

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

MECHANICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	FLUID MACHINERY AND IC ENGINE LABORATORY						
Course Code	AMEB	AMEB13					
Programme	B.Tech	B.Tech					
Semester	IV	IV ME					
Course Type	Core						
Regulation	IARE - R18						
	Theory Practical					al	
Course Structure	Lectur	res	Tutorials	Credits	Laboratory	Credits	
	-		-	-	2	1	
Chief Coordinator	Mr. G.Sarat raju, Assistant Professor						
Course Faculty	Dr. CH. Mr. G.S	V.K arat	.N.S.N Moorthy, raju, Assistant P	Professor rofessor			

I. COURSE OVERVIEW:

The aim of this course is to conduct experiments on basic principles of fluid mechanics and it is further extended to cover the application of fluid mechanics by the inclusion of fluid machinery. Nowadays the principles of fluid mechanics find wide applications in many situations. The course deals with the fluid machinery, like turbines, pumps in general and in power stations. This course includes experiments deal with the study of water.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AHS007	Ι	Waves and optics	4
UG	AME002	II	Engineering Mechanics	4

Subject	SEE Examination	CIA Examination	Total Marks
FLUIDMACHINERYAND ICENGINE LABORATORY	70 Marks	30 Marks	100

IV

DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	×	Quiz	×	Assignments	×	MOOCs
~	LCD / PPT	×	Seminars	×	Mini Project	7	Videos
~	✓ Open Ended Experiments						

V EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

20 %	To test the preparedness for the experiment.
20 %	To test the performance in the laboratory.
20 %	To test the calculations and graphs related to the concern experiment.
20 %	To test the results and the error analysis of the experiment.
20 %	To test the subject knowledge through viva – voce.

The emphasis on the experiments is broadly based on the following criteria:

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Table 1: Assessment pattern for CIA

Component	L	aboratory	Total Marks
Type of Assessment	Day to day performance	Final internal lab assessment	
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

Preparation	Performance	Calculations and Graph	Results and Error Analysis	Viva	Total
2	2	2	2	2	10

VI HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of	3	Calculations of the
	mathematics, science, engineering fundamentals, and an		observations
	engineering specialization to the solution of complex		
	engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research	2	Characteristic curves
	literature, and analyze complex engineering problems		
	reaching substantiated conclusions using first principles of		
	mathematics, natural sciences, and engineering sciences.		
PO 3	Design/development of solutions: Design solutions for	1	Seminar
	complex engineering problems and design system		
	components or processes that meet the specified needs		
	with appropriate consideration for the public health and		
	safety, and the cultural, societal, and environmental		
	considerations.		
PO 4	Conduct investigations of complex problems : Use	2	Term observations
	research-based knowledge and research methods including		
	design of experiments, analysis and interpretation of data,		
	and synthesis of the information to provide valid		
	conclusions.		

3 = High; **2** = Medium; **1** = Low

VII HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills: To produce engineering	1	Seminar
	professional capable of synthesizing and analyzing		
	mechanical systems including allied engineering		
	streams.		
PSO 2	Problem solving skills: An ability to adopt and	-	-
	integrate current technologies in the design and		
	manufacturing domain to enhance the employability.		
PSO 3	Successful career and Entrepreneurship: To build the	-	-
	nation, by imparting technological inputs and		
	managerial skills to become technocrats.		

3 = High; **2** = Medium; **1** = Low

VIII COURSE OBJECTIVES :

Ι	Demonstrate the basic principles of fluid mechanics.
II	Analyze the effect of friction on flow through pipes.
III	Estimate the performance of hydraulic turbines and pumps
IV	Evaluate the functioning and characteristic curves of I.C.engine

IX COURSE OUTCOMES (COs):

