

**INSTITUTE OF AERONAUTICAL ENGINEERING** 

(Autonomous) Dundigal, Hyderabad -500 043

# **CIVIL ENGINEERING**

# **COURSE DESCRIPTOR**

| Course Title      | ENVIRONMENTAL ENGINEERING LABORATORY |                                       |                              |            |         |  |  |  |
|-------------------|--------------------------------------|---------------------------------------|------------------------------|------------|---------|--|--|--|
| Course Code       | ACE112                               |                                       |                              |            |         |  |  |  |
| Programme         | B.Tech                               |                                       |                              |            |         |  |  |  |
| Semester          | VII CE                               |                                       |                              |            |         |  |  |  |
| Course Type       | Core                                 |                                       |                              |            |         |  |  |  |
| Regulation        | IARE - R16                           |                                       |                              |            |         |  |  |  |
|                   |                                      | Theory                                | Practical                    |            |         |  |  |  |
| Course Structure  | Lectures                             | Tutorials                             | Credits                      | Laboratory | Credits |  |  |  |
|                   | -                                    | -                                     | -                            | 3          | 2       |  |  |  |
| Chief Coordinator | Ms. Koppol                           | i Anusha Hadass                       | a, Assistant Pro             | ofessor    | ·       |  |  |  |
| Course Faculty    | Ms. Koppol<br>Mr. Suraj B            | i Anusha Hadass<br>araik, Assistant F | a, Assistant Pro<br>rofessor | ofessor    |         |  |  |  |

### I. COURSE OVERVIEW:

The primary objective of an Environmental Engineering laboratory is to develop the analytical ability of the students by better understanding of the concepts in experimental engineering. The analytical experiments like determination of hardness of water, chloride content in the water, BOD and COD. Design principles of distribution system and analysis by hardy cross & equivalent pipe method, methods of conveying sewage to the treatment plant, various valves which are used in distribution system and also the characteristics of sewage and its estimation, various appurtenances in sewers, sewage disposal and farming. This course also cover the study of construction of oxidation pond, sludge digestion tank, skimming tanks, grit chambers, sedimentation tanks and designing of septic tanks and soak pits.

### **II.** COURSE PRE-REQUISITES:

| Level | Course Code | Semester | Prerequisites         | Credits |
|-------|-------------|----------|-----------------------|---------|
| UG    | AHS103      | Ι        | Engineering Chemistry | 1       |

### **III. MARKS DISTRIBUTION:**

| Subject                   | SEE Examination | CIA Examination | Total Marks |  |  |
|---------------------------|-----------------|-----------------|-------------|--|--|
| Environmental Engineering | 70 Marks        | 30 Marks        | 100         |  |  |

## IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| × | Chalk & Talk           | × | Quiz     | × | Assignments  | × | MOOCs  |  |  |  |
|---|------------------------|---|----------|---|--------------|---|--------|--|--|--|
| ~ | LCD / PPT              | ~ | Seminars | × | Mini Project | 2 | Videos |  |  |  |
| × | Open Ended Experiments |   |          |   |              |   |        |  |  |  |

# V. EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

**Semester End Examination (SEE):** The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

| 20 % | To test the preparedness for the experiment.                           |
|------|------------------------------------------------------------------------|
| 20 % | To test the performance in the laboratory.                             |
| 20 % | To test the calculations and graphs related to the concern experiment. |
| 20 % | To test the results and the error analysis of the experiment.          |
| 20 % | To test the subject knowledge through viva – voce.                     |

The emphasis on the experiments is broadly based on the following criteria:

### **Continuous Internal Assessment (CIA):**

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

| Component          | L                      | Total Marka                      |              |  |
|--------------------|------------------------|----------------------------------|--------------|--|
| Type of Assessment | Day to day performance | Final internal lab<br>assessment | I otai Warks |  |
| CIA Marks          | 20                     | 10                               | 30           |  |

Table 1: Assessment pattern for CIA

**Continuous Internal Examination (CIE):** One CIE exams shall be conducted at the end of the 16<sup>th</sup> week of the semester. The CIE exam is

conducted for 10 marks of 3 hours duration.

| Preparation | Performance | Calculations<br>and Graph | Results and<br>Error Analysis | Viva | Total |  |
|-------------|-------------|---------------------------|-------------------------------|------|-------|--|
| 2           | 2           | 2                         | 2                             | 2    | 10    |  |

#### VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

|      | Program Outcomes (POs)                                                                                                                                                                                                                     | Strength | Proficiency assessed<br>by             |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------|
| PO 1 | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                   | 2        | Presentation on<br>real-world problems |
| PO 4 | <b>Conduct investigations of complex problems</b> : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. | 1        | Seminar                                |
| PO 7 | <b>Environment and sustainability:</b> Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                     | 2        | Seminar                                |

