

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
Dundigal, Hyderabad -500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE DESCRIPTOR

Course Title	ANALOG	ANALOG COMMUNICATIONS LABORATORY					
Course Code	AECB16						
Programme	B. Tech	B. Tech					
Semester	IV	ECE					
Course Type	Core	Core					
Regulation	IARE - R	IARE - R18					
	Theory Practical						
		Theory		Practi	cal		
	Lecture		Credits	Practic Laboratory	Credits		
Course Structure	Lecture:		Credits				
Course Structure Chief Coordinator	-		-	Laboratory	Credits		

I. COURSE OVERVIEW:

The main objective of this lab is to understand basic theories of analog communication system to design and implement analog modulator and demodulator and understand the applications of analog modulator and demodulator circuits, and to investigate signals in time and frequency domain. Students construct and analyze circuits on analog communication transmitter and receiver. Students conduct experiments to understand the signals available at different stages of AM and FM receivers. The objective of this course is to familiarize the students with different blocks in digital communication by constructing and then testing different digital modems and codec.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
-	-	-	-	-

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Analog Communications Laboratory	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	×	Quiz	×	Assignments	×	MOOCs
~	LCD / PPT	>	Seminars	×	Mini Project	~	Videos
~	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

The emphasis on the experiments is broadly based on the following criteria:

20 %	To test the preparedness for the experiment.
20 %	To test the performance in the laboratory.
20 %	To test the calculations and graphs related to the concern experiment.
20 %	To test the results and the error analysis of the experiment.
20 %	To test the subject knowledge through viva – voce.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Table 1: Assessment pattern for CIA

Component	Lab	77.4.13.4	
Type of Assessment	Day to day performance	Final internal lab assessment	Total Marks
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

Preparation	Performance	Calculations and Graph	Results and Error Analysis	Viva	Total
2	2	2	2	2	10

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed
			by
PO1	Engineering knowledge : Apply the knowledge of	3	Calculations of the
	mathematics, science, engineering fundamentals, and		observations
	an engineering specialization to the solution of		
	complex engineering problems.		
PO2	Problem analysis: Identify, formulate, review	2	Lab Exercises/
	research literature, and analyze complex engineering		Student Viva
	problems reaching substantiated conclusions using		
	first principles of mathematics, natural sciences, and		
	engineering sciences		
PO5	Modern tool usage: Create, select, and apply	2	Design Exercises
	appropriate techniques, resources, and modern		
	engineering and IT tools including prediction and		
	modeling to complex engineering activities with an		
	understanding of the limitations.		

 $^{3 = \}text{High}$; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed
			by
PSO 1	Professional Skills: An ability to understand the basic concepts in Electronics & Communication Engineering and to apply them to various areas, like Electronics, Communications, Signal processing, VLSI, Embedded systems etc., in the design and implementation of complex systems.	3	Lab related Exercises
PSO 2	Problem-Solving Skills: An ability to solve complex Electronics and communication Engineering problems, using latest hardware and software tools, along with analytical skills to arrive cost effective and appropriate solutions.	-	-

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed
			by
PSO 3	Successful Career and Entrepreneurship: An	-	-
	understanding of social-awareness & environmental-		
	wisdom along with ethical responsibility to have a		
	successful career and to sustain passion and zeal for		
	real-world applications using optimal resources as an		
	Entrepreneur.		

3 = High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES:

The course should enable the students to:			
I	Study various modulation techniques in communications.		
II	Visualize various spectrums using spectrum analyzer.		
III	Observe receiver characteristics.		
IV	Understand the importance of AGC and VCO.		