COS	Course outcomes	CLOS	Course Learning Outcomes
CO1	Ability to measure flow rate by using flow meters and measure friction factor	CLO 1	Understand basic units of measurement, convert units, and appreciate their magnitudes.
		CLO 2	Utilize basic measurement techniques of fluid mechanics.
		CLO 3	Measure fluid pressure and relate it to flow velocity.
		CLO 4	Demonstrate practical understanding of the various equations of Bernoulli.
		CLO 5	Demonstrate practical understanding of friction losses in internal flows.
CO2	Able to perform operation of turbines and find its efficiency	CLO 6	Calculate the performance analysis in turbines can be used in power plants.
		CLO 7	Draw and analysis of performance characteristic curves of turbines.
		CLO 8	Evaluate the performance of hydraulic turbines.
		CLO 9	Explain the working principle of various types of hydro turbines and know their application range
CO3	Determine the performance	CLO 10	Calculate the performance analysis in pumps.
	efficiency	CLO 11	Draw and analysis of performance characteristic curves of pumps.
		CLO 12	Evaluate the performance of hydraulic pumps.
		CLO 13	Explain the working principle of various types of pumps and know their application range
CO4	Can find efficiency of four stroke petrol and diesel engines	CLO 14	Understand the concept of Drawing valve and port timing diagram for 4-stroke diesel and 2- stroke petrol engine respectively.
		CLO 15	Know the Performance test for 4-stroke SI engine and draw performance curves
		CLO 16	Performance Test on 4-stroke CI engine and to draw the performance curves
		CLO 17	Performance of Machining practice on balancing of heat losses and heat input in SI/CI engines
		CLO 18	Understand the Performance Test on CI engine when the compression ratio is changing
CO5	Can analyze performance of air	CLO 19	Understand the Performance of air compressor Unit
	Compressor	CLO 20	Explains the working principle of air compressor

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AME108.01	CLO 1	Understand basic units of measurement, convert units, and appreciate their magnitudes.	PO 1	3
AME108.02	CLO 2	Utilize basic measurement techniques of fluid mechanics.	PO 1, PO 3	2
AME108.03	CLO 3	Measure fluid pressure and relate it to flow velocity.	PO 1, PO 3	2
AME108.04	CLO 4	Demonstrate practical understanding of the various equations of Bernoulli.	PO 1, PO 2	3
AME108.05	CLO 5	Demonstrate practical understanding of friction losses in internal flows.	PO 1, PO 3	2
AME108.06	CLO 6	Calculate the performance analysis in turbines can be used in power plants.	PO 3	1
AME108.07	CLO 7	Draw and analysis of performance characteristic curves of turbines.	PO 2, PO 3	2
AME108.08	CLO 8	Evaluate the performance of hydraulic turbines.	PO 1, PO 2	3
AME108.09	CLO 9	Explain the working principle of various types of hydro turbines and know their application range	PO 3, PO 4	2
AME108.10	CLO 10	Calculate the performance analysis in pumps.	PO 2, PO 3	2
AME108.11	CLO 11	Draw and analysis of performance characteristic curves of pumps.	PO 1, PO 3	2
AME108.12	CLO 12	Evaluate the performance of hydraulic pumps.	PO 1, PO 2	3
AME108.13	CLO 13	Explain the working principle of various types of pumps and know their application range	PO 1, PO 3	2
AME108.14	CLO 14	Understand the concept of Drawing valve and port timing diagram for 4-stroke diesel and 2- stroke petrol engine respectively.	PO 3	1
AME108.15	CLO 15	Know the Performance test for 4-stroke SI engine and draw performance curves	PO 1, PO 3	3
AME108.16	CLO 16	Performance Test on 4-stroke CI engine and to draw the performance curves	PO 2, PO 3	2
AME108.17	CLO 17	Performance of Machining practice on balancing of heat losses and heat input in SI/CI engines	PO 3	1
AME108.18	CLO 18	Understand the Performance Test on CI engine when the compression ratio is changing	PO 1, PO 2	2
AME108.19	CLO 19	Understand the Performance of air compressor Unit	PO 3	1
AME108.20	CLO 20	Explains the working principle of air compressor	PO 1, PO 2	1

X COURSE LEARNING OUTCOMES (CLOs):

3 = High; 2 = Medium; 1 = Low

XI MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OFPROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Outcomes (COs)	Program Outcomes (POs)									
(000)	PO 1	PO 2	PO3	PO 4	PSO1					
CO 1	3	2			1					
CO 2		2	1							
CO 3	3			1						
CO 4		2	1		1					
CO 5	3	2			1					

XII MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning	Program Outcomes (POs)									Program Specific Outcomes (PSOs)					
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3												1		
CLO 2	2		2										1		
CLO 3	2		2										1		
CLO 4	3	3											1		
CLO 5	2		2										1		
CLO 6			1												
CLO 7		2	2												
CLO 8	3	3													
CLO 9			2	2											
CLO 10		2	2												
CLO 11	2		2												
CLO 12	3	3													
CLO 13	2		2												
CLO 14			1										1		
CLO 15	3		3										1		
CLO 16		2	2										1		
CLO 17			1										1		
CLO 18	2	2											1		
CLO 19	1		1										1		

