

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

CIVIL ENGINEERING

COURSE DESCRIPTOR

Course Title	FLUID MECHANICS AND HYDRAULIC MACHINERY LABORATORY									
Course Code	ACE107	ACE107								
Programme	B. Tech									
Semester	V CIVIL									
Course Type	Core									
Regulation	IARE - R16									
		Theory	Practical							
Course Structure	Lecture	s Tutorials	Credits	Laboratory	Credits					
	3	1	3	3	2					
Chief Coordinator	Mr. R. Su	resh Kumar, Assist	ant Professor							
Course Faculty	Mr. R. Su Mr. Ch. V	resh Kumar, Assist 7. S. S. Sudheer, As	atn Professor sistant Professo	or						

I. COURSE OVERVIEW:

The primary objective of Fluid Mechanics and Hydraulic Machinery laboratory is to develop the analytical ability of the students by better understanding the concepts of flow studies. The experiments carried out like Calibration of flow measuring devices, determination of Coefficient of Discharge, Coefficient of Velocity for flow measuring devices, estimation of both major and minor losses, Verification of Bernoulli's equation, determination of impact of jet on vanes for the blades of the turbine, determination of efficiencies of various types of turbines, Specific speed of the turbines and working of single stage and multi-stage centrifugal pumps will be studied in addition to this the working of reciprocating pump will also be studied

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	ACE005	IV	Fluid Mechanics	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks	
Fluids Mechanics and Hydraulic Machines Laboratory	70 Marks	30 Marks	100	

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	×	Quiz	×	Assignments	×	MOOCs			
>	LCD / PPT	>	Seminars	×	Mini Project	~	Videos			
×	Open Ended Experiments									

V. EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

20 %	To test the preparedness for the experiment.
20 %	To test the performance in the laboratory.
20 %	To test the calculations and graphs related to the concern experiment.
20 %	To test the results and the error analysis of the experiment.
20 %	To test the subject knowledge through viva – voce.

The emphasis on the experiments is broadly based on the following criteria:

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component	Lab	Total Marks		
Type of Assessment	Day to day performance	Final internal lab assessment	i otai wiarks	
CIA Marks	20	10	30	

Table 1: Assessment pattern for CIA

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

Preparation	Preparation Performance		Results and Error Analysis	Viva	Total	
2	2	2	2	2	10	

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by		
PO 1	Engineering knowledge: Apply the knowledge of	3	Presentation on		
	mathematics, science, engineering fundamentals, and an		real- world problems		
	engineering specialization to the solution of complex				
	engineering problems.				
PO 2	Problem analysis: Identify, formulate, review research	3	Seminar		
	literature, and analyze complex engineering problems				
	reaching substantiated conclusions using first principles of				
	mathematics, natural sciences, and engineering sciences				
PO 3	Design / development of solutions: Design solutions for	2	Seminar		
	complex engineering problems and design system				
	components or processes that meet the specified needs				
	with appropriate consideration for the public health and				
	safety, and the cultural, societal, and environmental				
	considerations.				

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Spacific Autoomas (PSAs)	Strongth	Proficiency assessed
	rogram Specific Outcomes (1505)	Suengui	by
PSO 1	Engineering Knowledge: Graduates shall demonstrate	2	Presentation on
	sound knowledge in analysis, design, laboratory		real- world problems
	investigations and construction aspects of civil engineering		
	infrastructure, along with good foundation in mathematics,		
	basic sciences and technical communication.		
PSO 2	Broadness and Diversity: Graduates will have a broad understanding of economical, environmental, societal, health and safety factors involved in infrastructural development, and shall demonstrate ability to function within multidisciplinary teams with competence in modern tool usage.	-	-
PSO 3	Self-Learning and Service: Graduates will be motivated for continuous self-learning in engineering practice and/ or pursue research in advanced areas of civil engineering in order to offer engineering services to the society, ethically and responsibly.	2	Seminar

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The course should enable the students to:								
Ι	Enrich the concept of fluid mechanics and hydraulic machines							
II	Demonstrate the classical experiments in fluid mechanics and hydraulic machinery.							
III	Correlate various flow measuring devices such as Venturimeter, orifice meter and notches etc.							
IV	Discuss the performance characteristics of turbines and pumps							

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO	CL O'	At the end of the course, the student will	PO's	Strength of
Code	CLO'S	have the ability to:	Mapped	Mapping
ACE017.01	CLO 1	Calibration of Venturimeter & Orifice meter	PO 1,	3
			PO 2, PO 3	
ACE017.02	CLO 2	Coefficient of discharge for a small orifice /	PO 1, PO 2	3
		Mouth piece by constant head method		
ACE017.03	CLO 3	Calibration of contracted rectangular notch /	PO 1,	2
		triangular Notch	PO 2, PO 3	
ACE017.04	CLO 4	Determination of friction factor of pipe	PO 1,	3
			PO 2, PO 3	
ACE017.05	CLO 5	Co-efficient for minor losses in different	PO 1, PO 2	2
		types of pipes		
ACE017.06	CLO 6	Verification of Bernoulli"s Equation	PO 1,PO 2,	3
			PO 3	
ACE017.07	CLO 7	Impact of jet on vanes	PO 1,	2
			PO 2, PO 3	
ACE017.08	CLO 8	Performance test on Pelton wheel turbine	PO 1,	3
			PO 2, PO 3	
ACE017.09	CLO 9	Performance test on Francis turbines	PO 1,	3
			PO 2, PO 3	
ACE017.10	CLO 10	Performance characteristics of a single stage	PO 1,	3
		Centrifugal pump	PO 2, PO 3	
ACE017.11	CLO 11	Performance characteristics of multi- stage	PO 1	3
		Centrifugal pump		
ACE017.12	CLO 12	Performance characteristics of a	PO 1	2
		Reciprocating pump		
ACE017.13	CLO 13	Study of hydraulic jump	PO 1	1