**3** = High; **2** = Medium; **1** = Low

### VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|       | Program Specific Outcomes (PSOs)                                                                                                                                                                                                                                                                                   | Strength | Proficiency assessed<br>by          |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------|
| PSO 1 | <b>Engineering Knowledge</b> : Graduates shall demonstrate sound knowledge in analysis, design, laboratory                                                                                                                                                                                                         | 1        | Presentation on real-world problems |
|       | investigations and construction aspects of civil<br>engineering infrastructure, along with good foundation<br>in mathematics, basic sciences and technical<br>communication.                                                                                                                                       |          |                                     |
| PSO 2 | <b>Broadness and Diversity:</b> Graduates will have a broad<br>understanding of economical, environmental, societal,<br>health and safety factors involved in infrastructural<br>development, and shall demonstrate ability to function<br>within multidisciplinary teams with competence in<br>modern tool usage. | -        | -                                   |
| PSO 3 | <b>Self-Learning and Service:</b> Graduates will be motivated for continuous self-learning in engineering practice and/ or pursue research in advanced areas of civil engineering in order to offer engineering services to the society, ethically and responsibly.                                                | -        | -                                   |

**3** = High; **2** = Medium; **1** = Low

## VIII. COURSE OBJECTIVES (COs):

| The co | The course should enable the students to:                                                             |  |  |  |  |  |  |  |  |
|--------|-------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Ι      | Investigate the different characteristics of water & wastewater.                                      |  |  |  |  |  |  |  |  |
| II     | Outline the procedure for preparations of stock and standard solutions, their handling, storage, etc. |  |  |  |  |  |  |  |  |
| III    | Assess the suitability of water for drinking, irrigation purpose and concreting works.                |  |  |  |  |  |  |  |  |
| IV     | Determine the BOD, COD and bacterial density of portable water.                                       |  |  |  |  |  |  |  |  |

# IX. COURSE LEARNING OUTCOMES (CLOs):

| CLO<br>Code | CLO's  | At the end of the course, the student<br>will have the ability to:                                            | PO's Mapped     | Strength<br>of<br>Mapping |
|-------------|--------|---------------------------------------------------------------------------------------------------------------|-----------------|---------------------------|
| ACE112.01   | CLO 1  | Extrapolate the knowledge of preparation of PH in water                                                       | PO 1, PO 7      | 2                         |
| ACE112.02   | CLO 2  | Use innovative methods to improve the quality of soft water for industrial purpose at cheaper cost.           | PO 1,PO 4, PO 7 | 2                         |
| ACE112.03   | CLO 3  | Evaluate conductometry and conducto metric titrations                                                         | PO 1            | 1                         |
| ACE112.04   | CLO 4  | Estimate potentiometric and potentiometric titrations.                                                        | PO 1            | 1                         |
| ACE112.05   | CLO 5  | Compare the results of experiments with potentiometer                                                         | PO 1            | 1                         |
| ACE112.06   | CLO 6  | Describe PH in water                                                                                          | PO 1, PO 4, PO7 | 2                         |
| ACE112.07   | CLO 7  | Identify the formula for dissolved oxygen                                                                     | PO 1, PO 7      | 3                         |
| ACE112.08   | CLO 8  | Explain certain properties of water using the concepts of alkalinity and acidity                              | PO 1, PO 4 PO7  | 3                         |
| ACE112.09   | CLO 9  | Develop theoretical aquatic chemistry<br>basis and use the principles for the<br>evaluation of water quality. | PO 1, PO 7      | 2                         |
| ACE112.10   | CLO10  | Describe the rate constant for a reaction<br>and elementary steps in the reaction<br>mechanism.               | PO 1            | 1                         |
| ACE112.11   | CLO11  | Explore the basic knowledge of adsorption.                                                                    | PO 1            | 1                         |
| ACE112.12   | CLO 12 | Understand principles and their practical application chromatographic separation                              | PO 1            | 1                         |

3 = High; 2 = Medium; 1 = Low

### X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

| Course<br>Learning |     | Program Outcomes (POs) |     |     |     |     |     |     |     |      |      |      | Program Specific<br>Outcomes (PSOs) |      |      |
|--------------------|-----|------------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|-------------------------------------|------|------|
| Outcomes<br>(CLOs) | PO1 | PO2                    | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1                                | PSO2 | PSO3 |
| CLO 1              | 2   |                        |     |     |     |     | 2   |     |     |      |      |      | 1                                   |      |      |
| CLO 2              | 2   |                        |     | 2   |     |     | 2   |     |     |      |      |      |                                     |      |      |
| CLO 3              | 1   |                        |     | 1   |     |     | 2   |     |     |      |      |      | 1                                   |      |      |
| CLO 4              | 1   |                        |     |     |     |     |     |     |     |      |      |      | 1                                   |      |      |
| CLO 5              | 1   |                        |     |     |     |     |     |     |     |      |      |      | 1                                   |      |      |

