

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

COMPUTER SCIENCE ENGINEERING

COURSE DESCRIPTOR

Course Title	MICR	MICROPROCESSORS AND INTERFACING LAB						
Course Code	AEC11:	AEC115						
Programme	B.Tech	B.Tech						
Semester	V	V CSE						
Course Type	Core	Core						
Regulation	IARE -	IARE - R16						
		Theory				Practical		
Course Structure				~ -1.	T -1 4	G 114		
Course Structure	Lectur	res	Tutorials	Credits	Laboratory	Credits		
Course Structure	Lectur	res	Tutorials -	Credits	2 3	2		
Chief Coordinator	-		Tutorials - nadir, Assistant F	-	•			

I. COURSE OVERVIEW:

This laboratory course builds on the lecture course "Microprocessors and Interfacing" which is mandatory for all students of information technology. The course aims at practical experience with the characteristics and theoretical principles of computer organization and various practical real time applications.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AEC116	III	Digital Logic Design Laboratory	3

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Microprocessors and Interfacing Laboratory	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	×	Quiz	×	Assignments	×	MOOCs
~	LCD / PPT	×	Seminars	×	Mini Project	~	Videos
~	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

The emphasis on the experiments is broadly based on the following criteria:

20 %	To test the preparedness for the experiment.
20 %	To test the performance in the laboratory.
20 %	To test the calculations and graphs related to the concern experiment.
20 %	To test the results and the error analysis of the experiment.
20 %	To test the subject knowledge through viva – voce.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Table 1: Assessment pattern for CIA

Component	L	Total Maules		
Type of Assessment	Day to day performance	Final internal lab assessment	Total Marks	
CIA Marks	20	10	30	

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

Preparation	Performance	Calculations and Graph	Results and Error Analysis	Viva	Total
2	2	2	2	2	10

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	3	Lab related Exercises
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	3	Lab related Exercises
PO3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Lab related Exercises
PO4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2	Lab related Exercises

^{3 =} High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills: The ability to understand ,analyze and	2	Lab related
	develop computer programs in the areas related to		Exercises
	algorithms, system software, multimedia, web design, big		
	data analytics, and networking for efficient design of		
	computer-based system of varying complexity.		
PSO 2	Problem-Solving Skills: The ability to apply standard practices and strategies in software project development using open-ended programming environments to deliver a quality product for business success.	2	Lab related Exercises
PSO 3	Successful Career and Entrepreneurship: The ability to employ modern computer languages, environments, and platforms in creating innovative career paths to be an entrepreneur, and a zest for higher studies.	-	-

3 = High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES (COs):

The course should enable the students to:

S.No	Description
I	Understand the assembly level programming
II	Identify the assembly level programming in given problem.
III	Compare different implementations and designing with interfacing circuits
IV	Understand the basic programming knowledge on processor and controller
V	Understand and develop assembly language programming with various applications

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AEC115.01	CLO 1	Design and develop an Assembly language program using 8086 microprocessor	PO 1, PO2	3
AEC115.02	CLO 2	Understand the 16 Bit arithmetic and logical operations using WIN862 software	PO 1, PO 2	2
AEC115.03	CLO 3	Understand the program to perform multi byte addition, subtraction and 3*3 matrix multiplication using 8086 microprocessor	PO 1, PO 2	3
AEC115.04	CLO 4	Understand the to perform ascending and descending order using 8086 microprocessor	PO 1, PO 2, PO 4	2
AEC115.05	CLO 5	Understand the programming concepts on strings using 8086	PO 1, PO 2	2
AEC115.06	CLO 6	Understand the programming for Code converters using 8086	PO 1, PO 2, PO4	2
AEC115.07	CLO 7	Design and interacting stepper motor to 8086 microprocessor.	PO 1, PO 2, PO3	3
AEC115.08	CLO 8	Analyze and interfacing to convert analog to digital using 8086 microprocessor	PO 1, PO3	2
AEC115.09	CLO 9	Analyze and interfacing to convert digital to analog using 8086 microprocessor	PO 1, PO 2, PO3	2
AEC115.10	CLO 10	Develop and design a ALP program to interfacing keyboard to 8086 microprocessor	PO 1, PO3	2
AEC115.11	CLO 11	Develop and design an Interface traffic light controller and tone generator using 8086 microprocessor.	PO1,PO2, PO3	3
AEC115.12	CLO 12	Develop and design an ALP program to interfacing Elevator to 8086 microprocessor.	PO 1, PO 2, PO 3	2

