

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE DESCRIPTOR

Course Title	HIGH VOLTAGE ENGINEERING AND SOLAR LABORATORY								
Course Code	AEE111								
Programme	B.Tech	B.Tech							
Semester	VII EE	VII EEE							
Course Type	Core	Core							
Regulation	IARE - R16								
		Theory	Practical						
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits				
	-	-	-	3	2				
Chief Coordinator	Mr. G Kran	nthi kumar, Assist	ant Professor						
Course Faculty		nthi kumar ,Assist sh kumar ,Assista							

I. COURSE OVERVIEW:

The aim of this course is to conduct experiments deals with different mediums of insulation, break down of insulation, understanding need of insulation technology in power system, generation of high direct current and alternating current voltage, measurement of high alternating current and direct current voltages, testing of insulation under all types of conditions using generated high direct current and alternating current voltages. This course includes experiments deal with solar power generation and measurement technology.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AHS007	Ι	Applied Physics	4
UG	AEE006	III	Electromagnetic Field Theory	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks	
High Voltage Engineering And Solar Laboratory	70 Marks	30 Marks	100	

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	X Quiz		×	Assignments	×	MOOCs		
~	LCD / PPT	×	★ Seminars		Mini Project	~	Videos		
✓ Open Ended Experiments									

V. EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

20 %	To test the preparedness for the experiment.
20 %	To test the performance in the laboratory.
20 %	To test the calculations and graphs related to the concern experiment.
20 %	To test the results and the error analysis of the experiment.
20 %	To test the subject knowledge through viva – voce.

The emphasis on the experiments is broadly based on the following criteria:

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component	Lat								
Type of Assessment	Day to day performance	Final internal lab assessment	Total Marks						
CIA Marks	20	10	30						

Table 1: Assessment pattern for CIA

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

Preparation	Performance	Calculations and Graph	Results and Error Analysis	Viva	Total
2	2	2	2	2	10

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of	3	Calculations of the
	mathematics, science, engineering fundamentals, and an		observations
	engineering specialization to the solution of complex		
	engineering problems.		
PO 4	Conduct investigations of complex problems: Use	2	Term observations
	research-based knowledge and research methods including		
	design of experiments, analysis and interpretation of data,		
	and synthesis of the information to provide valid		
	conclusions.		
PO 5	Modern tool usage: Create, select, and apply appropriate	3	Exercise, Discussion
	techniques, resources, and modern engineering and IT		and Seminars
	tools including prediction and modeling to complex		
	engineering activities with an understanding of the		
	limitations.		

3 = High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Problem Solving: Exploit the knowledge of high	1	Presentation on
	voltage engineering in collaboration with power systems		real-world problems
	in innovative, dynamic and challenging environment, for		
	the research based team work.		
PSO 2	Professional Skills: To explore the scientific theories,	2	Exercise, Discussion
	ideas, methodologies and the new cutting edge		and Seminars
	technologies in renewable energy engineering, and use		
	this erudition in their professional development and gain		
	sufficient competence to solve the current and future		
	energy problems universally.		
PSO 3	Modern Tools in Electrical Engineering: To be able to	3	Calculations of the
	utilize of technologies like PLC, PMC, process		observations
	controllers, transducers and HMI and design, install, test,		
	maintain power systems and industrial applications.		

3 = High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES (COs):

The co	The course should enable the students to:								
Ι	Understand the principles of high voltage generation and measurements.								
II	Determine the break down voltage of atmospheric air using rod gap and sphere gap apparatus.								
III	Understand breakdown phenomena in solid, liquid and gas mediums.								
IV	Familiarize the students with solar power generation and measurement technology.								

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AEE111.01	CLO 1	Measure the value of high direct current voltages, high alternating current voltages, impulse voltage and current after generation.	PO 1	3
AEE111.02	CLO 2	Examine the power system equipment like insulators, bushings, isolators and circuit breakers for their breakdown strength	PO 1, PO 4	3
AEE111.03	CLO 3	Explain the various methods which causes breakdown in liquid dielectric medium and their importance in power system protection.	PO 1, PO 4	3
AEE111.04	CLO 4	Illustrate the process which decreases the breakdown strength of solid insulating mediums and their application in power system.	PO 1, PO 4	3
AEE111.05	CLO 5	Discuss different phenomenon which leads to break down of gas insulation medium and specify the particular gas any power system apparatus.	PO 1, PO 4	3
AEE111.06	CLO 6	Study of off-grid solar inverter with battery charging controller.	PO 1, PO 4	3
AEE111.07	CLO 7	Understand the role of solar energy in the context of regional and global energy system, its economic, social and environmental connotations, and the impact of technology on a local and global context.	PO 1, PO 4	3
AEE111.08	CLO 8	Understand the physical principles of the photovoltaic (PV) solar cell and what its sources of losses are.	PO 1, PO 4	2
AEE111.09	CLO 9	Draw and analysis of maximum power point tracker using Perturb and observe algorithm using digital simulation.	PO 1, PO 5	2
AEE111.10	CLO 10	Study of characteristics and determination of parameters of solar cell using digital simulation.	PO 1, PO 5	2

IX. COURSE LEARNING OUTCOMES (CLOs):

3 = High; 2 = Medium; 1 = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning	g Program Outcomes (POs)										Program Specific Outcomes (PSOs)				
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3												1		
CLO 2	3			2									1		
CLO 3	3			3									1		
CLO 4	3			3									1		
CLO 5	3			2									1		

Course Learning	Program Outcomes (POs)								Program Specific Outcomes (PSOs)						
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 6	3			3											
CLO 7	3			2									1		
CLO 8	2			2										2	
CLO 9	2				3									2	3
CLO 10	2				3									2	3

