

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

AEROSPACE ENGINEERING

COURSE DESCRIPTOR

Course Title	ADVA	ADVANCED COMPUTATIONAL AERODYNAMICS LABORATORY							
Course Code	BAEB0	BAEB09							
Programme	M.Tech								
Semester	Ι	I AE							
Course Type	Core								
Regulation	IARE - R18								
			Theory		Practio	cal			
Course Structure	Lectur	res	Tutorials	Credits	Laboratory	Credits			
	4 2								
Chief Coordinator	Ms. D. Anitha, Assistant Professor								
Course Faculty	Ms. D. A	Anitl	ha, Assistant Pro	fessor					

I. COURSE OVERVIEW:

The aim of this lab complements the computational Aerodynamics course. Students will gain experience in computing aerodynamic problems and understanding flow physics over flat plate, nozzle, cylinder, over a wedge and flow over an airfoil. They can gain knowledge in estimating flow analysis for different Mach numbers in determining the pressure coefficients over different structural objects and can find lift and drag counters.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
-	-	-	_	-

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Advanced Computational Aerodynamics Laboratory	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	×	Quiz	×	Assignments	×	MOOCs
~	LCD / PPT	×	Seminars	×	Mini Project	×	Videos
✓ Open Ended Experiments							

V. EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

20 %	To test the preparedness for the experiment.				
20 %	To test the performance in the laboratory.				
20 %	To test the calculations and graphs related to the concern experiment.				
20 %	To test the results and the error analysis of the experiment.				
20 %	To test the subject knowledge through viva – voce.				

The emphasis on the experiments is broadly based on the following criteria:

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component	L		
Type of Assessment	Day to day performance	Final internal lab assessment	Total Marks
CIA Marks	20	10	30

Table 1: Assessment pattern for CIA

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 12th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

Preparation	Performance	Calculations and Graph	Results and Error Analysis	Viva	Total
2	2	2	2	2	10

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Identify, formulate, and solve complex aerospace	2	Discussion
	engineering problems by applying advanced principles of		
	engineering		
PO 2	Apply aerospace engineering design to produce solutions	2	Laboratory Practices
	that meet specified needs with frontier technologies.		
PO 5	Independently carry out research / investigation and	2	Projects
	development work to solve practical problems		

3 = High; 2 = Medium; 1 = Low

VII. COURSE OBJECTIVES (COs):

The c	The course should enable the students to:					
Ι	Experience in computing aerodynamic problems and understanding flow physics over the objects.					
II	Knowledge in estimating flow analysis for different mach numbers.					
III	Determining the aerodynamic forces like mainly lift and drag.					
IV	Analyze the errors and cause of errors in computational analysis.					

VIII. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Implement the computational fluid dynamic	CLO 1	Understand the behavior of flows around different structured objects.
	and computational aerodynamic fundamentals	CLO 2	Implement computational aerodynamic fundamentals by using advanced solvers.
	by using advanced solvers.	CLO 3	Explain the usage of modern tools like ICEM-CFD& FLUENT
CO 2	Understand the flow properties of flat plate,	CLO 4	Understand the flow properties of flat plate to demonstrate Reynolds number.
	nozzle and cylinder to demonstrate Reynolds	CLO 5	Understand the aerodynamic properties for flow through nozzle.
	number.	CLO 6	Observe the properties at separation region and wake region of circular cylinder at different Reynolds numbers
CO 3	Differentiate the flow properties around	CLO 7	Determine the shock wave around the wedge under supersonic conditions
	symmetrical and cambered airfoil.	CLO 8	Understand the aerodynamic properties of flow over an airfoil.
		CLO 9	Differentiate the flow properties around symmetrical and cambered airfoil
CO 4	Analyse the coefficient of pressure, lift, drag and	CLO 10	Observe the shock waves and 3D relieving effect around the cone at supersonic Mach number.
	moment for different bodies for different flow	CLO 11	Analyze the errors and cause of errors in the computational analysis.
	conditions.	CLO 12	Analyze the contours for different bodies for different flow conditions.
CO 5	Visualize the flow around the different bodies under	CLO 13	Understand the aerodynamic properties of flow through diffuser.
	supersonic conditions.	CLO 14	Visualize the aerodynamic properties though the supersonic intake.

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
BAEB09.01	CLO 1	Understand the behavior of flows around different structured objects.	PO1	2
BAEB09.02	CLO 2	Implement computational aerodynamic fundamentals by using advanced solvers.	PO1, PO2	2
BAEB09.03	CLO 3	Explain the usage of modern tools like ICEM- CFD& FLUENT	PO1, PO2, PO5	2
BAEB09.04	CLO 4	Understand the flow properties of flat plate to demonstrate Reynolds number.	PO2, PO5	2
BAEB09.05	CLO 5	Understand the aerodynamic properties for flow through nozzle.	PO2, PO5	2
BAEB09.06	CLO 6	Observe the properties at separation region and wake region of circular cylinder at different Reynolds numbers	PO2, PO5	2
BAEB09.07	CLO 7	Determine the shock wave around the wedge under supersonic conditions	PO2, PO5	3
BAEB09.08	CLO 8	Understand the aerodynamic properties of flow over an airfoil.	PO1, PO5	2
BAEB09.09	CLO 9	Differentiate the flow properties around symmetrical and cambered airfoil	PO2, PO5	2
BAEB09.10	CLO 10	Observe the shock waves and 3D relieving effect around the cone at supersonic Mach number;	PO2, PO5	2
BAEB0911	CLO 11	Analyze the errors and cause of errors in the computational analysis.	PO1	3
BAEB09.12	CLO 12	Analyze the contours for different bodies for different flow conditions.	PO1, PO2, PO5	2
BAEB09.13	CLO 13	Understand the aerodynamic properties of flow through diffuser.	PO2, PO5	3
BAEB09.14	CLO 14	Visualize the aerodynamic properties though the supersonic intake.	PO2, PO5	3

