

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE DESCRIPTOR

Course Title	INTERNET OF THINGS LABORATORY						
Course Code	BPSB10	BPSB10					
Programme	M.Tech	M.Tech					
Semester	I	I EPS					
Course Type	Core						
Regulation	IARE - R18						
	Theory				Practical		
Course Structure	Lectur	es	Tutorials	Credits	Laboratory	Credits	
	-		-	-	4	2	
Chief Coordinator	Dr. P Sri	dha	r ,Professor &H0	DD,EEE			
Course Faculty	Ms. B Na	avot	thna, Assistant P	rofessor			

I. COURSE OVERVIEW:

The main objective of the course is to provide knowledge on internet of things and how important it is in present scenario. IoT is a connecting bridge between physical world and cyber world and Machine to Machine communication i.e. with automation as one subset. IoT refers to uniquely identifiable objects and their virtual representations in an Internet like structure. Measurement of various electrical quantities and functioning of induction motor in the case of over voltage, current is using arduino. Design a relay to protect the home appliances from over currents, under voltages and over voltages.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AEC022	VI	Microcontrollers and Digital Signal Processing	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Internet of Things Laboratory	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	×	Quiz	×	Assignments	×	MOOCs
~	LCD / PPT	×	Seminars	×	Mini Project	×	Videos
✓ Open Ended Experiments							

V. EVALUATION METHODOLOGY:

Each lab will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment. The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being a internal examiner and another is external examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

All the drawing related courses are evaluated in line with lab courses. The distribution shall be 30 marks for internal evaluation (20 marks for day–to–day work, and 10 marks for internal tests) and 70 marks for semester end laboratory examination. There shall be ONE internal test for 10 marks each in a semester.

20 %	To test the preparedness for the experiment.
20 %	To test the performance in the laboratory.
20 %	To test the calculations and graphs related to the concern experiment.
20 %	To test the results and the error analysis of the experiment.
20 %	To test the subject knowledge through viva – voce.

The emphasis on the experiments is broadly based on the following criteria:

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Table 1: Assessment pattern for CIA

Component	L	aboratory	
Type of Assessment	Day to day performance	Final internal lab assessment	Total Marks
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 12th Expt of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

Preparation	Performance	Calculations and Graph	Results and Error Analysis	Viva	Total
2	2	2	2	2	10

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Identify, formulate and solve power system related	2	Discussion
	problems using advanced level computing techniques.		
PO 3	Explore ideas to carry out research / investigation	3	Laboratory Practices
	independently to solve practical problems through		
	continuing education.		
PO 4	Demonstrate knowledge and execute projects on	2	Projects
	contemporary issues in multidisciplinary environment.		
PO 5	Ability to write and present a substantial technical report /	2	Projects
	document.		
PO 6	Inculcate ethics, professionalism, multidisciplinary	2	-
	approach, entrepreneurial thinking and effective		
	communication skills.		
PO 7	Function effectively as an individual or a leader in a team	2	-
	to propagate ideas and promote teamwork.		

3 = High; **2** = Medium; **1** = Low

VII. COURSE OBJECTIVES (COs):

The course should enable the students to:

Ι	Understand the IoT using Arduino programming
Π	Explain the interfacing of data, I/O devices with Arduino UNO
III	Describe the digital protection schemes in power system relays.

VIII. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
BPSB10.01	CLO 1	List out the different IOT applications and importance of IOT in present scenario.	PO3, PO4, PO5	2
BPSB10.02	CLO 2	List the application of Arduino and Node MCU	PO3, PO4, PO5	2
BPSB10.03	CLO 3	Know the different sensors available to measure the current and voltage	PO3, PO4, PO5	2
BPSB10.04	CLO 4	Design the digital voltmeter and ammeter for both AC and DC circuits	PO3, PO4, PO5	2
BPSB10.05	CLO 5	Design a digital frequency meter to measure the frequency in an AC circuit.	PO1, PO3, PO4, PO5	2
BPSB10.06	CLO 6	Measure the power and energy consumption in a home using Arduino	PO3, PO4, PO5	3
BPSB10.07	CLO 7	Measure the power factor and phase angle in an AC circuit using Arduino/Node MCU.	PO1, PO3, PO4, PO5	2
BPSB10.08	CLO 8	Design a system to control the traffic signals through IOT	PO1, PO3, PO4, PO5	2
BPSB10.09	CLO 9	Develop a system to control the direction of three phase induction motor	PO3, PO4, PO5	3
BPSB10.10	CLO 10	Model a system to control the railway gate using stepper motors.	PO3, PO4, PO5	2
BPSB10.11	CLO 11	Know the functioning of relay module and a 3phase contactor.	PO3, PO4, PO5	2
BPSB10.12	CLO 12	Design a system to protect the three phase induction motor from abnormal fault conditions	PO1, PO3, PO4, PO5	2

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
BPSB10.13	CLO 13	Design a system to control the direction and speed of DC motor	PO3, PO4, PO5	3
BPSB10.14	CLO 14	Design a relay to protect the home appliances from over currents, under voltages and over voltages.	PO1, PO3, PO4, PO5	3

