

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

AEROSPACE ENGINEERING

COURSE DESCRIPTOR

Course Title	AEROSPACE PROPULSION LABORATORY							
Course Code	AAE108	AAE108						
Programme	B.Tech	B.Tech						
Semester	VI .	VI AE						
Course Type	Core							
Regulation	IARE - R16							
			Theory		Practic	cal		
Course Structure	Lectur	es	Tutorials	Credits	Laboratory	Credits		
	3 2					2		
Chief Coordinator	Dr. Praveen Kumar Balguri, Associate Professor							
Course Faculty	Dr. Prav Dr. V. V	een aru	Kumar Balguri, n, Associate Prof	Associate Professor	essor			

I. COURSE OVERVIEW:

The aim of this lab complements the basics of propulsion, working principles of reciprocating engines, flash and fire point, and kinematic and dynamic viscosity of fuels. Students will gain knowledge about the mechanical efficiency of the axial compressor, work, power, thrust requirements, performance diagrams of a gas turbine. They can gain knowledge in the calculation of thermal, propulsive efficiency of a gas turbine, the work output of axial turbine and nozzle performance, understand the calorific values of different fuels, coefficient of convection heat transfer, and calculation of propeller efficiency.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AAE007	V	Aircraft Propulsion	3

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Aerospace Propulsion Laboratory	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	×	Quiz	×	Assignments	×	MOOCs
>	LCD / PPT	×	Seminars	×	Mini Project	~	Videos
~	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

20 %	To test the preparedness for the experiment.
20 %	To test the performance in the laboratory.
20 %	To test the calculations and graphs related to the concern experiment.
20 %	To test the results and the error analysis of the experiment.
20 %	To test the subject knowledge through viva – voce.

The emphasis on the experiments is broadly based on the following criteria:

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during the day to day performance, 10 marks for final internal lab assessment.

Component	L	aboratory		
Type of Assessment	Day to day performance	Final internal lab assessment	Total Marks	
CIA Marks	20	10	30	

Table 1: Assessment pattern for CIA

Continuous Internal Examination (CIE):

One CIE exam shall be conducted at the end of the 12th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

Preparation	Performance	Calculations and Graph	Results and Error Analysis	Viva	Total
2	2	2	2	2	10

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2	Calculations of the observations
PO 2	Problem analysis: Identity, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	Calculations of the observations
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Lab Practices
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis, and interpretation of data, and synthesis of the information to provide validly conclusions	2	Term observations
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	2	Presentation on real-world problems

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional skills: Able to utilize the knowledge of	2	Lab Practices
	aeronautical/aerospace engineering in innovative,		
	a dynamic and challenging environment for design and		
	development of new products		
PSO 2	Problem-solving Skills: Imparted through simulation	2	Guest Lectures
	language skills and general-purpose CAE packages to		
	solve practical, design and analysis problems of		
	components to complete the challenge of airworthiness		
	for flight vehicles.		
PSO 3	Practical implementation and testing skills: Providing	1	Presentation on
	different types of in house and training and industry		real-world problems
	practice to fabricate and test and develop the products		
	with more innovative technologies		
PSO 4	Successful career and entrepreneurship: To prepare	-	-
	the students with broad aerospace knowledge to design		
	and develop systems and subsystems of		
	aeronautical/aerospace allied systems to become		
	technocrats		

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The c	The course should enable the students to:					
Ι	Understand the basics of propulsion, working principles of reciprocating engines, flash and fire point, and kinematic and dynamic viscosity of fuels.					
II	Knowledge about the mechanical efficiency of the axial compressor, work, power, thrust requirements of a gas turbine and efficiency and performance diagrams.					
III	Calculation of thermal, propulsive efficiency of a gas turbine, work output of axial turbine and nozzle performance.					
IV	Understand the calorific values of different fuels, coefficient of convection heat transfer, and calculation of propeller efficiency.					

