

**INSTITUTE OF AERONAUTICAL ENGINEERING** 

(Autonomous)

Dundigal, Hyderabad -500 043

# **MECHANICAL ENGINEERING**

# **COURSE DESCRIPTOR**

| Course Title       | MACHINE TOOL                           | MACHINE TOOLS AND METROLOGY LABORATORY                                             |           |         |  |  |
|--------------------|----------------------------------------|------------------------------------------------------------------------------------|-----------|---------|--|--|
| Course Code        | AME110                                 | AME110                                                                             |           |         |  |  |
| Programme          | B. Tech                                | B. Tech                                                                            |           |         |  |  |
| Semester           | V                                      | V                                                                                  |           |         |  |  |
| Course Type        | Core                                   |                                                                                    |           |         |  |  |
| Regulation         | IARE - R16                             | IARE - R16                                                                         |           |         |  |  |
| Course Starsations | Lectures                               | Tutorials                                                                          | Practical | Credits |  |  |
| Course Structure   | -                                      | -                                                                                  | 3         | 2       |  |  |
| Course Coordinator | Dr. K. Ch Apparao, Associate Professor |                                                                                    |           |         |  |  |
| Course Faculty     | Dr. K. Ch Appara<br>Mr. C. Labesh Ku   | Dr. K. Ch Apparao, Associate Professor<br>Mr. C. Labesh Kumar, Assistant Professor |           |         |  |  |

## I. COURSE OVERVIEW:

The primary objective of this course is to create awareness on various machining tools and mechanical measuring instruments to make students familiar with various operations on machine tools to shape metal parts on machines such as lathes, grinders, drill presses, milling machines and shapers. This program includes instruction in safety, making computations related to work dimensions testing feeds and speeds of machines using precision measuring instruments. This course is designed to impart the knowledge to develop measurement procedures, conduct metrological experiments.

### II. COURSE PRE-REQUISITES:

| Level | Course Code | Semester | Prerequisites                       | Credits |
|-------|-------------|----------|-------------------------------------|---------|
| UG    | AME107      | IV       | Production Technology<br>Laboratory | 3       |

### **III. MARKS DISTRIBUTION**

| Subject                                | SEE         | CIA         | Total |
|----------------------------------------|-------------|-------------|-------|
|                                        | Examination | Examination | Marks |
| Machine Tools And Metrology Laboratory | 70<br>Marks | 30<br>Marks | 100   |

# IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| × | Chalk & Talk           | × | Quiz     | × | Assignments  | × | MOOCs  |
|---|------------------------|---|----------|---|--------------|---|--------|
| > | LCD / PPT              | ~ | Seminars | × | Mini Project | ~ | Videos |
| ~ | Open Ended Experiments |   |          |   |              |   |        |

# V. EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

**Semester End Examination (SEE):** The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by the Chairman, BOS.

| 20 % | To test the preparedness for the experiment.                           |
|------|------------------------------------------------------------------------|
| 20 % | To test the performance in the laboratory.                             |
| 20 % | To test the calculations and graphs related to the concern experiment. |
| 20 % | To test the results and the error analysis of the experiment.          |
| 20 % | To test the subject knowledge through viva – voce.                     |

The emphasis on the experiments is broadly based on the following criteria:

### **Continuous Internal Assessment (CIA):**

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

| Table 1. Assessment pattern for CIA |                        |                                  |              |  |  |
|-------------------------------------|------------------------|----------------------------------|--------------|--|--|
| Component                           | Lab                    |                                  |              |  |  |
| Type of Assessment                  | Day to day performance | Final internal lab<br>assessment | l otal Marks |  |  |
| CIA Marks                           | 20                     | 10                               | 30           |  |  |

Table 1: Assessment pattern for CIA

# **Continuous Internal Examination (CIE):**

One CIE exams shall be conducted at the end of the  $16^{th}$  week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

| Preparation | Performance | Calculations<br>and Graph | Results and<br>Error Analysis | Viva | Total |
|-------------|-------------|---------------------------|-------------------------------|------|-------|
| 2           | 2           | 2                         | 2                             | 2    | 10    |

# VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

|     | Program Outcomes                                                                                                                               | Level | Proficiency<br>Assessed by                              |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------|
| PO1 | <b>Engineering Knowledge</b> Capability to apply the knowledge of mathematics, science and engineering in the field of mechanical engineering. | 3     | Calculations<br>of the<br>observations/<br>Student Viva |

|     | Program Outcomes                                                                                                                                                              | Level | Proficiency<br>Assessed by                |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------|
| PO2 | <b>Problem Analysis:</b> An ability to analyze complex engineering problems to arrive at relevant conclusion using knowledge of mathematics, science and engineering.         | 2     | Characteristic<br>curves/<br>Student Viva |
| PO3 | <b>Design/development of solutions:</b> Competence to design a system, component or process to meet societal needs within realistic constraints.                              | 2     | Seminar                                   |
| PO4 | <b>Conduct investigations of complex problems:</b> To design and conduct research oriented experiments as well as to analyze and implement data using research methodologies. | 2     | Term<br>observations/<br>Student Viva     |

# **3** = High; **2** = Medium; **1** = Low

# VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|      | Program Specific Outcomes                                                                                                                                      | Level | Proficiency<br>assessed by                   |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------|
| PSO1 | <b>Professional Skills:</b> To produce engineering professional capable of synthesizing and analyzing mechanical systems including allied engineering streams. | 2     | Seminar                                      |
| PSO2 | <b>Problem solving skills</b> : An ability to adopt and integrate current technologies in the design and manufacturing domain to enhance the employability.    | 2     | Seminar                                      |
| PSO3 | <b>Successful career and Entrepreneurship</b> : To build the nation, by imparting technological inputs and managerial skills to become technocrats.            | 1     | Presentation<br>on<br>real-world<br>problems |

## **3** = High; **2** = Medium; **1** = Low

# VIII. COURSE OBJECTIVES:

| The cou | rse should enable the students to:                                                                          |
|---------|-------------------------------------------------------------------------------------------------------------|
| Ι       | To learn the Step turning and taper turning and thread cutting Drilling and Tapping on<br>the lathe machine |
| II      | To the operations of Shaping and Planing and milling                                                        |
| III     | To learn the measurement of the Angle and tapers by Bevel protractor, Sine bars, etc.                       |

## IX. COURSE OUTCOMES (COs):

| COs  | Course Outcome                                                                                                                                     | CLOs  | Course Learning Outcome                                                               |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------|
| CO 1 | CO 1 Explain metal cutting<br>principles, various materials<br>used for metal cutting and<br>types of lathes and operations<br>performed on lathe. |       | Perform plain turning, step turning and Grooving on a circular rod                    |
|      |                                                                                                                                                    |       | Perform the step turning and taper turning on a circular rod                          |
|      |                                                                                                                                                    |       | Perform thread cutting and knurling on a circular M.S rod and using the lathe machine |
| CO 2 | CO 2 Acquire the basic structure of<br>various machine tool<br>equipment commonly found in<br>industry such as drilling                            | CLO 4 | Drill a hole and perform tapping once given work piece.                               |
|      |                                                                                                                                                    | CLO 5 | Slotting operation on a given specimen                                                |

|      | machines, shaping machines, planning machines, etc.                                                                                  | CLO 6  | Shaping of square block, V- groove                     |
|------|--------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------|
| CO 3 | Identify the fine finishing<br>operations to obtain<br>dimensional accuracy and<br>surface finish                                    | CLO 7  | Surface finish of given work piece                     |
| CO 4 | Apply the concept of system of limits and fits and design                                                                            | CLO 8  | Measure the length and diameter using vernier calipers |
|      | limit gauges.                                                                                                                        | CLO 9  | Determine angle of given specimen                      |
| CO 5 | Measure surface<br>finish, perform alignment test<br>of machine tools and write<br>applications of coordinate<br>measuring machines. | CLO 10 | Perform alignment test on lathe and Milling<br>Machine |

