INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTOR

Course Title	ADVANCED DATA STRUCTURES LABORATORY					
Course Code	BCSB	BCSB09				
Programme	M.Tec	M.Tech				
Semester	Ι	I CSE				
Course Type	Core					
Regulation	IARE - R18					
			Theory		Practic	al
Course Structure	Lectures Tutorials Credits Laboratory Credits					
	3 2					
Course Faculty	Ms. S	Swara	ajya Laxmi, Assi	stant Professor	r, CSE	

I. COURSE OVERVIEW:

This course helps the students to implement linear and non linear data structures to solve various computing problems. This includes algorithms and analysis of algorithms based on their time complexity, implementation of applications of various data structures like stacks, trees and graphs.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
-	-	-	Basic Programming Concepts	-

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Advanced Data Structures Laboratory	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	LCD / PPT	~	Student viva	~	Mini Project	×	Videos
X	Open Ended Experiments						

V. EVALUATION METHODOLOGY: Continuous internal assessment (CIA):

The course will be evaluated for a total of 100 marks consisting of 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, with 20 marks for the day to day evaluation and 10 marks for Internal Examination (CIE).

Semester End Examination (SEE):

The SEE is conducted for 70 marks of 3 hours duration. The syllabus for this course contains 12 experiments. The question paper pattern is as follows: Two full questions with 'either' 'or' choice will be drawn from each set. Each contains 4 questions

Continuous internal assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 10 marks for Continuous Internal Examination (CIE),20 marks for Day to Day Evaluation

Component	Т		
Type of Assessment	CIE Exam	Day to Day Evaluation	Total Marks
CIA Marks	10	20	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 16^{th} week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration consisting of two sets.

Preparation	Performance	Calculations and Graph			Total
2	2	2	2	2	10

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Analyze a problem, identify and define computing requirements, design and implement appropriate solution	2	Laboratory practices, student viva
PO 2	Solve complex heterogeneous data intensive analytical based problems of real time scenario using state of the art hardware/software tools	1	Laboratory Practices, student viva
PO 5	Independently carry out research/investigation and development work to solve practical problems	2	Laboratory Practices, student viva
PO 7	To engage in life-long learning and professional development through self-study, continuing education, professional and doctoral level studies.	3	Laboratory Practices, Mini project

3 = **High**; **2** = **Medium**; **1** = Low

VII. COURSE OBJECTIVES :

The co	The course should enable the students to:					
Ι	Analyze various sorting techniques.					
Π	Implement linear and nonlinear data structures and hashing techniques like probing					
III	Develop applications of data structures					
III	Choose appropriate data structure and algorithm design method for a specific application.					
IV	Identify suitable data structure to solve various computing problems.					

VIII. COURSE OUTCOMES (COs):

CO Code	CO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
BCSB09.01	CO 1	Implement divide and conquer techniques to solve a given problem	PO 1	3
BCSB09.02	CO 2	Implement hashing techniques like linear probing, quadratic probing, random probing and double hashing/rehashing	PO 2	3
BCSB09.03	CO 3	Perform Stack operations to convert infix expression into post fix expression and evaluate the post fix expression.	PO 5	3
BCSB09.04	CO 4	Differentiate graph traversal techniques Like DFS,BFS	PO 2	3
BCSB09.05	CO 5	Identify shortest path to other vertices using various algorithms.	PO 5	3

