation of an HCl by conductometric titrations.	CLO 3	T1,T2
4	Estimation of HCl by potentiometric titrations.	CLO 4	T1,T2
5	Estimation of Acetic acid by Conductometric titrations.	CLO 5	T1,T2
6	Estimation of Fe^{2+} by Potentiometry using KMnO ₄ titrations.	CLO 6	T1,T2
7	Determination of surface tension of a given liquid using stalagmometer.	CLO 7	T1,T2
8	Determination of viscosity of castor oil and ground nut oil by using Ostwald's viscometer	CLO 8	T1,T2
9	Determination of chloride content of water by Argentometry.	CLO 9	T1,T2
10	Determination of rate constant of acid catalyzed hydrolysis of methyl acetate.	CLO 10	T1,T2
11	Verification of freundlich adsorption isotherm-adsorption of acetic acid on charcoal	CLO 11	T1,T2
12	Thin layer chromatography calculation of R_f values.	CLO 12	T1,T2

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	To improve standards and analyze the concepts.	Seminars	PO 1	PSO 1
2	Conditional probability, Sampling distribution, correlation, regression analysis and testing of hypothesis	Seminars	PO 1	PSO 1
3	Encourage students to solve real time applications and prepare towards competitive examinations.	Seminars	PO 1	PSO 1

Prepared by:

Mr. G Mahesh Kumar, Assistant Professor