3 = High; **2** = Medium; **1** = Low

IX. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning	Program Outcomes (POs)								
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7		
CLO 1			2	2	2				
CLO 2			3	2	2				
CLO 3			2	2	2				
CLO 4	2		2	2	2				
CLO 5			2	2	2				
CLO 6			3	2	2				
CLO 7	2		3	2	2				
CLO 8	2		3	2	2				
CLO 9			3	2	2				
CLO 10			3	2	2				
CLO 11			3	2	2				
CLO 12			2	2	2				
CLO 13			3	2	2				
CLO 14	2		2	2	2				

3 = **High**; **2** = **Medium**; **1** = **Low**

X. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO1, PO3, PO4, PO5 PSO3	SEE Exams	PO1, PO3, PO4, PSO3	Assignments	-	Seminars	-
Laboratory Practices	PO1, PO3, PO4,PSO3	Student Viva	PO1, PO3, PO4, PSO3	Mini Project	-	Certification	-

XI. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	>	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XII. SYLLABUS

	LIST OF EXPERIMENTS				
Expt-1	DESIGN OF DIGITAL DC VOLTMETER AND AMMETER				
	Digital DC Voltmeter and Ammeter to measure the voltage and current in DC electrical circuits ino and display the values in LCD display				
Expt-2	DESIGN OF DIGITAL AC VOLTMETER AND AMMETER				
	igital AC Voltmeter and Ammeter to measure the voltage and current in AC electrical circuits ino and display the values in LCD display.				
Expt-3	DIRECTION CONTROL OF THREE PHASE INDUCTION MOTOR				
Design a s	ystem to control the direction of three phase induction motor through IOT				
Expt-4	DESIGN OF DIGITAL FREQUENCY METER				
	Digital frequency meter to measure the frequency in any AC electrical circuit using Arduino and values in LCD display				
Expt-5	MEASUREMENT OF POWER AND ENERGY				
Measure th	he power and energy in electrical circuit using Arduino and display the values in LCD display				
Expt-6	MEASUREMENT OF PHASE SHIFT AND POWER FACTOR				
	he phase shift and power factor in an electrical circuit for different loads using Arduino and value in LCD display.				
Expt-7	IMPLEMENTATION OF OVER CURRENT RELAY				
	over current relay for distribution system and displaying the tripping status of the relay in hrough IOT				
Expt-8	OVER/UNDER VOLTAGE PROTECTION OF HOME APPLIANCES				
Design a sy	stem to protect home appliances from over and under voltages using Arduino.				
Expt-9	PROTECTION OF THREE PHASE INDUCTION MOTOR				
	rstem for protecting the three phase induction motor from over voltages, over currents, e and displaying the status of the motor at remote location using IOT.				
Expt-10	TRAFFIC SIGNAL CONTROL				
Design a tr	affic control system using IOT				
Expt-11	RAILWAY GATE CONTROL BY STEPPER MOTORS				
Design a ra	ilway gate control using stepper motor using IOT				
Expt-12	DIRECTION AND SPEED CONTROL OF DC MOTOR				
	speed and direction of a DC motor using Arduino and display the status of the motor at the ation using IOT.				

XIII. COURSE PLAN:

Week No.	Topics to be covered	Course Learning Outcomes	Reference
1-3	Introduction to internet of things and arduino	CLO 1	T1
4-5	Understand the applications of various sensors	CLO 2	T1
7-8	Design various direct current instruments using arduino	CLO 4	T1
9-10	Design various alternating current instruments using arduino	CLO 4	T1
11-13	Design a system to control the direction of three phase induction motor through IOT	CLO 9	T1
14-16	Digital frequency meter to measure the frequency in any AC electrical circuit using Arduino	CLO 5	T1
17-19	Measurement of power, energy, phase shift and power factor for different loads using arduino	CLO 6	T2
20-22	Measurement of phase shift and power factor for different loads using arduino	CLO 7	T1
23-24	Design traffic control system using IOT	CLO 8	T1
25-27	Demonstrate the tripping status of the relay in substation through IOT	CLO 11	T2
28-30	Design for protection of home appliances from over and under voltages using Arduino	CLO 14	T2
31-33	Evaluate the program for protecting the three phase induction motor from over voltages, over currents, and displaying the status of the motor at remote location using IOT	CLO 12	T2
33-34	Evaluate the program for protecting the three phase induction motor from temperature and displaying the status of the motor at remote location using IOT	CLO 13	T2
35-36	Design for protection of home appliances from over and under voltages using Arduino	CLO 14	T2

The course plan is meant as a guideline. Probably there may be changes.

XIV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S.NO	DESCRIPTION	PROPOSED ACTIONS	RELEVANCE WITH POs
	Describe the importance of	Discussion	PO1,PO3
1	internet of things in present		
	scenario.		
2	Understand the implementation of	Projects	PO1, PO3
	internet of things using arduino.		
	Analyze the performance of three	Laboratory	PO1, PO3, PO4
3	phase induction motor under over	Practices	
	voltages and currents.		
	Demonstrate a prototype for	Laboratory	PO3, PO5
4	protection of home appliances	Practices	
	from over and under voltages.		

Prepared by:

Ms. B Navothna, Assistant Professor