## X. COURSE LEARNING OUTCOMES:

Students, who complete the course, will have demonstrated the ability to do the following:

| CLO Code  | CLO's  | At the end of the course, the student will have<br>the ability to:                    | PO's<br>Mapped | Strength of<br>Mapping |
|-----------|--------|---------------------------------------------------------------------------------------|----------------|------------------------|
| AME110.01 | CLO 1  | perform plain turning, step turning and Grooving on a circular rod                    | PO1            | 1                      |
| AME110.02 | CLO 2  | perform the step turning and taper turning on a circular rod                          | PO 1           | 2                      |
| AME110.03 | CLO 3  | perform thread cutting and knurling on a circular M.S rod and using the lathe machine | PO 1           | 2                      |
| AME110.04 | CLO 4  | drill a hole and perform tapping once given work piece.                               | PO 1           | 1                      |
| AME110.05 | CLO 5  | slotting operation on a given specimen                                                | PO 2           | 2                      |
| AME110.06 | CLO 6  | surface finish of given work piece                                                    | PO 2           | 2                      |
| AME110.07 | CLO 7  | Shaping of square block, V- groove                                                    | PO 2           | 2                      |
| AME110.08 | CLO 8  | measure the length and diameter using vernier calipers                                | PO 3           | 3                      |
| AME110.09 | CLO 9  | determine angle of given specimen                                                     | PO 3           | 2                      |
| AME110.10 | CLO 10 | perform alignment test on lathe and Milling Machine                                   | PO 3           | 2                      |

**3 = High; 2 = Medium; 1 = Low** 

# XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

| Course            |     | Program Ou | utcomes (PC | Program Specific Outcomes(PSOs) |      |      |      |
|-------------------|-----|------------|-------------|---------------------------------|------|------|------|
| Outcomes<br>(COs) | PO1 | PO2        | PO3         | PO4                             | PSO1 | PSO2 | PSO3 |
| CO 1              | 3   |            | 3           | 2                               | 3    |      |      |
| CO 2              | 2   |            | 2           | 2                               |      |      | 2    |
| CO 3              | 3   |            | 3           |                                 |      |      | 2    |
| CO 4              |     | 3          |             | 2                               |      |      |      |
| CO 5              |     | 3          | 3           | 2                               |      |      | 2    |

### XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAMOUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

| Course<br>Learning | Program Outcomes (POs) |     |     |     |     |     |     | Program Specific<br>Outcomes (PSOs) |     |      |      |      |      |      |      |
|--------------------|------------------------|-----|-----|-----|-----|-----|-----|-------------------------------------|-----|------|------|------|------|------|------|
| Outcomes<br>(CLOs) | PO1                    | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8                                 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| CLO 1              | 3                      | 1   | -   | 2   | -   | -   | -   | -                                   | -   | -    | -    | -    | 2    | 2    | -    |
| CLO 2              | 3                      | 1   | -   | 1   | -   | -   | -   | -                                   | -   | -    | -    | -    | 1    | 1    | -    |
| CLO 3              | 3                      | -   | -   | 2   | -   | -   | -   | -                                   | -   | -    | -    | -    | -    | 2    | -    |
| CLO 4              | -                      | 3   | 1   | 2   | -   | -   | -   | -                                   | -   | -    | -    | -    | 1    | 2    | -    |
| CLO 5              | 1                      | 3   | 1   | -   | -   | -   | -   | -                                   | -   | -    | -    | -    | 1    | -    | -    |
| CLO 6              | 1                      | 3   | 1   | -   | -   | -   | -   | -                                   | -   | -    | -    | -    | 2    | 2    | -    |
| CLO 7              | -                      | -   | 2   | -   | -   | -   | -   | -                                   | -   | -    | -    | -    | -    | 1    | -    |
| CLO 8              | 1                      | 2   | 3   | -   | -   | -   | -   | -                                   | -   | -    | -    | -    | 1    | 2    | -    |
| CLO 9              | -                      | -   | 3   | -   | -   | -   | -   | -                                   | -   | -    | -    | -    | 1    | 1    | -    |
| CLO 10             | _                      | 1   | 3   | 2   | -   | -   | -   | -                                   | -   | -    | -    | -    | 2    | -    | -    |

