

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

CIVIL ENGINEERING

COURSE DESCRIPTOR

Course Title	TRANSPORTATION MATERIALS LABORATORY								
Course Code	ACE110	ACE110							
Programme	B.Tech								
Semester	VI CE								
Course Type	Core								
Regulation	IARE - R16								
			Theory	Practical					
Course Structure	Lecture	es	Tutorials	Credits	Laboratory	Credits			
	-		-	-	3	2			
Chief Coordinator	Mr. B Su	resh	, Assistant Profe	essor					
Course Faculty	Dr. Shrut Mr. B. Su	hi K uresl	Kavati, Associate h, Assistant Prof	Professor essor					

I. COURSE OVERVIEW:

The aim of this course is to conduct experiments on basic principles of Transportation materials laboratory and it is further extended to know the values and strengths of materials like bitumen, cement and aggregates. The experiments on Transportation materials testing is been done under different site conditions and environmental conditions. The course deals with equipment like Abrasion test, Specific gravity, fineness of cement, Impact crushing strength. This course includes experiments and practical studies with Cement, Aggregates, sand and Bitumen.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	ACE007	IV	Building Materials Construction and Planning	3
UG	ACE108	V	Concrete Technology Laboratory	2

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks	
Transportation Materials Laboratory	70 Marks	30 Marks	100	

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	>	Quiz	>	Assignments	×	MOOCs			
~	LCD / PPT	7	Seminars	×	Mini Project	~	Videos			
×	Open Ended Experiments									

V. EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

ine emphasis .	sh the enperiments is crowery cused on the rono wing enterior
20 %	To test the preparedness for the experiment.
20 %	To test the performance in the laboratory.
20 %	To test the calculations and graphs related to the concern experiment.
20 %	To test the results and the error analysis of the experiment.
20 %	To test the subject knowledge through viva – voce.

The emphasis on the experiments is broadly based on the following criteria:

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Table 1: Assessment pattern for CIA

Component	Lab	Tetel Meeler		
Type of Assessment	Day to day performance	Final internal lab assessment	Totai Marks	
CIA Marks	20	10	30	

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

Preparation	Performance	Calculations and Graph	Results and Error Analysis	Viva	Total	
2	2	2	2	2	10	

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2	Presentation on real-world problems
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	Presentation on real-world problems
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	1	Seminars

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Engineering knowledge: Graduates shall demonstrate	2	Presentation on
	sound knowledge in analysis, design, laboratory		real-world problems
	investigations and construction aspects of civil engineering		
	infrastructure, along with good foundation in mathematics,		
	basic sciences and technical communication.		
PSO 2	Broadness and diversity: Graduates will have a broad	-	-
	understanding of economical, environmental, societal,		
	health and safety factors involved in infrastructural		
	development, and shall demonstrate ability to function		
	within multidisciplinary teams with competence in modern		
	tool usage.		
PSO 3	Self-learning and service: Graduates will be motivated	-	
	for continuous self-learning in engineering practice and/ or		
	pursue research in advanced areas of civil engineering in		
	order to offer engineering services to the society, ethically		
	and responsibly.		

3 = **High**; **2** = **Medium**; **1** = **Low**

VIII. COURSE OBJECTIVES (COs):

The co	The course should enable the students to:								
Ι	Identify the properties and behavior of highway material for different loading patterns.								
Π	Demonstrate tests on transportation materials like aggregate, bitumen, sand etc. and check their suitability								
III	Understand the properties of cement by conducting setting time, specific gravity and compressive strength tests.								
IV	Understand techniques to characterize various pavement materials through relevant tests.								

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
ACE110.01	CLO 1	Understand the engineering properties of highway materials.	PO1, PO2, PO3	2
ACE110.02	CLO 2	Determination of aggregate crushing test values on highway materials.	PO1, PO2, PO3	2
ACE110.03	CLO 3	Determination of aggregate impact test values on highway materials.	PO1, PO2	2
ACE110.04	CLO 4	Determination of specific gravity and water absorption test	PO1, PO2, PO3	3
ACE110.05	CLO 5	Determination the attrition test on coarse aggregates	PO1, PO2	3
ACE110.06	CLO 6	Perform abrasion test on coarse aggregates	PO1, PO2, PO3	2
ACE110.07	CLO 7	Measurement of percentage of flakiness and elongation in coarse aggregates	PO1, PO2	2
ACE110.08	CLO 8	Determination of Penetration value of bitumen sample.	PO1, PO2	1
ACE110.09	CLO 9	Determination of ductility value of bituminous materials	PO1, PO2, PO3	2
ACE110.10	CLO 10	Determination of softening point value of bituminous materials.	PO2, PO3	3
ACE110.11	CLO 11	Calculate the flash point value of bitumen sample	PO1, PO2	3
ACE110.12	CLO 12	Calculation of normal consistency and fineness of cement	PO1	3
ACE110.13	CLO 13	Calculation of initial setting time and final setting time of cement.	PO2, PO3	2
ACE110.14	CLO 14	Calculation the specific gravity and soundness of cement.	PO1, PO2	2
ACE110.15	CLO 15	Calculation the compressive strength of cement	PO2, PO3	2
ACE110.16	CLO 16	Calculation the compressive strength of concrete	PO1, PO2	2
ACE110.17	CLO 17	Calculation the bulking of sand sample	PO1, PO2	2

IX. COURSE LEARNING OUTCOMES (CLOs):

3 = High; 2 = Medium; 1 = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning	Program Outcomes (POs)												Program Specific Outcomes (PSOs)		
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3	2	1										3		
CLO 2	2	2	1										2		
CLO 3	3	1											2		
CLO 4	2	2	2										2		
CLO 5	3	3											3		
CLO 6	3	2	1										2		

