INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE DESCRIPTOR

Course Title	MICROCONTROLLER AND DIGITAL SIGNAL PROCESSING LABORATORY						
Course Code	AEC02	AEC022					
Programme	B.Tech	B.Tech					
Semester	VI	VI EEE					
Course Type	Core						
Regulation	IARE - R16						
			Theory		Practic	ctical	
Course Structure	Lectur	es	Tutorials	Credits	Laboratory	Credits	
	3		1	4	3	2	
Chief Coordinator	Ms.J. Sravana, Assistant Professor, ECE						
Course Faculty	Ms.J. Sr	avai	na, Assistant Prof	fessor, ECE			

I. COURSE OVERVIEW:

2000

The aim of this course is to conduct experiments on microprocessor and microcontrollers and interfacing 8051 microcontrollers to lcd, keyboard. This course is also useful for learning basic signals by using mat lab software.

II. COURSE PRE-REQUISITES:

Level	Course code	Semester	Prerequisites	Credits
UG	AEC001	III	Electronic Devices and Circuits	4
UG	AEC019	IV	Digital and Pulse Circuits	4
UG	AEC008	V	Integrated Circuits Applications	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total marks
MICROCONTROLLER AND DIGITAL	70 Marks	30 Marks	100
SIGNAL PROCESSING LABORATORY			

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

Х	Chalk & talk	Х	Quiz	Х	Assignments	Х	MOOCs
\checkmark	LCD / PPT	Х	Seminars	Х	Mini project		Videos
\checkmark	Open ended experiments						

V. EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

The emphasis on the experiments is broadly based on the following criteria:

2	20 %	To test the preparedness for the experiment.
2	20 %	To test the performance in the laboratory.
2	20 %	To test the calculations and graphs related to the concern experiment.
2	20 %	To test the results and the error analysis of the experiment.
2	20 %	To test the subject knowledge through viva – voce.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Table 1: Assessment	pattern for CIA

Component	L	aboratory	TatalMasla
Type of Assessment	Day to day performance	Final internal lab assessment	Total Marks
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

Preparation	Performance	Calculations and Graph	Results and Error Analysis	Viva	Total
2	2	2	2	2	10

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	Strength	Proficiency assessed by
PO1	Engineering knowledge: Apply the knowledge of mathematics,	2	Calculations
_	science, engineering fundamentals, and an engineering specialization		of the
	to the solution of complex engineering problems.		observations
PO2	Problem analysis: Identify, formulate, review research literature,	2	Characteristic
102	and analyze complex engineering problems reaching substantiated		curves
	conclusions using first principles of mathematics, natural sciences,		
	and engineering sciences.		

	Program Outcomes	Strength	Proficiency assessed by
PO3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	3	Seminar
PO4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2	Conducting experiments
PO5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	3	Characteristic curves

3= High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Strength	Proficiency assessed by
PSO1	Problem Solving Skills: Exploit the knowledge of high voltage	-	-
	engineering in collaboration with power systems in innovative,		
	dynamic and challenging environment, for the research based team		
	work.		
PSO2	Professional Skills: Identify the scientific theories, ideas,	2	Term
1502	methodologies and the new cutting edge technologies in renewable		observations
	energy engineering, and use this erudition in their professional		
	development and gain sufficient competence to solve the current and		
	future energy problems universally.		
DEO2	Modern Tools in Electrical Engineering To be able to utilize of	-	-
PSO3	technologies like PLC, PMC, process controllers, transducers and		
	HMI and design, install, test, maintain power systems and industrial		
	applications.		
	2 High $2 - Modium (1 - Low)$		

3= High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES :

Tł	The course should enable the students to:			
Ι	Develop ALP for arithmetic and logical operations using 8051			
II	Implement convolution using MATLAB			
III	Implement digital signal processing algorithms using MATLAB			

IX. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Apply a basic concept of digital fundamentals	CLO 1	Understand and Describe the evolution and basic architecture of 8086
	to Microprocessor based personal computer system	CLO 2	Discuss the segmentation and programming model and List out the register organization
		CLO 3	Understand the difference between microprocessors and microcontrollers
CO 2	Describe the architecture and instruction set of 8051 microcontroller	CLO 4	Understand and describe input/output ports of 8051 and register organization