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AECB16.01	CLO 1	Generation of amplitude modulation and	PO1, PO2	3
		demodulation using hardware and MATLAB		
AECB16.02	CLO 2	Generation of AM-Double Side Band Suppressed	PO1, PO2	3
		Carrier (DSB-SC) signal using Balanced		
		Modulator.		
AECB16.03	CLO 3	To generate AM-Double Side Band Suppressed	PO1, PO2	3
		Carrier (DSB-SC) signal using Ring Modulator.		
AECB16.04	CLO 4	Generation of single side band suppressed carrier	PO1, PO2	3
		modulation and demodulation using hardware and		
		MATLAB		
AECB16.05	CLO 5	Verification of sampling theorem for under,	PO1, PO5	2
		perfect, over sampling cases using hardware and		
		MATLAB.		
AECB16.06	CLO 6	Generation of frequency modulation and	PO1, PO2	2
		demodulation using hardware and MATLAB		
AECB16.07	CLO 7	Verification of pre-emphasis and de-emphasis to	PO5	1
		boost high frequency modulating signal using		
		hardware and MATLAB		
AECB16.08	CLO 8	Generation of the frequency division multiplexing	PO1, PO2	2
		and demultiplexing circuit and to verify its		
		operation		
AECB16.09	CLO 9	To study the theoretical and practical values of	PO1, PO2	2
4				

		capture range and lock range of phase locked loop.		
AECB16.10	CLO 10	To study the operation of frequency synthesizer	PO1, PO2	2
AECB16.11	CLO 11	using PLL. To study the operation of Time-Division	PO1. PO5	3
	02011	multiplexing	101,100	
AECB16.12	CLO 12	To study the AGC Characteristics and obtain the	PO1, PO2	1
		mixer characteristics of a super heterodyne receiver.		
AECB16.13	CLO 13	To obtain the mixer characteristics of a super	PO1, PO2	2
		heterodyne receiver.		
AECB16.14	CLO 14	To study the spectral analysis Of AM and FM	PO1, PO2	2
		signals using spectrum analyzer		

3= High; 2 = Medium; 1 = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning					Progr	am O	utcom	es (PO	os)					ram Sp comes (1	
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3	3											3		
CLO 2	3	3											3		
CLO 3	3	3											3		
CLO 4	3	3											3		
CLO 5	3				2								2		
CLO 6	2	2											2		
CLO 7		2			1								2		
CLO 8		2			2								2		
CLO 9	3	2											2		
CLO 10		2											2		
CLO 11	3				3								2		
CLO 12	1	1											3		
CLO 13	2	2											3		
CLO 14	2	2		7 11		<u>.</u>							3		

3 = High; 2 = Medium; 1 = Low

XI. ASSESSMENT METHODOLOGIES - DIRECT

CIE Exams	-	SEE Exams	-	Lab Exercises	PO 1, PO 2, PO 5	Seminars	PO 5
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-

XII. ASSESSMENT METHODOLOGIES – INDIRECT

·	/	Early Semester Feedback	~	End Semester OBE Feedback
>	'	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

WEEK-1	AMPLITUDE MODULATION AND DEMODULATION
Generation of	amplitude modulation and demodulation using hardware and MATLAB.
WEEK-2	DSB-SC MODULATOR & DETECTOR
Generation of	AM-Double Side Band Suppressed Carrier (DSB-SC) signal using Balanced Modulator.
WEEK-3	GENERATION OF DSBSC USING RING MODULATION OBSERVATION OF OUTPUT WAVEFORM
To generate A	M-Double Side Band Suppressed Carrier (DSB-SC) signal using Ring Modulator.
WEEK-4	SSB-SC MODULATOR & DETECTOR (PHASE SHIFT METHOD)
Generation of MATLAB.	single side band suppressed carrier modulation and demodulation using hardware and
WEEK-5	SAMPLING THEOREM VERIFICATION
Verification o	f sampling theorem for under, perfect, over sampling cases using hardware and MATLAB.
WEEK-6	FREQUENCY MODULATION AND DEMODULATION
Generation of	frequency modulation and demodulation using hardware and MATLAB.
WEEK-7	PRE-EMPHASIS & DE-EMPHASIS
Verification o and MATLAF	f pre-emphasis and de-emphasis to boost high frequency modulating signal using hardware 3.
WEEK-8	FREQUENCY DIVISION MULTIPLEXING & DE MULTIPLEXING
Generation of	the frequency division multiplexing and demultiplexing circuit.
WEEK-9	TIME DIVISION MULTIPLEXING & DE MULTIPLEXING
To study the o	operation of Time-Division multiplexing and demultiplexing circuit.
WEEK-10	AGC CHARACTERISTICS AND CHARACTERISTICS OF MIXER
To study the A	AGC Characteristics and obtain the mixer characteristics of a super heterodyne receiver.
WEEK-11	PHASE LOCKED LOOP AND FREQUENCY SYNTHESIZER
	ne theoretical and practical values of capture range and lock range of phase locked loop and ration of frequency synthesizer using PLL.
WEEK-12	SPECTRAL ANALYSIS OF AM AND FM SIGNALS USINGSPECTRUM ANALYZER
To study the s	pectral characteristics of AM and FM using spectrum analyzer.