| Course<br>Learning | Program Outcomes (POs)        |     |     |     |     |     |     |     |     | Program Specific<br>Outcomes (PSOs) |      |      |      |      |      |
|--------------------|-------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-------------------------------------|------|------|------|------|------|
| Outcomes<br>(CLOs) | <b>PO1</b>                    | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10                                | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| CLO 6              | 2                             |     |     | 2   |     |     | 2   |     |     |                                     |      |      |      |      |      |
| CLO 7              | 3                             |     |     |     |     |     | 3   |     |     |                                     |      |      | 2    |      |      |
| CLO 8              | 3                             |     |     | 2   |     |     | 2   |     |     |                                     |      |      | 2    |      |      |
| CLO 9              | 2                             |     |     |     |     |     | 2   |     |     |                                     |      |      |      |      |      |
| CLO 10             | 1                             |     |     |     |     |     |     |     |     |                                     |      |      | 1    |      |      |
| CLO 11             | 1                             |     |     |     |     |     |     |     |     |                                     |      |      | 1    |      |      |
| CLO 12             | 1                             |     |     |     |     |     |     |     |     |                                     |      |      | 1    |      |      |
|                    | 3 = High; 2 = Medium; 1 = Low |     |     |     |     |     |     |     |     |                                     |      |      |      |      |      |

XI. ASSESSMENT METHODOLOGIES – DIRECT

| CIE Exams               | PO1,PO2,PO7<br>PSO1 | SEE Exams       | PO1,PO2,PO7<br>PSO1 | Assignments  | - | Seminars      | PO2,<br>PSO1 |
|-------------------------|---------------------|-----------------|---------------------|--------------|---|---------------|--------------|
| Laboratory<br>Practices | PO1, PO2 ,PO7       | Student<br>Viva | -                   | Mini Project | - | Certification | -            |

## XII. ASSESSMENT METHODOLOGIES - INDIRECT

| ~ | Early Semester Feedback                | ~ | End Semester OBE Feedback |
|---|----------------------------------------|---|---------------------------|
| × | Assessment of Mini Projects by Experts |   |                           |

## XIII. SYLLABUS

| LIST OF EXPERIMENTS                                                                                                                                                                          |     |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|
| Week-1 INTRODUCTION TO ENVIRONMENTAL ENGINEERING<br>LABORATORY DETERMINATION OF PH AND TURIDITY                                                                                              |     |  |  |  |
| Batch I: To determine the pH of given samples using universal indicator, pH paper and digital pH meter<br>Batch II: Determination of turbidity of the given sample using nephelometer in NTU |     |  |  |  |
| Week-2 DETERMINATION OF PH AND TURIDITY                                                                                                                                                      |     |  |  |  |
| Batch I: Determination of turbidity of the given sample using nephelometer in NTU.<br>Batch II: To determine the pH of given samples using universal indicator, pH paper and digital pH met  | ter |  |  |  |
| Week-3 DETERMINATION OF CONDUCTIVITY AND TOTAL DISSOLVED SOLIDS (ORGANIC AND INORGANIC)                                                                                                      |     |  |  |  |
| Batch I: Determining the electrical conductivity of the given water sample                                                                                                                   |     |  |  |  |
| Batch II: Determination of total dissolved solids of the sample.                                                                                                                             |     |  |  |  |
| Week-4 DETERMINATION OF CONDUCTIVITY AND TOTAL DISSOLVED<br>SOILDS (ORGANIC AND INORGANIC)                                                                                                   |     |  |  |  |
| Batch I: Determination of total dissolved solids of the sample.                                                                                                                              |     |  |  |  |
| Batch II: Determining the electrical conductivity of the given water sample.                                                                                                                 |     |  |  |  |

