

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

INEEINFORMATION TECHNOLOGY

COURSE DESCRIPTOR

Course Title	LINUX INT	LINUX INTERNALS LABORATORY				
Course Code	AIT105	AIT105				
Programme	B. Tech	B. Tech				
Semester	VI	VI				
Course Type	Core					
Regulation	IARE - R16					
		Theory		Practio	cal	
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits	
	3 1 4 3 2					
Chief Coordinator	Mr.D. Rahul, Assistant Professor, Dept. of IT					
Course Faculty	Mr.A Krishn	a Chaitanya,Ass	istant Professor	r, Dept. of IT		

I. COURSE OVERVIEW:

This course provides a deep understanding of the operating system architecture and low-level interfaces (principally, system calls and library functions) that are required to build system-level, multithreaded, and network applications on Linux and UNIX systems. The course consists of a mixture of detailed presentations coupled with a large number of carefully designed practical exercises that allow participants to apply the knowledge learned in the presentations. By the completion of the course, participants will have the mastery needed to write complex system, network, and multithreaded applications on a Linux or UNIX system.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester Prerequisites		Credits
UG	ACS001	Ι	Computer Programming	4
UG	AIT003	IV	Computer Networks	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Linux Internals	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	×	Quiz	×	Assignments	×	MOOCs
~	LCD / PPT	×	Seminars	×	Mini Project	~	Videos
~	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

20 %	To test the preparedness for the experiment.
20 %	To test the performance in the laboratory.
20 %	To test the calculations and graphs related to the concern experiment.
20 %	To test the results and the error analysis of the experiment.
20 %	To test the subject knowledge through viva – voce.

The emphasis on the experiments is broadly based on the following criteria:

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Component	Laboratory			
Type of Assessment	Day to day performance	Final internal lab assessment	Total Marks	
CIA Marks	20	10	30	

Table 1: Assessment pattern for CIA

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16^{th} week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

Preparation	Performance	Calculations and Graph	Results and Error Analysis	Viva	Total
2	2	2	2	2	10

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an	3	Calculations of the observations
	engineering specialization to the solution of complex engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	Characteristic curves
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Video
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	3	Term observations

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills: The ability to understand, analyze and	3	Characteristic curves
	develop computer programs in the areas related to		
	algorithms, system software, multimedia, web design, big		
	data analytics, and networking for efficient design of		
	computer-based systems of varying complexity.		
PSO 2	Software Engineering Practices: The ability to apply	2	Seminars
	standard practices and strategies in software service		
	management using open-ended programming		
	environments with agility to deliver a quality service for		
	business success.		

3 = High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES (COs):

The co	The course should enable the students to:						
Ι	Familiar with the Linux command-line environment.						
II	Understand system administration processes by providing a hands-on experience.						
III	III Understand Process management and inter-process communications techniques.						

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AIT105.01	CLO 1	Understand the Basic commands of	PO 1	3
		Linux.		
AIT105.02	CLO 2	Understand the Basic commands	PO 1, PO 4	2

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
		like cat, tail.		
AIT105.03	CLO 3	Understand basic shell scripting.	PO 1, PO 2	2
AIT105.04	CLO 4	Understand shell script execution.	PO 1, PO 2	2
AIT105.05	CLO 5	Perform the simulated cat command.	PO 2, PO 3	2
AIT105.06	CLO 6	Perform the simulated head, tail command.	PO 1, PO 5	2
AIT105.07	CLO 7	Perform the simulated mv, nll command	PO 2, PO 5	1
AIT0102.08	CLO 8	Understand the signal handling	PO 2	2
AIT105.09	CLO 9	Test the interprocess communication	PO 1, PO 3	2
AIT105.10	CLO 10	Test the message queues	PO 1	3
AIT105.11	CLO 11	Understand the shared memory from of IPC	PO 1, PO 2	2
AIT105.12	CLO 12	Understand the socket programming	PO 3, PO 5	1

3 = High; **2** = Medium; **1** = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning	Progr Outco	am Sp mes (l	oecific PSOs)											
Outcomes (CLOs)					PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3		3											
CLO 2		2		3								3		
CLO 3			2											
CLO 4	3		2											
CLO 5		2		3								3		
CLO 6			2										2	
CLO 7	3											3		
CLO 8			2									3		
CLO 9	3			3										
CLO 10	3		3											
CLO 11				3								3		
CLO 12		2												
CLO 13			3									3		

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO 1, PO 2 PO 3, PO 5	SEE Exams	PO 1, PO 2 PO 3, PO 5	Assignments	-	Seminars	-
Laboratory Practices	PO 1, PO 2 PO 3, PO 5	Student Viva	PO 1, PO 2 PO 3, PO 5	Mini Project	-	Certification	-