3 = High; 2 = Medium; 1 = Low

# XIII. ASSESSMENT METHODOLOGIES - DIRECT

| CIE Exams               | PO 1, PO 2<br>PO 3, PO 4<br>PSO 1, PSO3 | SEE<br>Exams    | PO 1, PO 2<br>PO 3, PO 4<br>PSO 1, PSO3 | Lab Exercises | PO 1, PO 2<br>PO 3, PO 5<br>PSO 1, PSO3 | Seminars      | - |
|-------------------------|-----------------------------------------|-----------------|-----------------------------------------|---------------|-----------------------------------------|---------------|---|
| Laboratory<br>Practices | PO 1, PO 2<br>PO 3, PO 4<br>PSO 1, PSO3 | Student<br>Viva | PO 1, PO 2<br>PO 3, PO 4<br>PSO 1, PSO3 | Mini Project  | -                                       | Certification | - |

# **XIV. ASSESSMENT METHODOLOGIES - INDIRECT**

| ~ | Early Semester Feedback                | ~ | End Semester OBE Feedback |
|---|----------------------------------------|---|---------------------------|
| × | Assessment of Mini Projects by Experts |   |                           |

### XV. SYLLABUS:

|             | LIST OF EXERCISES                                                            |  |  |  |  |  |
|-------------|------------------------------------------------------------------------------|--|--|--|--|--|
| Week - 1    | LATHE MACHINE                                                                |  |  |  |  |  |
| Step turnin | Step turning, taper turning, Thread cutting and knurling using lathe machine |  |  |  |  |  |
| Week - 2    | DRILLING AND STEP BORING                                                     |  |  |  |  |  |

| Drilling, ta                                      | pping and step boring using drilling machine.                                      |  |  |  |  |  |
|---------------------------------------------------|------------------------------------------------------------------------------------|--|--|--|--|--|
| Week - 3                                          | PLANNING AND SHAPING                                                               |  |  |  |  |  |
| Shaping of                                        | V-groove using shaper                                                              |  |  |  |  |  |
| Week - 4                                          | SLOTTING                                                                           |  |  |  |  |  |
| Slotting of                                       | a keyway using slotter machine.                                                    |  |  |  |  |  |
| Week - 5                                          | MILLING AND SURFACE GRINDING                                                       |  |  |  |  |  |
| Milling of                                        | gear and surface grinding.                                                         |  |  |  |  |  |
| Week - 6                                          | VERNIER CALIPERS AND MICROMETER                                                    |  |  |  |  |  |
| Length, dep                                       | pth, diameter measuring using vernier calipers and micrometer.                     |  |  |  |  |  |
| Week - 7                                          | SCREW THREAD MEASUREMENT                                                           |  |  |  |  |  |
| Screw three                                       | ad measurement by three wire method.                                               |  |  |  |  |  |
| Week - 8                                          | SURFACE ROUGHNESS MEASUREMENT                                                      |  |  |  |  |  |
| Surface rou                                       | ighness by talysurf                                                                |  |  |  |  |  |
| Week - 9                                          | BORE GAUGE                                                                         |  |  |  |  |  |
| Bore measu                                        | urement using bore gauge.                                                          |  |  |  |  |  |
| Week - 10                                         | GEAR TEETH CALIPER/MICROMETER                                                      |  |  |  |  |  |
| Use of gear                                       | r teeth caliper for checking the chordal addendum and chordal height of spur gear. |  |  |  |  |  |
| Week - 11                                         | ANGLE MEASUREMENTS                                                                 |  |  |  |  |  |
| Tool angle                                        | measurements using bevel protractor, sine bar, slip gauges                         |  |  |  |  |  |
| Week - 12                                         | TAPER MEASUREMENTS                                                                 |  |  |  |  |  |
| Taper measurements using Tool Maker's microscope. |                                                                                    |  |  |  |  |  |
| Week - 13                                         | REVIEW                                                                             |  |  |  |  |  |
| Spare sessi                                       | Spare session for additional repetitions and review                                |  |  |  |  |  |
| Week - 14                                         | EXAMINATIONS                                                                       |  |  |  |  |  |