3 = **High**; **2** = **Medium**; **1** = **Low**

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO 1, PO 4, PO 5	SEE Exams	PO 1, PO 4, PO 5	Assignments	-	Seminars	-
Laboratory Practices	PO 1, PO 4, PO 5	Student Viva	-	Mini Project	-	Certification	-

XII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

LIST OF EXPERIMENTS					
Expt. 1	GENERATION OF AC HIGH VOLTAGES				
Study of g	eneration of high AC voltages using cascaded transformers.				
Expt. 2	VERIFICATION OF BREAKDOWN POTENTIAL OF AIR AT SPECIFIED GAP				
Verificatio	Verification of breakdown potential with reference to empirical formula.				
Expt. 3	DETERMINATION OF BREAKDOWN VOLTAGE OF AIR BY ROD GAP APPARATUS				
Determina	tion of breakdown voltage of atmospheric air using rod gap apparatus.				
Expt. 4	Expt. 4 DETERMINATION OF BREAKDOWN VOLTAGE OF AIR USING SPHERE GAP APPARATUS				
Determina	tion of breakdown voltage of atmospheric air using sphere gap apparatus.				
Expt. 5	Expt. 5 DETERMINATION OF BREAKDOWN VOLTAGE OF SOLID INSULATOR				
Determina	Determination of breakdown of solid insulators such as paper, thermocol and glass.				
Expt. 6	DETERMINATION OF BREAKDOWN VOLTAGE OF LIQUID INSULATOR				

Determinat	Determination of breakdown of liquid insulator using oil insulation tester.					
Expt. 7	CHARACTERSTICS OF SOLAR PANEL					
	Determination of IV characteristics of solar panel and calculation of equivalent circuit parameters of a PV array in PACAD.					
Expt. 8	SOLAR INVERTER					
Study of of	f-grid solar inverter with battery charging controller.					
Expt. 9	EFFECT OF SHADING ON SOLAR PANNEL PERFORMANCE					
b) Improv	parallel connections of solar panels and effect of shading. wement in power efficiency of photovoltaic array under shading conditions using bypass with PSCAD.					
Expt. 10	EFFECT OF TEMPERATURE AND TILT ANGLE ON SOLAR PANNEL					
Study of ef	fect of surrounding temperature and tilt angle on the performance solar PV panel.					
Expt.11	DESIGN OF SOLAR PANEL					
Study of so power ratir	blar panel manufacturing using solar cells by interconnecting them to get desired voltage and ag.					
Expt. 12	DATA ACQUISITION USING DIGITAL SIMULATION					
Data acqui simulation.	sition using temperature, voltage and irradiation with sensors of solar panel using digital					
Expt. 13	MAXIMUM POWER POINT TRACKER USING DIGITAL SIMULATION / PSCAD					
simula	simulation.					
Expt.14	DETERMINATION OF PARAMETERS OF SOLAR CELL USING DIGITAL SIMULATION					
Study of ch	aracteristics and determination of parameters of solar cell using digital simulation.					

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Week No.	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Study of generation of high AC voltages using	CLO 1	T1:7.2-7.3
	cascaded transformers.		R2:4.1-4.6
2	Verification of breakdown potential with reference to	CLO 1	T1:4.1-4.2
	empirical formula		R2:1.14
3	Determination of breakdown voltage of atmospheric	CLO 2, CLO 3	T1:4.4
	air using rod gap apparatus.		R2:1.14
4	Determination of breakdown voltage of atmospheric	CLO 2, CLO 3	T1:4.5
	air using sphere gap apparatus		R2:1.14

Week No.	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
5	Determination of breakdown of solid insulators such	CLO 4	T1:4.5 R2:1.14
6	as paper, thermocol and glass.	CLO 3, CLO 5	T1:3.1-3.2
6	Determination of breakdown of liquid insulator using oil insulation tester.	CLO 3, CLO 5	R2:1.11
7	Determination of IV characteristics of solar panel and calculation of equivalent circuit parameters of a PV array in PACAD.	CLO 9, CLO 10	T2:4.1-4.5 R3:1.56
8	Study of off-grid solar inverter with battery charging controller.	CLO 6, CLO 10	T2:3.1-3.2 R3:1.5
9	 Study of a) Series parallel connections of solar panels and effect of shading. b) Improvement in power efficiency of photovoltaic array under shading conditions using bypass diode with PSCAD 	CLO 7, CLO 10	T2:2.1-2.5 R3:2.6
10	Study of effect of surrounding temperature and tilt angle on the performance solar PV panel.	CLO 6, CLO 8	T2:2.1-2.5 R3: 2.6
11	Study of solar panel manufacturing using solar cells by interconnecting them to get desired voltage and power rating	CLO 7, CLO 10	T2:2.8-2.9 R3:3.4
12	Data acquisition using temperature, voltage and irradiation with sensors of solar panel using digital simulation.	CLO 9, CLO 10	T2:2.5-2.6 R4:3.4-3.6
13	 a) Implementation of maximum power point tracker using Perturb and observe algorithm using digital simulation. b) Determine the mathematical model of PV cell, ensure MPPT algorithm using PSCAD 	CLO 9	T2:3.1-3.2 R4:3.5-3.6
14	Study of characteristics and determination of parameters of solar cell using digital simulation	CLO 10	T2:1.5-1.4 R4: 2.5

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S NO	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	More content of Tesla coil may be suggested.	Seminars / NPTEL	PO 1, PO 4	PSO 2
2	Design of Solar panel	Exercise, Practical's of Lab	PO 3, PO 4	PSO 2
3	Encourage students to solve real time applications and prepare towards competitive examinations.	NPTEL	PO 2	PSO 1

Prepared by:

Mr.G Kranthi kumar, Assistant Professor

HOD, EEE