AEC115.13	CLO 13	Develop and design an ALP program to	PO 2, PO 3	2
		interfacing LCD display to 8086		
		microprocessor		
AEC115.14	CLO 14	Develop and design an ALP program to	PO 2, PO 3	2
		interfacing LED display to 8086		
		microprocessor		

3 = High; 2 = Medium; 1 = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning						Program Specific Outcomes (PSOs)									
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3	3											2		
CLO 2	2	2											2		
CLO 3	3	3											2		
CLO 4	2	2		2									1	2	
CLO 5	3	2											1	2	
CLO 6	2	2		2									1	2	
CLO 7	3	3	3										2	1	
CLO 8	2		2										2		
CLO 9	3		2										2		
CLO 10	2	2											2		
CLO 11	3	2	3											2	
CLO 12	2	3	2										2		
CLO 13	2														
CLO 14		2													

3 = High; 2 = Medium; 1 = Low

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO 1, PO 2 PO 3, PO 4, PSO 1,PSO 2	SEE Exams	PO 1, PO 2 PO 3, PO 4, PSO 1, PSO 2	Assignments	-	Seminars	-
Laboratory Practices	PO 1, PO 2 PO 3, PO 4, PSO 1,PSO 2	Student Viva	-	Mini Project	ľ	Certification	-

XII. ASSESSMENT METHODOLOGIES - INDIRECT

•	✓ Early Semester Feedback		End Semester OBE Feedback	
×	Assessment of Mini Projects by Experts			

XIII. SYLLABUS

	LIST OF EXPERIMENTS					
Week-1	DESIGN APROGRAM USING WIN862					
aspects. a. Programming b. Execution c. Debugging						
To Demonstrate	the Tool Chain for MASM and Hardware for 8086 Microprocessor					
Week-2	16 BITARITHMETIC AND LOGICAL OPERATIONS					
Write an ALP pr	rogram to perform 16 Bit arithmetic and logical operations using WIN862 software					
Week-3	MULTIBYTE ADDITION AND SUBRACTION					
	program to perform multi byte addition and subtraction					
b. Write an ALP	Program to perform 3*3 matrix multiplication and addition					
Week-4	PROGRAMS TO SORT NUMBERS					
	program to perform ascending order using 8086 program to perform descending order using 8086					
Week-5	PROGRAMS FOR STRING MANIPULATIONS OPERATIONS					
a. write an ALP	program to insert or delete a byte in the given string					
b. Write an ALP	P program to search a number/character in a given string					
c. Write an ALP program to move a block of data from one memory location to the other & Write an ALP						
program for reverse of a given string.						
Week-6	CODE CONVERSIONS					
a. Write an ALP	program to convert packed BCD to Unpacked BCD					
b. Write an ALP	P program to convert packed BCD to ASCII					
c. Write an ALP	program to convert hexadecimal to ASCII					
Week-7	INTERFACING STEPPER MOTOR					
a. Write an ALP	program to rotate stepper motor in clockwise direction					
	program to rotate stepper motor in anti clockwise direction					
Week-8	INTERFACING ADC & DAC DEVICES					
a. Write an ALP	program to convert analog to digital using 8086					
	Program to convert digital to analog using 8086					
Week-9	INTERFACING TRAFFIC LIGHT CONTROLLER AND TONE GENERATOR					
a. Write an gene	a. Write an generator ALP program to interface traffic light controller					
	b. Write an ALP program to interface tone					
Week-10	INTERFACING KEYBOARD					
Write an ALP pr	rogram to interfacing keyboard to 8086					

WeeK-11 SERIAL AND PARALLEL COMMUNICATION

- a. Parallel communication between two microprocessors using 8255.
- b. Serial communication between two microprocessor kits using

Week-12 INTERFACING ELEVATOR

Write an ALP program to interfacing Elevator to 8086

Text Books:

- 1. D. V. Hall, "Microprocessors and Interfacing", TataMcGraw-Hill Education, 3rd Edition 2013.
- 2. A. K Ray, K. M. Bhurchandani, "Advanced Microprocessors and Peripherals", TataMcGraw-Hill Education, 2nd Edition 2006.