# **TEXT BOOKS:**

| 1 | B. S. Raghu Vamshi, —Workshop Technology Vol – III, 9 <sup>th</sup> Edition, Dhanpat Rai Publishers, New Delhi, India, 2010.                      |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | H.M.T. (Hindustan Machine Tools), —Production Technology, Tata McGraw-Hill Education (P)<br>Ltd, New Delhi, India, 2 <sup>nd</sup> Edition, 1980. |
| 3 | Jain R.K., —Engineering Metrology <sup>  </sup> , Khanna Publishers, 1 <sup>st</sup> Edition, 2005.                                               |

# **REFERENCES:**

| 1 | https://www.ocw.mit.edu/courses/mechanical-engineering/ |
|---|---------------------------------------------------------|
| 2 | http://www.nptel.ac.in/courses/112106138/               |

# XVI. COURSE PLAN:

| Exp.<br>No. | Experiment                               | Program Out<br>comes attained | Program specific<br>Outcomes attained | Reference  |
|-------------|------------------------------------------|-------------------------------|---------------------------------------|------------|
| 1           | Plain turning, step turning and grooving | PO1, PO2, PO4                 | PSO1, PSO2                            | T1, T2     |
| 2           | Step turning and taper turning           | PO1, PO2, PO4                 | PSO1, PSO2                            | T1, T2     |
| 3           | Thread cutting and knurling              | PO2, PO4                      | PSO1, PSO2                            | T1, T2     |
| 4           | Drilling and tapping                     | PO2, PO3                      | -                                     | T1, T2     |
| 5           | Milling machine                          | PO1, PO3                      | PSO1, PSO2                            | T1, T2     |
| 6           | Surface grinding                         | PO1, PO3                      | PSO1, PSO2                            | T1, T2     |
| 7           | Shaping operations                       | PO2, PO3                      | PSO1, PSO2                            | T1, T2     |
| 8           | Vernier calipers                         | PO1, PO2                      | PSO1                                  | T1, T2, T3 |
| 9           | Inside micrometer                        | PO2, PO3                      | PSO1                                  | T1, T2, T3 |
| 10          | Dial bore indicator                      | PO1, PO3                      | PSO1                                  | T1, T2, T3 |
| 11          | Spirit level                             | PO1, PO3                      | PSO1                                  | T1, T2, T3 |
| 12          | Optical bevel protractor                 | PO1, PO2                      | PSO1                                  | T1, T2, T3 |
| 13          | Sine bar                                 | PO1, PO3                      | PSO1                                  | T1, T2, T3 |
| 14          | Alignment test on lathe machine          | PO1, PO4                      | PSO1                                  | T1, T2, T3 |

The course plan is meant as a guideline. There may probably be changed.

# XVII. GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

| S. No | Description                           | Proposed Actions | Relevance With<br>POs | <b>Relevance</b><br>With PSOs |
|-------|---------------------------------------|------------------|-----------------------|-------------------------------|
| 1     | To improve standards and analyze      | Seminars         | PO 1, PO 4            | PSO 1                         |
|       | the concepts.                         |                  |                       |                               |
| 2     | Conditional probability, Sampling     | Seminars / NPTEL | PO 4, PO3             | PSO 1                         |
|       | distribution, correlation, regression |                  |                       |                               |
|       | analysis and testing of hypothesis    |                  |                       |                               |
| 3     | Encourage students to solve real      | NPTEL            | PO 2                  | PSO 1                         |
|       | time applications and prepare         |                  |                       |                               |
|       | towards competitive examinations.     |                  |                       |                               |

Prepared by: Dr. K. Ch Apparao, Associate Professor

HOD, ME