INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

MECHANICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	Mac	hine Dra	wing through CAD	Laboratory		
Course Code	AM	EB07				
Programme	B.Te	ech				
Semester	III	ME				
Course Type	Core	Core				
Regulation	IAR	E - R18				
			Theory		Pract	ical
Course Structure	Le	ctures	Tutorials	Credits	Practical	Credits
		-	-		3	1.5
Chief Coordinator	Dr. G.V.R Seshagiri Rao, Professor					
Course Faculty	Mr.	M. Sunil	Kumar, Assistant P	rofessor		

I. COURSE OVERVIEW:

The primary objective of this course is to study and how to design machine components to explain the underlying principles and to provide insight on the applications of various types of machine components and also to assist students to master the art of computer aided drafting. The comprehensive and practical overview of machine drawing with an aim to serve as source to venture into the thrilling world of computer aided drafting.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AMEB02	II	Engineering graphics and design laboratory	3

III. MARKSDISTRIBUTION

Subject	SEE Examination	CIA Examination	Total Marks
Machine Drawing through CAD Laboratory	70 Marks	30 Marks	100

IV. DELIVERY/INSTRUCTIONAL METHODOLOGIES:

X	CHALK & TALK	X	LCD / PPT	X	OPEN ENDED EXPERIMENTS
۲	LCD/ PPT	~	Seminar	X	Mini Project
X	Open Ended Experiment				

V. EVALUATION METHODOLOGY:

Each laboratory is evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done 20 marks for day to day performance and 10 marks for the final lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall conducted by two examiners, one of them being internal examiners and other being External Examiner both nominated by the principal from the panel of experts recommended by chairman BOS.

20 %	To test the preparedness for the experiment.
20 %	To test the performance in the laboratory.
20 %	To test the calculation and graph related to the concern experiment.
20 %	To test the results and error analysis of the experiment.
20 %	To test the subject knowledge through viva-voce

The emphasis on the questions is broadly based on the following criteria:

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for Continuous Internal Examination

(CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Component	Laborat	Laboratory	
Type of Assessment Day to day performance Final internal lab assessment assessment		Final internal lab assessment	Total Marks
CIA Marks	20	10	30

Table 1: Assessment pattern for CIA

Continuous Internal Examination (CIE):

One CIE examination shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

Preparation	Performance	Calculations and Graph	Results and error analysis	Viva	Total
2	2	2	2	2	2

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	Level	Proficiency Assessed by
PO1	Engineering Knowledge Capability to apply the knowledge of	3	Exercise,
_	mathematics, science and engineering in the field of mechanical		Discussion
	engineering.		and
			Seminars
PO2	Problem Analysis: An ability to analyze complex engineering	3	Exercise
102	problems to arrive at relevant conclusion using knowledge of		and
	mathematics, science and engineering.		Discussion
PO3	Design/development of solutions: Competence to design a	2	Exercise,
	system, component or process to meet societal needs within		Discussion
	realistic constraints.		and
	-		Seminars
PO4	Conduct investigations of complex problems: To design and	3	Lab
101	conduct research oriented experiments as well as to analyze and		Experiments
	implement data using research methodologies.		
PO5	Modern tool usage: An ability to formulate solve complex	2	Seminars
	engineering problem using modern engineering and Information technology tools.		

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Level	Proficiency assessed by
PSO1	Professional Skills: To produce engineering professional	1	
1501	capable of synthesizing and analyzing mechanical systems		
	including allied engineering streams.		
PSO2	Problem solving skills: An ability to adopt and integrate current	1	
1502	technologies in the design and manufacturing domain to enhance		
	the employability.		
DSO3	Successful career and Entrepreneurship: To build the nation,	2	Lab
P303	by imparting technological inputs and managerial skills to		Experiments
	become technocrats.		

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES:

The course should enable the students to:

Ι	Understand Code of drawing practice as per BIS conventions for mechanical elements using AutoCAD.
II	Practice the drawing methods for sectioning of joints, couplings, bearings, keys.
III	Prepare assembly drawings, sectional views and bill of materials for selected assemblies.

IX. COURSE LEARNING OUTCOMES:

Students, who complete the course, will have demonstrated the ability to do the following:

CLO		At the end of the course, the student will have the	PO's	Strength
CLO	CLO's	ability to:	Mapped	of
Coue				Mapping
AMEB07.01	CIO1	Sketch the conventional representation of the machine	PO1	1
AMLD07.01	CLU I	elements		
AMEB07.02	CLO 2	Draw the different types of sectional views.	PO 1	1
AMEB07.03	CLO 3	Understand of various fasteners.	PO 1	1
AMEB07.04	CLO 4	Understand of various joints	PO 1	1

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AMEB07.05	CLO 5	Draw the different types of couplings	PO 2	2
AMEB07.06	CLO 6	Draw the different types of bearings	PO 2	2
AMEB07.07	CLO 7	Creation of working drawings of Machine parts	PO 2	2
AMEB07.08	CLO 8	Create the Assembly drawings	PO 3	3
AMEB07.09	CLO 9	Ability to do part drawing	PO 3	3
AMEB07.10	CLO 10	Assemble the various parts of an engine	PO 4	3