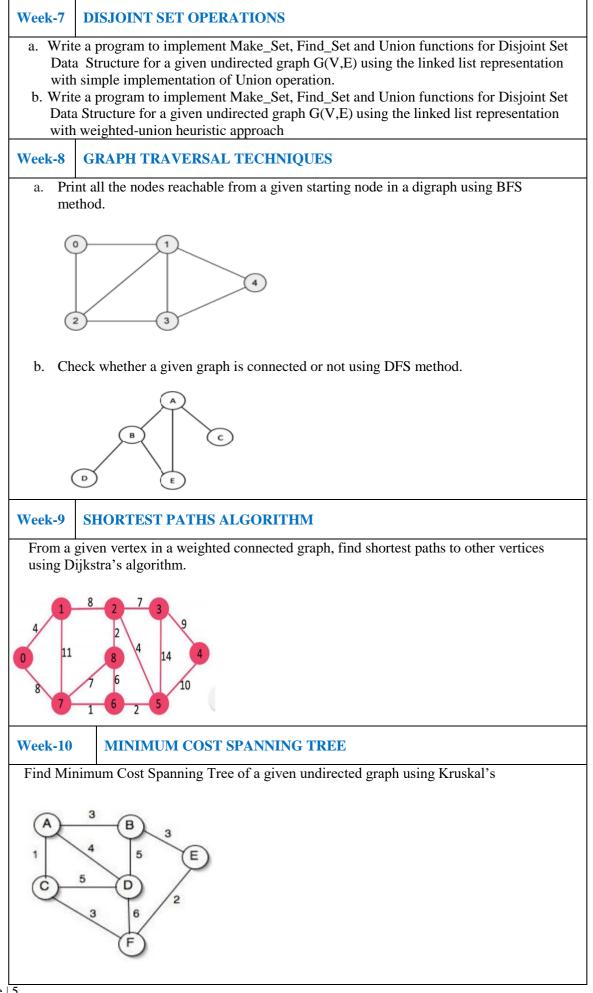
3 = High; **2** = Medium; **1** = Low

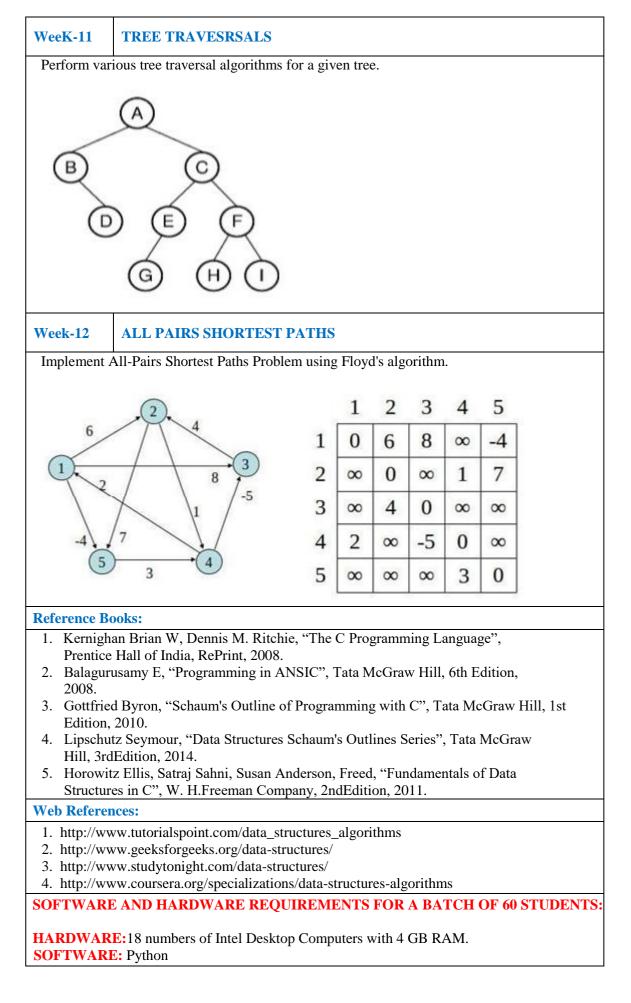
IX. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Outcomes (COs)	Program Outcomes						
Course Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3						
CO 2		3					
CO 3					3		
CO 4		3					
CO 5					3		

3 = High; **2** = Medium; **1** = Low

X. ASSESSMENT METHODOLOGIES – DIRECT


CIE Exams	PO 1, PO 2, PO 5,PO 7	SEE Exams	PO 1, PO 2, PO 5 PO 7	Laboratory Practices	PO 1, PO 2, PO 5, PO 7
Mini Project	PO7	Student Viva	PO 1, PO 2, PO 5		


XI. ASSESSMENT METHODOLOGIES - INDIRECT

>	Early Semester Feedback	>	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XII. SYLLABUS

	LIST OF EXPERIMENTS			
Week-1	DIVIDE AND CONQUER - 1			
 a. Implement Quick Sort on 1D array of Student structure (contains student name, student_roll_no,total_marks), with key as student_roll_no and count the number of swap performed. b. Implement Merge Sort on 1D array of Student structure (contains student_name, student_roll_no,total_marks), with key as student_roll_no and count the number of swap performed. 				
Week-2	DIVIDE AND CONQUER - 2			
 a. Design and analyze a divide and conquer algorithm for following maximum sub-array sum problem:given an array of integer's find a sub-array [a contagious portion of the array] which gives the maximum sum. b. Design a binary search on 1D array of Employee structure (contains employee_name, emp_no, emp_salary), with key as emp_no and count the number of comparison happened. 				
Week-3	IMPLEMENTATION OF STACK AND QUEUE			
 a. Implement 3-stacks of size 'm' in an array of size 'n' with all the basic operations such as Is Empty(i),Push(i), Pop(i), IsFull(i) where 'i' denotes the stack number (1,2,3), Stacks are not overlapping each other. b. Design and implement Queue and its operations using Arrays 				
Week-4	HASHING TECHNIQUES			
 Write a program to store k keys into an array of size n at the location computed using a hash function, loc =key % n, where k<=n and k takes values from [1 to m], m>n. To handle the collisions use the following collision resolution techniques a. Linear probing b. Quadratic probing c. Random probing d. Double hashing/rehashing 				
Week-5	APPLICATIONS OF STACK			
Write C programs for the following: a. Uses Stack operations to convert infix expression into post fix expression. b. Uses Stack operations for evaluating the post fix expression.				
Week-6	BINARY SEARCH TREE			
a. Insert b. Delet i. De ii. De c. Findi d. Findi f. Left c g. Right				

XIII. COURSE PLAN:

Lecture No.	Learning Objectives	Topics to be covered
1-3	Understand sorting techniques	Quick sort and Merge sort
4-6	Understand divide and conquer techniques	Design and analyze a divide and conquer algorithm
7-9	Implement data structures like stack and queue	Implementation stack and queue and its operations using arrays
10-12	Implement hashing techniques	Understand collision resolution techniques
13-15	Understand applications of stacks	Evaluate postfix expression using stack
16-18	Understand insertion and deletion on binary search trees	Implement traversals on binary search tree
19-21	Understand the implementation of disjoint set operations	Implement Disjoint Set Operations
22-24	Understand traversals on graphs	Implement graph traversal techniques like DFS and BFS
25-27	Implementation of shortest path using Dijkstra's algorithm	Design a shortest paths algorithm using Dijkstra's algorithm
28-30	Implementation of minimum cost spanning tree	Minimum Cost Spanning Tree using Kruskal's algorithm
31-33	Implementation of traversals on trees	Implement Tree Traversals
34-36	Implement All-Pairs Shortest Paths Problem using Floyd's algorithm.	All-Pairs Shortest Paths Problem using Floyd's algorithm.
37-39	Internal Lab Exam	CIE-I

The course plan is meant as a guideline. Probably there may be changes.

Prepared by:

Ms. S Swarajya Laxmi

HOD, CSE