Course Learning	Program Outcomes (POs)									Program Specific Outcomes (PSOs)					
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 7	2	2											2		
CLO 8	2	1											3		
CLO 9	2	2	2										1		
CLO 10		3	3										2		
CLO 11	3	3											1		
CLO 12	3												1		
CLO 13		1	2										1		
CLO 14	2	3											1		
CLO 15		2	1										1		
CLO 16	2	2											1		
CLO 17	2	2											2		

3 = **High**; **2** = **Medium**; **1** = **Low**

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO1,PO2,PO3, PSO1	SEE Exams	PO1,PO2,PO3, PSO1	Assignments	-	Seminars	-
Laboratory Practices	PO1,PO2, PO3	Student Viva	PO1,PO2, PO3	Mini Project	I	Certification	-

XII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

LIST OF EXPERIMENTS						
Week-1	INTRODUCTION TO TRANSPORTATION MATERIALS LABORATORY – I					
Introduction	Introduction to transportation material laboratory. Do's and Don'ts in materials lab.					
Week-2	AGGREGATE CRUSHING STRENGTH TEST					
Batch I: Mea	Batch I: Measurement of Aggregate crushing test.					
Batch II: Measurement of Aggregate crushing test.						

Week-3	AGGREGATE IMPACT TEST						
Batch I: Measurement of Aggregate Impact test							
Batch II: Mea	Isurement of Aggregate Impact test						
Week-4	SPECIFIC GRAVITY AND WATER ABSORPTION TEST						
Batch I: Calco Batch II: Calco	Batch I: Calculation of specific gravity and water absorption test. Batch II: Calculation of specific gravity and water absorption test.						
Week-5	ATTRITION TEST OF COARSE AGGREGATES						
Batch I: Perfo	orm Attrition test of coarse aggregates.						
Week-6	ABRASION TEST OF COARSE AGGREGATES						
Batch I: Perfo	form Abrasion test on coarse aggregates.						
Batch II: Perf	Form Abrasion test on coarse aggregates.						
Week-7	SHAPE TESTS OF COARSE AGGREGATES						
Batch I: Meas	surement of percentage of Flakiness in coarse aggregates.						
Batch II: Mea	surement of percentage of Elongation in coarse aggregates.						
Week-8	PENETRATION TEST OF BITUMINOUS MATERIALS						
Batch I: Find	the Penetration value of bitumen sample.						
Batch II: Find	the Penetration value of bitumen sample.						
Week-9	DUCTILITY TEST OF BITUMINOUS MATERIALS						
Batch I: Find	the Ductility value of bituminous materials						
Batch II: Find	the Ductility value of bituminous materials.						
Week-10	SOFTENING POINT OF BITUMEN MATERIALS						
Batch I: Find Batch II: Find	the softening point value of bituminous materials. I the softening point value of bituminous materials						
WeeK-11	FLASH AND FIRE POINT TEST OF BITUMEN MATERIALS						
Batch I: Find	the flash point value of bitumen sample.						
Week-12	NORMAL CONSISTENCY OF FINENESS OF CEMENT						
Batch I: Perfe	arm test and find the normal consistency of fineness of cement						
Batch II: Perf	form test and find the normal consistency of fineness of cement.						
Week-13	INITIAL SETTING TIME AND FINAL SETTING TIME OF CEMENT						
Batch I: Find	the Initial setting time of cement.						
Batch II: Find	the Final setting time of cement.						
Week-14	SPECIFIC GRAVITY AND SOUNDNESS OF CEMENT						
Batch I: Find	the specific gravity of cement.						
Batch II: Find the soundness of cement.							
Week-15	COMPRESSIVE STRENGTH OF CEMENT						
Batch I: Find	the compressive strength of cement.						
Batch II: Find	the compressive strength of cement.						
Week-16	COMPRESSIVE STRENGTH OF CONCRETE						
Batch I: Find	the compressive strength of concrete.						
Datch II: Find	PULKING OF SAND						
Week-1/	the hulking of sond semple						
Batch II: Find	I the bulking of sand sample.						

XIV. COURSE PLAN:

The course	plan is	meant as a	a guideline.	Probably	there may	be changes.
			0			

Week No.	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Introduction to Transportation materials laboratory	CLO 1	T1, T2
2	Measurement of aggregate crushing strength test.	CLO 1	T1, T2
3	Measurement of aggregate impact test	CLO 2	T1, T2
4	Calculation of specific gravity and water absorption test	CLO 3	T1, T2
5	Perform attrition test of coarse aggregate	CLO 4	T1, T2
6	Perform abrasion test on coarse aggregates	CLO 5	T1, T2
7	Measurement of percentage of flakiness in coarse aggregates.	CLO 6	T1, T2
8	Find the Penetration value of bitumen sample	CLO 7	T1, T2
9	Find the ductility value of bituminous materials.	CLO 8	T1, T2
10	Find the softening point value of bituminous materials.	CLO 9	T1, T2
11	Find the flash point value of bitumen sample	CLO 10	T1, T2
12	Perform test and find the normal consistency of fineness of cement	CLO 11	T1, T2
13	Find the initial setting time of cement	CLO 12	T1, T2
14	Find the specific gravity of cement.	CLO 13	T1, T2
15	Find the compressive strength of cement.	CLO 14	T1, T2
16	Find the compressive strength of concrete.	CLO 15	T1, T2
17	Find the bulking of sand sample.	CLO 16	T1, T2

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	To know about the pavement design analysis.	Open ended problems	PO 1, PO 2	PSO 1
2	To know about the traffic signal coordination	Seminars	PO 2, PO3	PSO 1

Prepared by: Mr. B Suresh, Assistant Professor

HOD, CE