COs	Course Outcome	CLOs	Course Learning Outcome
		CLO 5	Describe different types of memory like special function register for program memory and data memory
		CLO 6	Discuss the addressing modes of 8051 microcontroller
		CLO 7	Discuss the instruction set of 8051 microcontroller
		CLO 8	Develop assembly language program for 8051 based operations.
CO 3	Describe the architecture and instruction set of 8051 microcontroller Design and implement 8051 microcontroller based systems.	CLO 9	Discuss and illustrate the Timers/counters, serial communication
		CLO10	Understand and discuss external memory
CO 4	Analyze the fundamentals and concepts in assess the effect of LTI systems on signals passing through them in frequency and time domains	CLO 11	Understand the frequency domain representation and discrete Fourier transforms
CO 5	Discriminate the Fourier, Laplace and Z-transforms	CLO 12	Understand the FFT and FFT algorithms, inverse FFT and FFT with general radix- N.
	as appropriate for various signals and systems	CLO 13	Analyze and design of FIR digital filters
		CLO 14	Analyze and design of IIR filters and digital filters using window techniques

X. COURSE LEARNING OUTCOMES:

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's mapped	Strength of mapping
AEC022.01	CLO 1	Design and develop an assembly language program using 8086 microprocessor and to show the following aspects, programming execution debugging to demonstrate the tool chain for WIN862 and hardware for 8086 microprocessor.	PO3, PO4	2
AEC022.02	CLO 2	 a)Write an ALP program to perform 8 Bit arithmetic operations using 8051 b)Write an ALP program to perform 16 Bit arithmetic operations using 8051 	PO3, PO4	2
AEC022.03	CLO 3	a)write an ALP program to count the number of ones in any numberb)Write an ALP program to count the number of zeros in any number	PO2, PO4	3

AEC022.04	CLO 4	Write an ALP program and verify timer/counter in 8051	PO1, PO3	3
AEC022.05	CLO 5	Write an ALP program to operate UARE in 8051.	PO3, PO4	2
AEC022.06	CLO 6	Write an ALP program to interface 8051 and keyboard	PO1, PO2	3
AEC022.07	CLO 7	a)write an ALP program to convert analog signal to digital signal using 8051 b)write an ALP program to convert digital signal to analog signal using 8051	PO2, PO4	2
AEC022.08	CLO 8	a)Generation of linear convolution without using built in function in MATLAB b)Generation of circular convolution without using built in function in MATLAB	PO2, PO4	2
AEC022.09	CLO 9	Compute the Discrete Fourier Transform and IDFT with and without fft and ifft in MATLAB	PO3, PO4, PO5	3
AEC022.10	CLO 10	Determination of power spectrum of a given sequence.	PO3, PO4, PO5	3
AEC022.11	CLO 11	Implementation of Decimation-in-time radix- 2 FFT algorithm	PO3, PO5	3
AEC022.12	CLO 12	Implementation of Decimation-in-frequency radix-2 FFT algorithm	PO3, PO4, PO5	3
AEC022.13	CLO 13	Implementation of LP/HP IIR digital filter	PO3, PO5	3
AEC022.14	CLO 14	Implementation of LP/HP FIR digital filter	PO3, PO4, PO5	3

3 = High; 2 = Medium; 1 = Low

XI. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

CLOs				P	rogra	m Ou	tcom	es (Po	Os)				Program Specific Outcomes (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1			2	2											
CLO 2			2	2										2	
CLO 3		3		3											
CLO 4	3		3												
CLO 5			2	2										2	
CLO 6	3	3													
CLO 7		2		2										2	
CLO 8		2		2											
CLO 9			3	2	3									2	
CLO 10			2	3	3									3	
CLO 11			3		3										
CLO 12			3	2	3									2	
CLO 13			2		3										
CLO 14			3	2	3									2	
CLO 15	2														

CLOs	Program Outcomes (POs)								Program Specific Outcomes (PSOs)						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 16		2												2	

3 = High; 2 = Medium; 1 = Low

XII. ASSESSMENT METHODOLOGIES – DIRECT:

CIE Exams	PO1 PO2 PO3 PO4 PO5	SEE Exams	PO1 PO2 PO3 PO4 PO5	Assignments	-	Seminars	-
Laboratory practices	PO1 PO2 PO3 PO4 PO5	Student viva	PO1 PO2 PO3 PO4 PO5	Mini project	-	Certification	-
Term paper	-						

XIII. ASSESSMENT METHODOLOGIES – INDIRECT:

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIV. SYLLABUS:

	LIST OF EXPERIMENTS					
Week-1	DESIGN A PROGRAM USING WIN862 AND 8086 MICROPROCESSOR					
aspects, pro	Design and develop an assembly language program using 8086 microprocessor and to show the following aspects, programming execution debugging to demonstrate the tool chain for WIN862 and hardware for 8086 microprocessor.					
Week-2	8 AND 16 BIT ARITHMETIC OPERATIONS					
a)Write an	ALP program to perform 8 Bit arithmetic operations using 8051					
b)Write an	ALP program to perform 16 Bit arithmetic operations using 8051					
Week-3	NUMBER OF ZEROS AND ONES IN ANY NUMBER					
	ALP program to count the number of ones in any number					
	ALP program to count the number of zeros in any number					
Week-4	TIMER / COUNTER IN 8051					
Write an A	LP program and verify timer/counter in 8051					
Week-5	UART OPERATION IN 8051					
Write an A	ALP program to operate UARE in 8051.					
Week-6	INTERFACE SEVEN SEGMENT DISPLAY					
Write an A	ALP program to interface 8051 and keyboard					
Week-7	ADC, DAC WITH 8051					
a)write an A	ALP program to convert analog signal to digital signal using 8051					
b)write an A	ALP program to convert digital signal to analog signal using 8051					
Week-8	CONVOLUTION					
a)Generatio	n of linear convolution without using built in function in MATLAB					
b)Generatio	on of circular convolution without using built in function in MATLAB					
Week-9	DISCRETE FOURIER TRANSFORM					
Compute t	he Discrete Fourier Transform and IDFT with and without fft and ifft in MATLAB					
Week-10	POWER SPECTRUM					
Determina	tion of power spectrum of a given sequence.					

WeeK-11 DIT - FAST FOURIER TRANSFROM

Implementation of Decimation-in-time radix-2 FFT algorithm

WeeK-12 DIF - FAST FOURIER TRANSFROM

Implementation of Decimation-in-frequency radix-2 FFT algorithm

WeeK-13 IIR FILTER

Implementation of LP/HP IIR digital filter

WeeK-14 FIR FILTER

Implementation of LP/HP FIR digital filter

Text Books:

- 1. Kenneth.J.Ayala. The 8051 microcontroller, 3rd Edition, Cengage learning, 2010.
- 2. D V Hall, "Microprocessors and Interfacing", Tata McGraw-Hill Education, 3rd Edition 2013.
- 3. A K ray and K M Bhurchandani, "Advanced microprocessors and peripherals", Tata McGraw-Hill Education, 2nd Edition 2006

Reference Books:

Fundamentals of Digital signal processing - LoneyLudeman, John wiley, 2009.
 Digital signal processing: fundamentals and applications - Li Tan Elsevier, 2008.

XV. COURSE PLAN:

The course plan is meant as a guideline. There may probably be changes.

Week No	Topics to be covered	Course Learning Outcomes (CLOs)	References
1	Design and develop an assembly language program using 8086 microprocessor and to show the following aspects, programming execution debugging to demonstrate the tool chain for WIN862 and hardware for 8086 microprocessor.	CLO 1	T2: 5.11
2	a)Write an ALP program to perform 8 Bit arithmetic operations using 8051b)Write an ALP program to perform 16 Bit arithmetic operations using 8051	CLO 2	T2: 5.13
3	a)write an ALP program to count the number of ones in any numberb)Write an ALP program to count the number of zeros in any number	CLO 3	T2: 5.14
4	Write an ALP program and verify timer/counter in 8051	CLO 4	T2: 5.20
5	Write an ALP program to operate UARE in 8051.	CLO 5	T2 : 6.11
6	Write an ALP program to interface 8051 and keyboard	CLO 6	T2: 5.19
7	 a)write an ALP program to convert analog signal to digital signal using 8051 b)write an ALP program to convert digital signal to analog signal using 8051 	CLO 7	T2: 5.12
8	a)Generation of linear convolution without using built in function in MATLAB b)Generation of circular convolution without using built in function in MATLAB	CLO 8	T2: 7.3.2
9	Compute the Discrete Fourier Transform and IDFT with and without fft and ifft in MATLAB	CLO 9	T2: 6.12
10	Determination of power spectrum of a given sequence.	CLO 10	T2: 6.15
11	Implementation of Decimation-in-time radix-2 FFT algorithm	CLO 11	T2: 7.16

12	Implementation of Decimation-in-frequency radix-2 FFT algorithm	CLO 12	T2: 7.18
13	Implementation of LP/HP IIR digital filter	CLO 13	T2: 8.19
14	Implementation of LP/HP FIR digital filter	CLO 14	T2: 8.19

XVI. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Signals on IIR and FIR filters MATLAB	NPTEL videos	PO5	PSO2
2	Interfacing of 8051 using keil software	NPTEL videos	PO5	PSO2

Prepared by:

Ms. J. Sravana, Assistant Professor, ECE

HOD, ECE