IX. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome		
CO 1	Understand the working mechanism and identifying	CLO 1	Understand the working mechanism and identifying various components to build an IC engine		
	various components to build an IC engine, flash point,	CLO 2	Understand the importance of flash point and fire point for a given oil.		
	fire point, and kinematic viscosity and dynamic viscosity of given oils.	CLO 3	Explain the estimation of kinematic viscosity and dynamic viscosity of the given sample		
CO 2	Able to calculate the mechanical efficiency of the	CLO 4	Understand the calculation of mechanical efficiency of axial compressor		
	axial compressor, efficiency and performance parameters	CLO 5	Understand the work, power and thrust requirement in gas turbine		
	of a gas turbine.	CLO 6	Observe the gas turbine efficiency and performance diagrams		
CO 3	Understand the concepts in estimating the gas turbine	CLO 7	Determine the thermal, propulsive and overall efficiency of turbojet cycle		
	efficiency, the work output of the axial turbine and nozzle performance	and CLO 8 Understand the calculation of total work of axial turbine- output work necessary, a output.			
		CLO 9	Analyze various nozzle performance with airflow		
CO 4	Analyze the calorific value of different fuels, estimation	CLO 10	Observe the calculation of the calorific value of different fuels and materials		
	of convection heat coefficient of a plate and	CLO 11	Analyze the convection heat coefficient of a plate using forced jet		
	propeller efficiency using a propeller test rig	CLO 12	Analyze the propeller efficiency and thrust availability using the propeller test rig at various blade pitch angles.		

x. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
		Understand the working mechanism and	PO1	2
AAE108.01	CLO I	identifying various components to build an IC		
		engine		
A A E 108 02	CLO 2	Understand the importance of flash point and	PO1, PO3, PO4	2
11111100.02		fire point for a given oil.		
		Explain the estimation of kinematic viscosity	PO3, PO4, PO5	2
AAE108.03	CLO 3	and dynamic viscosity of a given sample		

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AAE108.04	CLO 4	Understand the calculation of mechanical efficiency of axial compressor	PO1, PO2	2
AAE108.05	CLO 5	Understand the work, power and thrust requirement in gas turbine	PO1, PO2	2
AAE108.06	CLO 6	Observe the gas turbine efficiency and performance diagrams	PO1, PO2	2
AAE108.07	CLO 7	Determine the thermal, propulsive and overall efficiency of turbojet cycle	PO2, PO3	3
AAE108.08	CLO 8	Understand the calculation of total work output of axial turbine- output work necessary, available output.	PO2, PO3	2
AAE108.09	CLO 9	Analyze various nozzle performance with airflow	PO1, PO2, PO3	2
AAE108.10	CLO 10	Observe the calculation of the calorific value of different fuels and materials	PO2, PO5	2
AAE10811	CLO 11	Analyze the convection heat coefficient of a plate using forced jet	PO2, PO3	3
AAE108.12	CLO 12	Analyze the propeller efficiency and thrust availability using the propeller test rig at various blade pitch angles.	PO1, PO2, PO5	2

3 = High; **2** = Medium; **1** = Low

XI. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning	Program Outcome (POs)						Program Specific Outcome (PSOs)									
Outcome s (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 1	2															
CLO 2	2		2	2									1	2		
CLO 3			2	2	2								1	2		
CLO 4	2	2														
CLO 5	2	2														
CLO 6	2	2											2	2		
CLO 7		3	3										2	2	1	
CLO 8		2	2												1	
CLO 9	2	2	2												1	
CLO 10		2			2								2	2		
CLO 11		3	3													
CLO 12	2	2			2											

3 = **High**; **2** = **Medium**; **1** = Low

XII. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO1, PO2, PO5	SEE Exams	PO1, PO2, PO5	Assignments	-	Seminars	-
Laboratory Practices	PO1, PO2, PO5	Student Viva	PO1, PO2, PO5	Mini Project	-	Certification	-