3 = High; **2** = Medium; **1** = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning		Program Outcomes (POs)											Program Specific Outcomes (PSOs)		
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3	3	3										3		3
CLO 2	3	3											3		3
CLO 3	2	2	2										2		2
CLO 4	3	3	3										3		3

Course Learning		Program Outcomes (POs)							Program Specific Outcomes (PSOs)						
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 5	2	2											2		2
CLO 6	3	3	3										3		3
CLO 7	2	2	2										2		2
CLO 8	3	3	3										3		3
CLO 9	3	3	3										3		3
CLO 10	3	3	3										3		3
CLO 11	3												3		3
CLO 12	3												3		3
CLO 13	1												2		2
	3 = High; 2 = Medium; 1 = Low														

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO 1, PO 2, PO 3 PSO 1, PSO 3	SEE Exams	PO 1, PO 2, PO 3, PSO 1,PSO 3	Assignments	-	Seminars	-
Laboratory Practices	PO 2	Student Viva	PSO 1	Mini Project	-	Certification	-

XII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

LIST OF EXPERIMENTS					
Week – 1	INTRODUCTION TO FLUID MECHANICS & HYDRAULIC MACHANERY LABORATORY				
Introduction					
Week – 2	CALIBRATION OF VENTURIMETER & ORFICEMETER				
Calibration of	f Venturimeter & Orifice meter				
Week – 3	DETERMINATION OF COEFFICIENT OF DISCHARGE FOR A SMALL ORIFICE / MOUTH PIECE BY CONSTANT HEAD METHOD				
Coefficient of	Coefficient of discharge for a small orifice / Mouth piece by constant head method				
Week - 4 CALIBRATION OF CONTRACTED TRIANGULAR NOTCH AND RECTANGULAR NOTCH					
Calibration of	contracted rectangular notch / triangular Notch				

Week – 5	DETERMINATION OF FRICTION FACTOR OF PIPE / MINOR LOSSES					
Determinatio	n of friction factor of pipe / minor losses in different types of pipes					
Week – 6	Week – 6 VERIFICATION OF BERNOULLI"S EQUATION					
Verification of	of Bernoulli's Equation					
Week – 7	IMPACT OF JET ON VANES					
Impact of jet	on vanes					
Week – 8	PERFORMANCE TEST ON PELTON WHEEL TURBINE					
Performance t	est on Pelton wheel turbine					
Week – 9	PERFORMANCE TEST ON FRANCIS TURBINE					
Performance t	est on Francis turbines					
Week – 10	PERFORMANCE CHARACTERISTICS OF A SINGLE STAGE CENTRIFUGAL PUMP					
Performance of	haracteristics of a single stage Centrifugal pump					
Week – 11	PERFORMANCE CHARACTERISTICS OF A MULTI – STAGE CENTRIFUGAL PUMP					
Performance	characteristics of multi- stage Centrifugal pump					
Week – 12	PERFORMANCE CHARACTERSTICS OF A RECIPROCATING PUMP					
Performance	characteristics of a Reciprocating pump					
Week – 13	STUDY OF HYDRAULIC JUMP					
Study of hydr	aulic jump					
Week - 14	REVISION					
Revision						
Text books:						
1. Manoj Kur	nar Rout, "Lab manual for Fluid Mechanics and Hydraulic Machines" BT University,					
2008.						
2. Dr. N. Kur	nar Swamay, "Fluid Mechanics and Machinery Laboratory manual", Charator publications.					
Reference bo	ooks:					
1. Modi, Seth	1. Modi, Seth, "Fluid Mechanics. Hydraulic and Hydraulic Machines", Standard Book House, 2011.					
2. Annapureddy Domodara Reddy, "Fluid Mechanics and Hydraulic Machines Lab manual",						
LAWIBERT ACADEMIC PUBLICATIONS.						
5. Iviauan Ivionan Das, Ivinni Das Saikia, Bhargao Ivionan Das, Trydraunes and Tydraune Machines Textbook" PHI Learning 1 st edition 2013						
ICATOOOK	, i iii Evanning, i Califon, 2015.					

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Week	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Introduction to Fluid Mechanics and Hydraulic	CLO1	T1,T2
	Machinery Lab		
2	Calibration of Venturimeter & Orifice meter	CLO 2	T1,T2
3	Coefficient of discharge for a small orifice / Mouth	CLO 3	T1,T2
	piece by constant head method		
4	Calibration of contracted rectangular notch /	CLO 4	T1,T2
	triangular Notch		

Week	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
5	Calibration of friction factor of pipe / minor losses	CLO 5	T1,T2
	in different types of pipes		
6	Verification of Bernoulli"s Equation	CLO 6	T1,T2
7	Impact of jet on vanes	CLO 7	T1,T2
8	Performance test on Pelton wheel turbine	CLO 8	T1,T2
9	Performance test on Francis turbines	CLO 9	T1,T2
10	Performance characteristics of a single stage	CLO 10	T1,T2
	Centrifugal pump		
11	Performance characteristics of multi- stage	CLO 11	T1,T2
	Centrifugal pump		
12	Performance characteristics of a Reciprocating	CLO 12	T1,T2
	pump		
13	Study of hydraulic jump	CLO 13	T1,T2

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	To improve standards and analyze	Seminars	PO 1	PSO 1
	the concepts.			
2	Encourage students to solve real	NPTEL	PO 3	PSO 3
	time applications and prepare	/Videos		
	towards competitive			
	examinations.			

Prepared by:

Mr. R. Suresh Kumar, Assistant Professor

HOD, CE