	CLO 20	1	1											1		
--	--------	---	---	--	--	--	--	--	--	--	--	--	--	---	--	--

3 = High; **2** = Medium; **1** = Low

XIII ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO 1, PO 2 PO 3, PO 4	SEE Exams	PO 1, PO 2 PO 3, PO 4	Assignments	-	Seminars	-
Laboratory Practices	PO 1, PO 2 PO 3, PO 4	Student Viva	-	Mini Project	-	Certification	-

XIV ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV SYLLABUS

Week-1	CALIBRATION OF FLOW METERS							
Determination water flowing Determination water	n of coefficient of discharge (C_d) and generation of various characteristic curves for g through venturimeter n of coefficient of discharge (C_d) and generation of various characteristic curves for							
flowing throu	igh Orifice meter.							
Week-2	2 DETERMINATION OF FRICTION FACTOR							
Determinatio	n of friction factor for a given pipe line.							
Week-3	Week-3 BERNOULLI'S THEOREM							
Verification	Verification of Bernoulli"s theorem.							
Week-4	PERFORMANCE TEST ON REACTION TURBINES							
Performance characteristic various chara	Test on Francis Turbine and generate various curves. Performance Test on Kaplan wheel and generate acteristic curves.							
Week-5	PERFORMANCE TEST ON IMPULSE TURBINE							
Performance	test on Pelton wheel and generate various characteristic curves.							
Week-6	PERFORMANCE TEST ON POSITIVE DISPLACEMENT PUMP							
Performance	Test on Reciprocating Pump and generate various characteristic curves							
Week-7	PERFORMANCE TEST ON ROTODYNAMIC PUMPS							
Performance	Test on Centrifugal Pumps and generate various characteristic curves							
Week-8	IC Engines Valve/Port timing diagram							

Drawing valve and port timing diagram for 4-stroke diesel and 2-stroke petrol engine respectively.

Week-9 IC Engine performance test for 4-stroke SI Engine

Performance test for 4-stroke SI engine and draw performance curves

WeeK-10 IC Engine performance test on 4-Stroke CI engine

Performance Test on 4-stroke CI engine and to draw the performance curves

Week-11 Performance Test on Air Compressor Unit

Volumetric Efficiency of Reciprocating Air compressor unit

Week-12 Performance test on Variable Compression Ratio(VCR) engine

Performance Test on CI engine when the compression ratio is changing.

Week-13 Examination

XVI COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Week No.	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Determination of coefficient of discharge (Cd) and generation of various characteristic curves for water flowing through Venturimeter	CLO 1, CLO 2, CLO 3,	T1:1.4 R1:1.2
2	Determination of friction factor for a given pipe line	CLO 1, CLO 2, CLO 3,	T1:1.5 R1:2.4
3	Verification of Bernoulli's theorem.	CLO 2, CLO 3, CLO 4	T1:2.5 R1:2.5
4	Performance Test on Francis Turbine, Kaplan wheel and generate various characteristic curves.	CLO 6, CLO 7	T1:2.5 R1:2.6
5	Performance test on Pelton wheel and generate various characteristic curves	CLO8, CLO 9	T1:22.7
6	Performance Test on Reciprocating Pump and generate various characteristic curves	CLO 10, CLO 11,	T1:6.3 R1:5.3
7	Performance Test on Centrifugal Pumps and generate various characteristic curves	CLO 10, CLO12,	T1:7.5 R1:6.3
8	Drawing valve and port timing diagram for 4- stroke diesel and 2-stroke petrol engine respectively.	CLO 14, CLO 18,	T1:8.5 R1:6.8
9	Performance test for 4-stroke SI engine and draw performance curves	CLO 16, CLO 17	T1:12.2 R1:13.1
10	Performance Test on 4-stroke CI engine and to draw the performance curves	CLO 18	T1:12.3 R1:13.2
11	Volumetric Efficiency of Reciprocating Air compressor unit	CLO 19	T1:12.10 R1:13.7
12	Performance Test on CI engine when the compression ratio is changing.	CLO 20,	T1:11.2 R1:10.2

XVII GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with Pos	Relevance with PSOs
1	To improve standards and analyze the concepts.	CASE STUDIES	PO 1, PO 4	PSO 1
2	Conditional probability, Sampling distribution, correlation, regression analysis and testing of hypothesis	NPTEL	PO 4, PO3	PSO 1
3	Encourage students to solve real time applications and prepare towards competitive examinations.	INTERNSHIPS	PO 2	PSO 1

Prepared by: Mr. G.Sarat raju, Assistant Professor

HOD, MECHANICAL ENGINEERING