XIII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	>	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIV. SYLLABUS

LIST OF EXPERIMENTS				
Week-1	ENGINE DISASSEMBLY AND ASSEMBLY			
a) To under b) Brief des	stand the working mechanism and identifying various components to build an IC engine. cription of Components of the engine and its functions.			
Week-2	FLASHPOINT AND FIRE POINT TEST			
Determinati	on of flash point and fire point for a sample using pen sky martin's test.			
Week-3	DETERMINATION OF DYNAMIC VISCOSITY OF A GIVEN SAMPLE USING REDWOOD VISCOMETER			
a) Determin b) Order flu	e kinematic viscosity and dynamic viscosity of a given sample using a viscometer. ctuating temperature is measured in terms of viscosity			
Week-4	MECHANICAL EFFICIENCY OF AXIAL COMPRESSOR			
Calculation of the Mechanical efficiency of an axial compressor- power required, power Available, Compression Ratio.				
Week-5	GAS TURBINE PARAMETERS CALCULATION			
Calculation of work, power and Thrust requirement in a gas turbine- combustion power input, work heat relationship.				
Week-6	GAS TURBINE EFFICIENCY AND PERFORMANCE DIAGRAMS			
Elucidate T components	Y-S, H-S diagrams for the gas turbine and compare efficiencies of non-ideal engine			
Week-7	GAS TURBINE EFFICIENCY CALCULATIONS			
Calculation	of thermal, propulsive and overall efficiency of turbojet cycle.			
Week-8	WORK OUTPUT OF AXIAL TURBINE			
Calculation of total work output of axial turbine- output work necessary, Available output.				
Week-9	NOZZLE PERFORMANCE			
Calculation of various nozzle performance with airflow.				
Week-10	CALORIFIC VALUE OF DIFFERENT FUELS			
Calculation of calorific value of different fuels and materials using digital bomb calorimeter and				

WeeK-11	FREE AND FORCED CONVECTION				
Estimation of	Estimation of the convection heat coefficient of air using a forced jet or free convection apparatus.				
Week-12	PROPELLER TEST RIG				
Calculation of propeller efficiency and thrust availability using propeller test rig at various blade pitch					
angles.	angles.				
Reference Books:					
1. Anderson 1 st Edition	, J.D., Jr., Computational Fluid Dynamics the Basics with Applications, McGraw-Hill Inc, 1998.				
A TT CC					

- Hoffmann, K. A. and Chiang, S. T., "Computational Fluid Dynamics for Engineers", Engineering Education Systems, 4th Edition, 2000.
 Hirsch, C., "Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics", Butterworth-Heinemann, Vol. I, 2nd Edition, 2007.

XV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Week No.	Topics to be covered	Course Learning Outcomes	Reference
1-3	Engine disassembly and assembly	CLO 1	T1
4-5	Flashpoint and fire point test	CLO 3	T1
7-8	Determination of dynamic viscosity of a given sample using a redwood viscometer	CLO 3	T1
9-12	Mechanical efficiency of axial compressor	CLO 4	T1
13-16	Gas turbine parameters calculation	CLO 5	Τ2
17-19	Gas turbine efficiency and performance diagrams	CLO 6	T1
20-22	Gas turbine efficiency calculations	CLO 8	T1
23-24	The work output of an axial turbine	CLO 8	T2
25-27	Nozzle performance	CLO 7	T2
28-30	The calorific value of different fuels	CLO 10	T2
31-33	Free and forced convection	CLO 13	T2
33-36	Propeller test rig	CLO 14	T2

XVI. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S.NO	DESCRIPTION	PROPOSED ACTIONS	RELEVANCE WITH POs
1	To improve standards and analyze the concepts.	Guest Lectures	PO1,PO5
2	Encourage students to solve real-time applications and prepare for competitive examinations.	NPTEL	PO1, PO3

Prepared by: Dr. Praveen Kumar Balguri, Associate Professor

HOD, AE