Reference Books:

- 1. N. Senthil Kumar, M. Saravanan, S. Jeevanathan, S. K. Shah, "Microprocessors and Interfacing", Oxford University, 1st Edition, 2012.
- 2. Lyla B. Das, "The x86Microprocessors", Pearson India, 2nd Edition, 2014
- 3. Daniel Tabak, "Advanced Microprocessors", Addison-Wesley, 2nd Edition, 1996.
- 4. Triebel, Singh, "The 8088 and 8086 Microprocessors", PHI, 4th Edition 2003.

Web Reference:

- $1. \quad https://www.tutorialspoint.com/microprocessor/microprocessor_io_interfacing_overview.html\\$
- 2. https://www.slideshare.net/VikasGupta319/interfacing-memory-with-8086-microprocessor

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Week	Topics to be covered	Course Learning	Reference
No.		Outcomes (CLOs)	
1	Design and develop an Assembly language program using 8086	CLO 1, CLO 2	T1:1.4
	microprocessor and to show the following aspects.		R1:1.2
	a. Programming		
	b. Execution		
	c. Debugging		
	To Demonstrate the Tool Chain for MASM and Hardware		
	for 8086 Microprocessor		
2	Develop an ALP program to perform 16 Bit arithmetic and	CLO 1, CLO 2	T1:1.5
	logical operations using WIN862 software		R1:2.4
3	Develop an ALP program to perform multi byte addition and	CLO 1, CLO 2,	T1:2.5
	subtraction and 3*3 matrix multiplication and addition	CLO 3	R1:2.5
4	Develop an ALP program to perform ascending order using	CLO 1, CLO 2,	T1:2.5
	8086 descending order using 8086	CLO 4	R1:2.6
5	Develop an ALP program to insert or delete a byte in the given	CLO 1, CLO 2,	T1:22.7
	string. Search a number/character in a given string. Program to	CLO 5	
	move a block of data from one memory location to the other &		
	Write an ALP program for reverse of a given string.		
6	Develop ALP program to convert packed BCD to Unpacked	CLO 1, CLO 2,	T1:6.3
	BCD, BCD to ASCII and hexadecimal to ASCII	CLO 6	R1:5.3

7	Design and develop an ALP program to rotate stepper motor in	CLO 1, CLO 2,	T1:7.5
	clockwise direction as well as anti clock wise direction.	CLO 7	R1:6.3
8	Design and develop a ALP program to convert analog to digital	CLO 1, CLO 2,	T1:8.5
	and digital to analog using 8086	CLO 8	R1:6.8
9	Design and develop an ALP program to interface traffic light	CLO 1, CLO 2,	T1:12.2
	controller and tone generator.	CLO 9	R1:13.1
10	Write an ALP program to interfacing keyboard to 8086	CLO 1, CLO 2,	T1:12.3
		CLO 10	R1:13.2
11	Design and develop a Parallel communication between two	CLO 1, CLO 2,	T1:12.10
	microprocessors using 8255. Serial communication between	CLO 11	R1:13.7
	two microprocessor kits using 8086		
12	Write on AID macrom to interfering Florester to 2006	CLO 1, CLO 2,	T1:13.2
12	Write an ALP program to interfacing Elevator to 8086	CLO 12	R1:10.3
13	Develop and design an ALP program to interfacing lcd display	CLO 1, CLO 2,	T1:13.2
	to 8086	CLO 13	R1:10.4
14	Develop and design an ALP program to interfacing LED display	CLO 1, CLO 2,	T1:13.2
	to 8086	CLO 14	R1:10.5

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S. No	Description	Proposed	Relevance with	Relevance with
		actions	POs	PSOs
1	To improve standards and analyze	Lab Practices	PO 1, PO 2	PSO 1
	the concepts.			
2	Design and develop interfacing	Lab Practices /	PO 3, PO4	PSO 1
	programs with advanced devices	NPTEL		
3	Encourage students to solve real	NPTEL	PO 3, PO 4	PSO 1
	time applications and prepare to			
	wards competitive examinations.			

Prepared by:

Mr. Mohd Khadir, Assistant Professor

HOD, CSE