

(Autonomous) Dundigal, Hyderabad -500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE DESCRIPTOR

Course Title	VLSI DES	VLSI DESIGN LABORATORY									
Course Code	AEC117	AEC117									
Programme	B.Tech	B.Tech									
Semester	VII EC	VII ECE									
Course Type	Core	Core									
Regulation	IARE - R1	6									
		Theory		Practi	cal						
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits						
	3	1	4	3	2						
Chief Coordinator	Ms. K S In	drani, Assistant P	rofessor		•						
Course Faculty		y, Associate Profe thi, Assistant Prof									

I. COURSE OVERVIEW:

2000

This laboratory course builds on the lecture course "VLSI Design" which is mandatory for all students of Electronics and Communication Engineering. The course aims at practical experience by analyzing different digital and analog circuits using Cadence tools. This course also provides measurement of different performance parameters of the circuits.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AEC013	IV	Digital system Design	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks	
VLSI Design Laboratory	70 Marks	30 Marks	100	

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	X Quiz		×	Assignments	×	MOOCs				
~	LCD / PPT	★ Seminars		×	X Mini Project		Videos				
×	Open Ended Experime	Open Ended Experiments									

V. EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

The emphasis on the experiments is broadly based on the following criteria:

20 %	To test the preparedness for the experiment.
20 %	To test the performance in the laboratory.
20 %	To test the calculations and graphs related to the concern experiment.
20 %	To test the results and the error analysis of the experiment.
20 %	To test the subject knowledge through viva – voce.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Table 1: Assessment pattern for CIA

Component	ponent Laboratory						
Type of Assessment	Day to day performance	Final internal lab assessment	- Total Marks				
CIA Marks	20	10	30				

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

Preparation	Performance	Calculations and Graph	Results and Error Analysis	Viva	Total	
2	2	2	2	2	10	

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of mathematics,	3	Lab related
	science, engineering fundamentals, and an engineering		Exercises
	specialization to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research literature,	2	Lab related
	and analyze complex engineering problems reaching substantiated		Exercises
	conclusions using first principles of mathematics, natural sciences,		
	and engineering sciences.		
PO 5	Modern tool usage: Create, select, and apply appropriate	2	Lab related
	techniques, resources, and modern engineering and IT tools		Exercises
	including prediction and modeling to complex engineering		
	activities with an understanding of the limitations.		

3 = High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills: An ability to understand the basic	2	Lab related Exercises
	concepts in Electronics & Communication Engineering		
	and to apply them to various areas, like Electronics,		
	Communications, Signal processing, VLSI, Embedded		
	systems etc., in the design and implementation of		
	complex systems.		
PSO 2	Problem-Solving Skills: An ability to solve complex	-	-
	Electronics and communication Engineering problems,		
	using latest hardware and software tools, along with		
	analytical skills to arrive cost effective and appropriate		
	solutions.		
PSO 3	Successful Career and Entrepreneurship: An	-	-
	understanding of social-awareness & environmental-		
	wisdom along with ethical responsibility to have a		
	successful career and to sustain passion and zeal for		
	real-world applications using optimal resources as an		
	Entrepreneur.		

3 = High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES (COs):

The course should enable the students to:							
Ι	Understand the basic concepts about MOS device and inverter characteristics.						
II	Understand the fabrication steps of IC design and design flow of VLSI circuits.						
III	Design the stick diagram and layout of a circuit.						
IV	Design the different MOSFET amplifier circuits.						

IX. COURSE LEARNING OUTCOMES (CLOs):

AEC117.01	CLO 1	To understand output characteristics of an n-		Strength of Mapping	
4.5.0117.02			PO 1	3	
AEC117.02		channel and p-channel MOSFET	PO 5		
AEC117.02	CLO 2	To understand how plot the static (VTC) and	PO 1	3	
		dynamic characteristics of a digital CMOS inverter.	PO 2		
AEC117.03	CLO 3	To understand how plot the output characteristics of	PO 1	3	
		a 3-inverter ring oscillator	PO 5		
AEC117.04	CLO 4	To understand how plot the dynamic characteristics	PO 1	2	
		of 2-input NAND, NOR, XOR and XNOR logic	PO 2		
		gates using CMOS technology.			
AEC117.05	CLO 5	To understand how plot the characteristics of a 4x1	PO 5	2	
		digital multiplexer using pass transistor logic			
AEC117.06	CLO 6	To understand how plot the characteristics of a	PO 1	2	
		positive and negative latch based on multiplexers.	PO 2		
AEC117.07	CLO 7	To understand how plot the characteristics of a	PO 2	2	
		master-slave positive and negative edge triggered	PO 5		
		registers based on multiplexers.			
AEC117.08	CLO 8	To understand how Design and simulation of a	PO 5	2	
		simple 5 transistor differential amplifier. Measure			
		gain, ICMR, and CMRR.			
AEC117.09	CLO 9	To design layout of NMOS and CMOS inverter.	PO 5	2	
AEC117.10	CLO 10	To design the layout of 2-input NAND, NOR gates.	PO 2	2	
AEC117.11	CLO 11	Analysis of Frequency response of Common source	PO 5	1	
		amplifiers			
AEC117.12	CLO 12	Analysis of Frequency response of Common drain	PO 1	3	
AEC117.12		amplifiers.	FUT	3	
AEC117.13	CLO 13	Design and Simulation of Single Stage Cascode	PO 5	2	
		Amplifier.			
AEC117.14	CLO 14	Design and Simulation of Basic Current Mirror, Cascode	PO 5	2	
		Current Mirror Amplifier			
I , ,	3 = High;	2 = Medium; 1 = Low	1		