XII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

LIST OF EXPERIMENTS				
Week-1 BASIC COMMANDS I				
Study and Practice on various commands like man, passwd, tty, script, clear, date, cal, cp, mv, ln, rm,				
unlink, mkdir, rmdir, du, df, mount, umount, find, unmask, ulimit, ps, who, w.				
Week -2 BASIC COMMANDS II				
Study and Practice on various commands like cat, tail, head, sort, nl, uniq, grep, egrep, fgrep, cut, paste, join, tee, pg, comm, cmp, diff, tr, awk, tar, cpio.				
Week-3 SHELL PROGRAMMING I				
a) Write a Shell Program to print all .txt files and .c files.				
b) Write a Shell program to move a set of files to a specified directory.				
c) Write a Shell program to display all the users who are currently logged in after a specified time.				
d) Write a Shell Program to wish the user based on the login time.				
Week - 4 SHELL PROGRAMMING II				
 a) Write a Shell program to pass a message to a group of members, individual member and all. b) Write a Shell program to count the number of words in a file. b) Write Shell program to count the number of words in a file. 				
c) Write a Shell program to calculate the factorial of a given number.d) Write a Shell program to generate Fibonacci series.				
Week -5 SIMULATING COMMANDS I				
a) Simulate cat command b) Simulate cp command				
Week-6 SIMULATING COMMANDS II				
a) Simulate tail command b) Simulate head command.				
Week-7 SIMULATING COMMANDS III				
a) Simulate mv command b) Simulate nl command				
Week-8 SIGNAL HANDLING				
Write a program to handle the signals like SIGINT, SIGDFL, SIGIGN				
Week-9 INTERPROCESS COMMUNICATIONS I				
Implement the following IPC forms				
a) FIFO b) PIPE.				
Week-10 MESSAGE QUEUES				
 a) Write a C program (sender.c) to create a message queue with read and write permissions to write 3 messages to it with different priority numbers. 				
b) Write a C program (receiver.c) that receives the messages (from the above message queue as specified and displays them.				

Week -	11 SHARED MEMORY
Implem	ent shared memory form of IPC.
Week -	12 SOCKET PROGRAMMING
a)	Write client and server programs (using c) for interaction between server and client processes using TCP Elementary functions.
b)	Write client and server programs (using c) for interaction between server and client processes using UDP Elementary functions.
Refere	nce Books:
1.	Jiawei Han, Michelin Kamber, "Data Mining-Concepts and techniques", Morgan Kaufmann Publishers, Elsevier, 2 nd Edition, 2006.
2.	Alex Berson, Stephen J.Smith, "Data warehousing Data mining and OLAP", Tata McGraw-Hill, 2 nd Edition, 2007.
Web R	eferences:
1. 2.	Arum K Pujari, "Data Mining Techniques", 3 rd Edition, Universities Press, 2005 PualrajPonnaiah, Wiley, "Data Warehousing Fundamentals", Student Edition, 2004.

Ralph Kimball, Wiley, "The Data warehouse Life Cycle Toolkit", Student Edition, 2004.

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Week	Topics to be covered	Course Learning Outcomes	Reference
No.		(CLOs)	
1	Understand the Basic commands of Linux.	CLO 1, CLO 2	T1:1.4
	Onderstand the Dasie commands of Linux.		R1:1.2
2	Understand the Basic commands like cat, tail.	CLO 1, CLO 2	T1:1.5
	Understand the Basic commands like cat, tan.		R1:2.4
3	Understand basic shell scripting.	CLO 1, CLO 2, CLO 3,	T1:2.5
	Onderstand basic sien scripting.	CLO 4	R1:2.5
4	Understand shell script execution.	CLO 1, CLO 2, CLO 3,	T1:2.5
	onderstand shen seript execution.	CLO 4	R1:2.6
5	Perform the simulated cat command.	CLO 3, CLO 4, CLO 5	T1:22.7
	i oriorni the sindlated cat command.		
6	Perform the simulated head, tail command.	CLO 3, CLO 4, CLO 5,	T1:6.3
		CLO 6	R1:5.3
7	Perform the simulated my, nll command	CLO 3, CLO 4, CLO 5,	T1:7.5
		CLO 6,CLO 7	R1:6.3
8	Understand the signal handling	CLO 1, CLO 2, CLO 8	T1:8.5
	Checistane the signal handling		R1:6.8
9	Test the interprocess communication	CLO 1, CLO 3, CLO 6,	T1:12.2
	Test the interprocess communication	CLO 9	R1:13.1
10	Test the message queues	CLO 8, CLO 9, CLO 10	T1:12.3
	Test the message queues		R1:13.2
11	Understand the shared memory from of IPC	CLO 8, CLO 9, CLO 11	T1:12.10
	Charles stated memory nom of n e		R1:13.7
12	Understand the socket programming	CLO 8, CLO 9, CLO 12	T1:11.2
			R1:10.2

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S NO	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	To improve standards and analyze the concepts.	GuestLecture	PO 1, PO 4	PSO 1
2	Conditional probability, Sampling distribution, correlation,	GuestLecture / NPTEL	PO 4, PO3	PSO 1

	regression analysis and testing of hypothesis			
3	Encourage students to solve real time applications.	NPTEL	PO 2	PSO 1

Prepared by: Mr D Rahul, Assistant Professor, Dept. of IT

HOD,IT