3 = High; **2** = Medium; **1** = Low

X. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning	Program Outcomes (POs)											Program Specific Outcomes (PSOs)			
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3	1			2								1		3
CLO 2	1	3	1										1		3
CLO 3	1	1	3		3								1		1
CLO 4	2				2								2		

3 = **High**; **2** = **Medium**; **1** = Low

XI. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAMOUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning	Program Outcomes (POs)									Program Specific Outcomes (PSOs)					
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3	1											1		
CLO 2	3	1													
CLO 3		3											1		
CLO 4			1										1		
CLO 5		1	1												
CLO 6		1													
CLO 7			1	1											
CLO 8		3		1											
CLO 9		3													3
CLO 10				1											

3 = High; **2** = Medium; **1** = Low

	LIST OF EXERCISES
Week - 1	CONVENTIONAL REPRESENTATION
Conventiona keys, gears,	al representation of materials, common machine elements and parts such as screws, nuts, bolts, webs and ribs; Introduction to AutoCAD.
Week - 2	SECTIONAL VIEWS
Types of sec usually sect	ctions, selection of section planes and drawing of sections and auxiliary sectional views, parts not ioned.
Week - 3	DIMENSIONING
Methods of and tapered	dimensioning, general rules for sizes, and placement of dimensions for holes, centers, and curved features
Week - 4	WORKING DRAWINGS
Types of dra	awings-working drawings for machine parts.
Week - 5	MACHINE ELEMENTS
Drawing of following m and stud bol	machine elements and simple parts; Selection of orthogonal views and additional views for the pachine elements and parts with drawing proportion, popular forms of screw threads, bolts, nuts its.
Week - 6	KEYS AND COTTER JOINTS
Keys, cotter	joints, and knuckle joint.
Week - 7	RIVETED JOINTS
Riveted join	its for plates.
Week - 8	COUPLINGS
Shaft coupli	ngs and spigot joint.
Week - 9	BEARINGS
Journal, piv	ot, and collar bearing.
Week - 10	ASSEMBLY DRAWINGS-ENGINE PARTS
Assembly d Engine parts	rawings Assembly drawings for the following, using conventions and drawing proportions: s-stuffing box.
Week - 11	CONNECTING ROD AND ECCENTRIC
Eccentrics,	I.C. engine connecting rod.
Week - 12	SCREW JACK
Screw jack.	
Week - 13	TAIL STOCK AND MACHINE VICE
Machine vic	ee and tailstock.
Week - 14	SAFETY VALVES
Rams-botto	m Safety Valve, feed check valve.

Page | 5

TEXT BOOKS:

1	K.L. Narayana, P. Kannaiah, K. Venkata Reddy, "Machine Drawing", New Age Publishers, 3 rd Edition, 2012
2	K.C. John, "Text book of Machine Drawing", PHI Eastern Economy, 1st Edition, 2010.
3	P.S Gill, "Machine Drawing", S.K Kataria & Sons, 1 st Edition, 2013

REFERENCES:

1	N. D. Bhatt, V. M Pancahal, "Machine Drawing", Charotar, 1st Edition, 2014.
2	R. K. Dhavan, "A Text book of Machine drawing", S.Chand Publication & Co, New Delhi, 2 nd Edition, 2008.

XIII. COURSE PLAN:

The course plan is meant as a guideline. There may probably be changes.

Exp. No.	Experiment	Program outcomes attained	Reference
1	Conventional representation of materials, machine elements.	PO1, PO4	T1,T2
2	Sectional views.	PO1, PO4	T1,T2
3	Dimensioning	PO1, PO3	T1,T2, R2
4	Working drawing	PO2, PO3	T1,T2
5	Machine Elements	PO1, PO3	T1,T2
6	Keys, cotter and Knuckle Joints	PO1, PO3	T1,T2
7	Riveted Joints	PO2, PO3	T1,T2
8	Coupling	PO1, PO2	T1,T2
9	Bearing	PO1, PO2	T1,T2
10	Assembly Drawing- Engine Parts	PO2, PO3	T1,T2, R2
11	Connecting rod, Eccentric	PO1, PO2	T1,T2, R1
12	Screw jack	PO1, PO3	T1,T2, R1
13	Tail stock and machine vice	PO1, PO4	T1,T2, R1
14	Safety valves	PO1, PO4	T1,T2, R2

XIV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

S. No	Description	Proposed Actions	Relevance With POs	Relevance With PSOs	
1	Understand of part drawing section.	NPTEL & Exercise Practices	PO1, PO2	PSO1	
2	Geometrical tolerances on the drawing.	NPTEL & Exercise Practices	PO1, PO2	PSO1	
3	Introduce of 3D modelling (Isometric Views)	Seminars & Exercise Practice	PO1, PO2	PSO1	

Prepared by:

Dr. G V R Seshagiri Rao, Associate Professor Mr. M Sunil Kumar, Assistant Professor