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning Outcomes	Program Outcomes (POs)									Program Specific Outcomes (PSOs)					
(CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3				2								1		
CLO 2	2	3											1		
CLO 3	3				3								1		
CLO 4	2				2								2		
CLO 5					2								3		
CLO 6	2	2											1		
CLO 7		2			2								2		
CLO 8					2								1		
CLO 9		3			2								2		
CLO 10		2											1		
CLO 11					1								2		
CLO 12	3												2		
CLO 13	3												2		
CLO 14	3												2		

3 = High; **2** = Medium; **1** = Low

XI. ASSESSMENT METHODOLOGIES - DIRECT

CIE Exams	PO 1, PO 2 PO 5	SEE Exams	PO 1, PO 2 PO 5	Assignmen ts	-	Seminars	-
Laboratory Practices	PO 1, PO 2 PO 5	Student Viva	PO 1, PO 2 PO 5	Mini Project	-	Certificati on	-
Term Paper	-						

XII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS :

LIST OF EXPERIMENTS					
Week-1	MOSFET				
To plot the (i) output characteristics(ii) Transfer characteristics of an n-channel and p-channel MOSFET.					
Week-2	CMOS INVERTER				
To design and plot the static (VTC) and dynamic characteristics of a digital CMOS inverter.					
Week-3	RING OSCILLATOR				
To design a	nd plot the output characteristics of a 3-inverter ring oscillator.				
Week-4	LOGIC GATES				
To design an technology.	nd plot the dynamic characteristics of 2-input NAND, NOR, XOR and XNOR logic gates using CMOS				
Week-5	4X1 MULTIPLEXER				
To design a	nd plot the characteristics of a 4x1 digital multiplexer using pass transistor logic.				
Week-6	LATCHES				
To design a	nd plot the characteristics of a positive and negative latch based on multiplexers.				
Week-7	REGISTERS				
	d plot the characteristics of a master-slave positive and negative edge triggered registers based on				
Week-8	DIFFERENTIAL AMPLIFIER				
Design and	simulation of a simple 5 transistor differential amplifier. Measure gain, ICMR, and CMRR.				
Week-9	NMOS INVERTER AND CMOS INVERTER				
To design la	yout of NMOS and CMOS inverter.				
Week-10	LAYOUT OF 2-INPUT NAND, NOR GATES				
To design th	e layout of 2-input NAND, NOR gates.				
Week-11	COMMON SOURCE AMPLIFIER				
Analysis of	Frequency response of Common source amplifiers.				
Week-12	COMMON DRAIN AMPLIFIER				
	Frequency response of Common drain amplifiers.				
Week-13	SINGLE STAGE CASCODE AMPLIFIER				
Design and	Simulation of Single Stage Cascode Amplifier.				
Week-14	BASIC CURRENT MIRROR, CASCODE CURRENT MIRROR AMPLIFIER				
Design and	Simulation of Basic Current Mirror, Cascode Current Mirror Amplifier.				

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Week No.	Topics to be covered	Course Learning Outcomes	Reference
1	Basics of output characteristics of an n- channel and p-channel MOSFET.	CLO 1	T1-2.1 ,2.2
2	Basic operation and static (VTC) and dynamic characteristics of a digital CMOS inverter.	CLO 2	T1-2.1 ,2.2
3	Basic operation and output characteristics of a 3-inverter ring oscillator.	CLO 3	T1-14.2
4	Basic operation and plot the dynamic characteristics of 2-input NAND, NOR, XOR and XNOR logic gates using CMOS technology.	CLO 4	T3-12.1
5	Basic operation and characteristics of a 4x1 digital multiplexer using pass transistor logic.	CLO 5	T3-15.1
6	Basic operation and the characteristics of a positive and negative latch based on multiplexers.	CLO 6	T3-13.3
7	Basic operation and the characteristics of a master-slave positive and negative edge triggered registers based on multiplexers.	CLO 7	T3-15.1
8	Basic operation, Design and simulation of a simple 5 transistor differential amplifier. Measure gain, ICMR, and CMRR.	CLO 8	T1-4.1,4.2
9	Basic operation and layout of NMOS and CMOS inverter.	CLO 9	T1-2.1 ,2.2
10	Basic operation and design the layout of 2-input NAND, NOR gates.	CLO 10	T3-12.1
11	Basic operation and Frequency response of Common source Amplifiers.	CLO 11	T1-3.2
12	Basic operation and Frequency response of Common drain Amplifiers.	CLO 12	T1-3.3
13	Basic operation , design and Simulation of Single Stage Cascode Amplifier.	CLO 13	T1-5.1,5.2
14	Basic operation and Design and Simulation of Basic Current Mirror, Cascode Current Mirror Amplifier	CLO 14	T1-5.1,5.2

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S NO	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	To improve standards and analyze the concepts.	Seminars	PO 1, PO 2	PSO 1
2	Conditional probability, Sampling distribution, correlation, regression analysis and testing of hypothesis	Seminars / NPTEL	PO 2, PO5	PSO 1
3	Encourage students to solve real time applications and prepare towards competitive examinations.	NPTEL	PO 5	PSO 1

Prepared by:

Ms. K S Indrani, Assistant Professor

HOD, ECE