| LIST OF EXPERIMENTS                                                                                                                                                                                              |                                                                                                                                                                                                                        |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Week-5                                                                                                                                                                                                           | DETERMINATION OF ALKALINITY, ACIDITY AND CHLORIDE AND ION IN WATER                                                                                                                                                     |  |  |  |  |  |
| Batch I: Determining the amount of alkalinity present in the given samples & determine the acidity of the Given sample of water<br>Batch II: Determine the quantity of iron present in the given sample of water |                                                                                                                                                                                                                        |  |  |  |  |  |
| Week-6                                                                                                                                                                                                           | DETERMINATION OF ALKALINITY, ACIDITY AND CHLORIDE AND<br>ION IN WATER                                                                                                                                                  |  |  |  |  |  |
| Batch I: Deter<br>Batch II: Deter                                                                                                                                                                                | mine the nitrate nitrogen of the given sample of water.<br>rmine the quantity of dissolved oxygen present in the given sample.                                                                                         |  |  |  |  |  |
| Week-7                                                                                                                                                                                                           | <b>DETERMINATION OF DISSOLVED OXYGEN AND NITRATES IN</b><br>WATER                                                                                                                                                      |  |  |  |  |  |
| Batch I: Deter<br>Batch II: Det                                                                                                                                                                                  | rmine the nitrate nitrogen of the given sample of water.<br>ermine the quantity of dissolved oxygen present in the given sample.                                                                                       |  |  |  |  |  |
| Week-8                                                                                                                                                                                                           | DETERMINATION OF DISSOLVED OXYGEN AND NITRATES IN WATER                                                                                                                                                                |  |  |  |  |  |
| Batch I: Deter<br>Winkler's (az<br>Batch II: Det                                                                                                                                                                 | Batch I: Determine the quantity of dissolved oxygen present in the given sample(s) by using modified<br>Winkler's (azide modification) method<br>Batch II: Determine the nitrate nitrogen of the given sample of water |  |  |  |  |  |
| Week-9                                                                                                                                                                                                           | DETERMINATION OF OPTIMUM COAGULANT AND CHLORIDE<br>DEMAND.                                                                                                                                                             |  |  |  |  |  |
| Batch I: Deter<br>alum as the co<br>Batch II : De                                                                                                                                                                | rmining the optimum coagulant dosage for clarifying the given sample of water by using<br>oagulant and performing the jar test experiment.<br>termining the chlorine demand                                            |  |  |  |  |  |
| Week-10                                                                                                                                                                                                          | DETERMINATION OF OPTIMUM COAGULANT AND CHLORIDE<br>DEMAND                                                                                                                                                              |  |  |  |  |  |
| Batch I: Deter<br>alum as the co<br>Batch II : Det                                                                                                                                                               | Batch I: Determining the optimum coagulant dosage for clarifying the given sample of water by using alum as the coagulant and performing the jar test experiment.<br>Batch II : Determining the chlorine demand.       |  |  |  |  |  |
| WeeK-11                                                                                                                                                                                                          | DETERMINATION OF TOTAL PHOSPHORUS AND BOD                                                                                                                                                                              |  |  |  |  |  |
| Batch I: Deter<br>Batch II: Dete                                                                                                                                                                                 | Batch I: Determining the amount of B.O.D. exerted by the given sample<br>Batch II: Determining the total phosphorus                                                                                                    |  |  |  |  |  |
| Week-12                                                                                                                                                                                                          | DETERMINATION OF C.O.D IN WATER AND TEST FOR<br>CHLOROFORM IN WATER                                                                                                                                                    |  |  |  |  |  |
| Batch I: Deter<br>Batch II: Deter                                                                                                                                                                                | mining the amount of C.O.D. exerted by the given sample<br>rmining the most probable number (MPN) of bacterial density by E.Coli test.                                                                                 |  |  |  |  |  |

# XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| Week | Topics to be covered                               | Course Learning Outcomes<br>(CLOs) | Reference |
|------|----------------------------------------------------|------------------------------------|-----------|
| 1    | Determination of ph and turbidity                  | CLO1                               | T1,T2     |
| 2    | Determination of conductivity and total dissolved  | CLO 2                              | T1,T2     |
|      | solids                                             |                                    |           |
| 3    | Determination of alkalinity                        | CLO 3                              | T1,T2     |
| 4    | Determination of water and chlorides ion in water. | CLO 4                              | T1,T2     |
| 5    | Determination of alkalinity                        | CLO 5                              | T1,T2     |
| 6    | Determination of dissolved oxygen                  | CLO 6                              | T1,T2     |
| 7    | Determination of nitrates                          | CLO 7                              | T1,T2     |
| 8    | Determination of optimum dose of coagulant         | CLO 8                              | T1,T2     |
| 9    | Determination of total phosphorous and BOD.        | CLO 9                              | T1,T2     |
| 10   | Determination of COD in water                      | CLO 10                             | T1,T2     |

| Week | Topics to be covered        | Course Learning Outcomes<br>(CLOs) | Reference |
|------|-----------------------------|------------------------------------|-----------|
| 11   | Determination of alkalinity | CLO 11                             | T1,T2     |
| 12   | Determination of acidity.   | CLO 12                             | T1,T2     |

# XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

| S NO | Description                                                                                               | Proposed<br>actions    | Relevance with<br>POs | Relevance with<br>PSOs |
|------|-----------------------------------------------------------------------------------------------------------|------------------------|-----------------------|------------------------|
| 1    | To improve standards and analyze the concepts.                                                            | Open ended problems    | PO 1                  | PSO 1                  |
| 2    | Encourage students to solve real<br>time applications and prepare<br>towards competitive<br>examinations. | Open ended<br>problems | PO 1                  | PSO 1                  |

**Prepared by:** Ms.K. Anusha Hadassa, Assistant Professor

HOD, CE