METALLURGY AND MECHANICS OF SOLIDS LABORATORY

III Semester: ME								
Course Code	Category	Hours / Week			Credits	Maximum Marks		
AME104	Core	L	Т	Р	С	CIA	SEE	Total
		-	-	3	2	30	70	100
Contact Classes: Nil	Tutorial Classes: Nil	Practical Classes: 45				Total Classes: 45		

OBJECTIVES:

The course should enable the students to:

- I. Determination of mechanical properties of different materials.
- II. Establish the constitutive relations in metals using destructive methods.
- III. Understand the behavior of members during twisting and transverse loading.
- IV. Familiarize with standard test specimens.
- V. Prepare samples for investigating micro structure of different materials.

COURSE LEARNING OUTCOMES (CLOs):

The students should enable to:

- 1. Able to draw the stress strain diagram of ductile materials.
- 2. Able to draw the stress strain diagram of brittle materials.
- 3. Calculate the ultimate tensile strength , percentage of elongation ,percentage of reduction of area of ductile materials by using UTM.
- 4. Calculate the ultimate tensile strength, percentage of elongation, percentage of reduction of area of brittle materials by using UTM.
- 5. Analyze the applicability and accuracy of numerical solutions to diverse mechanical engineering problems.
- 6. Calculate the modulus of rigidity of a given specimen by using torsion testing machine.
- 7. Able to understand the hardness of copper, mild steel, aluminium and brass materials.
- 8. Able to draw the relation between $T \Theta$ diagram.
- 9. Preparation and study of the microstructure of mild steels, low carbon steels, high-C steels.
- 10. Understand torsion equation of circular shaft which is fixed at one end and free at other end.
- 11. Calculate compressive strength of a given specimen by using compression testing machine.
- 12. Able to prepare and study the micro Structure of pure metals like iron, cu and Al.
- 13. Calculate impact strength of a given specimen.
- 14. Able to understand hardenability of steels by jominy end quench test.
- 15. Analyze the micro structures of cast irons
- 16. Study of the micro structures of non-ferrous alloys
- 17. Study of the micro structures of heat treated steels.
- 18. Analyze the micro structures of non-ferrous alloys
- 19. Able to understand the behavior of spring under gradually applied load.
- 20. Study the variation of stress along the cross section of the beam under uniformly distributed load.

LIST OF EXPERIMENTS

Week-I MICROSTRUCTURE OF PURE METALS

Preparation and study of the micro Structure of pure metals like iron, cu and al.

Week -II MICROSTRUCTURE OF STEELS.

Preparation and study of the microstructure of mild steels, low carbon steels, high–C steels.

Week -III MICROSTRUCTURE OF CAST IRON.

Study of the micro structures of cast irons.

Week -IV MICROSTRUCTURE OF NON FERROUS ALLOYS.
Study of the micro structures of non-ferrous alloys.
Week -V MICROSTRUCTURE OF HEAT TREATED STEELS.
Study of the micro structures of heat treated steels.
Week-VI HARDENABILITY OF STEELS.
Hardenability of steels by Jominy end quench test.
Week -VII HARDNESS OF STEELS.
To find out the hardness of various treated and untreated steels.
Week -VIII TENSION TEST.
To Find % of elongation and young's modulus of a material.
Week-IX TORSION TEST.
To find the torsional rigidity of a material.
Week – X HARDNESS TEST.
a) Brinell's hardness test. b) Rockwell hardness test.
Week -XI SPRING TEST
Testing on compressive and elongation springs.
Week -XII SHEAR TEST AND COMPRESSION TEST
Punch shear test on aluminium sheet. Finfd out the compression strength of a given specimen.
Text Books:
1. Sidney H Avner, "Introduction to Physical Metallurgy", McGraw Hill Education, 2 nd Edition, 2008.
2. William, Callister, "Material Science and Engineering", Wiley, 9 th Edition, 2014.
3. V Raghavan, "Elements of Material Science", PHI Learning Company Pvt Ltd, 6 th Edition, 2015.
Reference Books:
1. Er.Amandeep Singh Wadhva, "Engineering Materials and Metallurgy", Laxmi Publications, 1 st
Edition, 2008.
2. Traugott Fisher, "Material Science", 1 st Edition, Academic Press Elsevier, 2013. Web References:
1. http://www.tutorialspoint.com /MOS lab