IX. COURSE LEARNING OUTCOMES (CLOs):

3 = High; **2** = Medium; **1** = Low

X. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

Course Outcomes (COs)	Program Outcomes (POs)						
	PO 1	PO 2	PO 5				
CO 1	3	2					
CO 2			2				
CO 3	3	2					
CO 4	3						
CO 5		2	2				

3 = High; **2** = Medium; **1** = Low

XI. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF **PROGRAM OUTCOMES:**

Course Learning	Program Outcome (PO)							
Outcomes (CLOs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	
CLO 1	2							
CLO 2	2	2						
CLO 3	2	2			2			
CLO 4		2			2			
CLO 5		2			2			
CLO 6		2			2			
CLO 7		3			3			
CLO 8	2				2			
CLO 9		2			2			
CLO 10		2			2			
CLO 11	3							
CLO 12	2	2			2			
CLO 13		3			3			
CLO 14		3			3			

3 = **High**; **2** = **Medium**; **1** = **Low**

XII. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO1, PO2, PO5	SEE Exams	PO1, PO2, PO5	Assignments	-	Seminars	-
Laboratory Practices	PO1, PO2, PO5	Student Viva	PO1, PO2, PO5	Mini Project	-	Certification	-

XIII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIV. SYLLABUS

	LIST OF EXPERIMENTS			
Week-1	INTRODUCTION			
	to computational aerodynamics, the major theories, approaches and methodologies used in al aerodynamics. Applications of computational aerodynamics for classical aerodynamic's			

Week-2	INTRODUCTION TO ICEM CFD					
Introduction to ICEM CFD, geometry creation, suitable meshing types and boundary conditions.						
Week-3	Week-3 INTRODUCTION TO FLUENT					
Introduction	to fluent, boundary conditions, solver conditions and post processing results.					
Week-4	SHOCK WAVE BOUNDARY LAYER INTERSECTION OVER A FLAT PLATE					
Observe the	boundary layer phenomena over a flat plate and velocity profile inside the boundary layer.					
Week-5	SUBSONIC FLOW IN A CONVERGENT DIVERGENT NOZZLE					
	ch convergent divergent nozzle at different velocities; observe the velocity changes for turbulent flows.					
Week-6	CIRCULATION OF THE LIFT OVER A CIRCULAR CYLINDER					
Observe the Reynolds nu	e properties at separation region and wake region over a circular cylinder at different imbers.					
Week-7	PRESSURE DISTRIBUTION OVER A SYMMETRIC AEROFOIL					
	w properties around the flow over a symmetric aerofoil at different velocities and compare tion results with experimental results (consider the model from aerodynamics laboratory).					
Week-8	PRESSURE DISTRIBUTION OVER A CAMBERED AEROFOIL					
	w properties around the flow over a cambered aerofoil at different velocities and compare tion results with experimental results (consider the model from aerodynamics laboratory).					
Week-9	SHOCK WAVE SUPERSONIC FLOW OVER WEDGE					
Observe the number.	shock wave phenomena and change of properties around a wedge at supersonic Mach					
Week-10	SHOCK WAVE AROUND A CONE					
Observe the number.	shock wave phenomena and change of properties around a cone at supersonic Mach					
WeeK-11	FLOW THROUGH DIFFUSER					
Flow throug flows.	h diffuser at different velocities; observe the velocity changes for laminar and turbulent					
Week-12	FLOW THROUGH SUPERSONIC INTAKE					
Flow through Supersonic intake at different velocities; observe the velocity changes for laminar and turbulent flows.						
Reference Bo	oks:					
	 Anderson, J.D., Jr., Computational Fluid Dynamics the Basics with Applications, McGraw-Hill Inc, 1st Edition 1998. 					
Engineeri	 Hoffmann, K. A. and Chiang, S. T., "Computational Fluid Dynamics for Engineers", 4th Edition, Engineering Education Systems (2000). 					
3. Hirsch, C. Computat	 Hirsch, C., "Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics", Vol. I, 2nd Edition, Butterworth-Heinemann (2007). 					

XV. COURSE PLAN:

Week No.	Topics to be covered	Course Learning Outcomes	Reference
1-3	Introduction to computational aerodynamics	CLO 1	T1
4-5	Introduction to ICEM CFD	CLO 3	T1
7-8	Introduction to fluent	CLO 3	T1
9-12	Shock wave boundary layer intersection over a flat plate	CLO 4	T1
13-16	Subsonic flow in a convergent divergent nozzle	CLO 5	T2
17-19	Circulation of the lift over a circular cylinder	CLO 6	T1
20-22	Pressure distribution over a symmetric aerofoil	CLO 8	T1
23-24	Pressure distribution over a cambered aerofoil	CLO 8	T2
25-27	Shock wave supersonic flow over wedge	CLO 7	T2
28-30	Shock wave around a cone	CLO 10	T2
31-33	Flow through diffuser	CLO 13	T2
33-36	Flow through supersonic intake	CLO 14	T2

The course plan is meant as a guideline. Probably there may be changes.

XVI. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S.NO	DESCRIPTION	PROPOSED ACTIONS	RELEVANCE WITH POs
1	To improve standards and analyze the concepts.	Guest Lectures	PO1,PO5
2	Encourage students to solve real time applications and prepare towards competitive examinations.	NPTEL	PO1, PO3

Prepared by:

Ms. D. Anitha, Assistant Professor

HOD, AE