TEXT BOOKS:

- 1. S. S. Haykin, "Communication Systems", Wiley Eastern, 2nd Edition, 2006.
- 2. Taub, Schilling, "Principles of Communication Systems", Tata McGraw Hill, 4th Edition, 2013.

REFERENCE BOOKS:

- 1. B.P. Lathi, "Communication Systems", BS Publication", 2nd Edition, 2006.
- John G. Proakis, Masond, Salehi, "Fundamentals of Communication Systems", PEA, 1st Edition, 2006.
- 3. George Kennedy, Bernard Davis, "Electronics and Communication System", Tata McGraw Hill, 5th Edition, 2011.

WEB REFERENCES:

- 1. http://www.web.eecs.utk.edu
- 2. https://everythingvtu.wordpress.com
- 3. http://nptel.ac.in/
- 4. http://www.iare.ac.in

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Week No.	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Generation of amplitude modulation and demodulation using hardware and MATLAB.	CLO 1	T1,T2
2	Generation of AM-Double Side Band Suppressed Carrier (DSB-SC) signal using Balanced Modulator.	CLO 2	T1,T2
3	To generate AM-Double Side Band Suppressed Carrier (DSB-SC) signal using Ring Modulator.	CLO 3	T1,T2
4	Generation of single side band suppressed carrier modulation and demodulation using hardware and MATLAB.	CLO 4	T1,R1
5	Verification of sampling theorem for under, perfect, over sampling cases using hardware and MATLAB.	CLO 5	T1,R1
6	Generation of frequency modulation and demodulation using hardware and MATLAB.	CLO 6	T1,T2
7	Verification of pre-emphasis and de-emphasis to boost high frequency modulating signal using hardware and MATLAB.	CLO 7	T1,T2,R1, R2
8	Generation of the frequency division multiplexing and demultiplexing circuit.	CLO 8	T1,T2
9	To study the operation of Time-Division multiplexing and demultiplexing circuit.	CLO 9	T1,T2,R1, R2
10	To study the AGC Characteristics and obtain the mixer characteristics of a super heterodyne receiver.	CLO 10	T1,T2
11	To compare the theoretical and practical values of capture range and lock range of phase locked loop and study the operation of frequency synthesizer using PLL.	CLO 11	T1,T2,R1, R3
12	To study the spectral characteristics of AM and FM using spectrum analyzer.	CLO 12	T1,T2,R1, R3

XV. GAPS IN THE SYLLABUS-TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S.No	Description	Proposed Actions	Relevance With PO's	Relevance With PSO's
1.	Simulation of analog modulation and demodulation schemes using NI LABVIEW	Laboratory Sessions	PO 5	PSO 1
2.	Observe the receiver frequency domain representation using spectrum analyzer.	Laboratory Sessions	PO 1, PO 2	-

Prepared by: HOD, ECE

Mr. G Kiran Kumar, Assistant Professor