INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

MECHANICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	MANUFACTURI	MANUFACTURING PROCESS LABORATORY					
Course Code	AMEB06						
Programme	B.Tech						
Semester	ш	ш					
Course Type	Core	Core					
Regulation	IARE - R18	IARE - R18					
Course Structure	Lectures	Tutorials	Practical	Credits			
Course Structure	-	-	2	1			
Course Coordinator	Mr. G. Aravind Reddy, Assistant Professor						
Course Faculty	Mr. C.Labesh Kur	nar, Assistant Profe	Mr. C.Labesh Kumar, Assistant Professor				

I. COURSE OVERVIEW:

The aim of this course is to conduct experiments chiefly encompasses Metal casting, Welding, Press working and processing of Plastics. It inculcates knowledge and skill to the students starting from preparing a wooden pattern to completion of a casting which also comprises different Sand testing techniques. Also, students can understand broadly Welding and press working skills employed in Industries. One of the most outstanding features of plastics is the ease with which they can be processed. Production Technology lab also throws light on processing of plastics by Blow and Injection moldingmachines.

II.COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AMEB01	II	Workshop Manufacturing Practices Laboratory	1.5

III. MARKSDISTRIBUTION

Subject	SEE	CIA	Total
	Examination	Examination	Marks
Manufacturing ProcessLaboratory	70 Marks	30 Marks	100

Semester End Examination (SEE):

The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the lab courses is divided into fourteen weeks. From 1st to 7th week casting and welding based experiments will be carried out. From 8th to 14thweek Lab view based experiments will be carried out.Among the 14 experiments, one compulsory question without any choice will be given for SEE.

Continuous Internal Examination (CIE):

The CIE exam is conducted for 30 marks for internal evaluation (20 marks for day-to-daywork, and 10 marks for internal tests). There shall be one internal test for 10 marks in the Semester.

III. DELIVERY/INSTRUCTIONAL METHODOLOGIES:

Х	CHALK & TALK	Х	LCD / PPT	X	OPEN ENDED EXPERIMENTS
---	--------------	---	-----------	---	------------------------

IV. ASSESSMENT METHODOLOGIES-DIRECT:

\checkmark	CIE EXAMS	\checkmark	SEE EXAMS	\checkmark	LABORATORY PRACTICES
\checkmark	STUDENT VIVA				

V. ASSESSMENT METHODOLOGIES-INDIRECT:

 ASSESSMENT OF COURSEOUTCOMES (BY FEEDBACK, ONCE)	\checkmark	STUDENT FEEDBACK ON FACULTY (TWICE)
	1	

VI. COURSE OBJECTIVES:

The course should enable the students to:

- I. Understand practical orientation of manufacturing processes.
- **II.** Knowledge on different kinds of production processes and practices available for shaping or molding several daily used parts for industries.
- **III.** Prepare assembly drawings, sectional views and bill of materials for selection of equipments for various manufacturing processes will be understood.

VII. COURSELEARNING OUTCOMES:

Students, who complete the course, will have demonstrated the ability to do the following:

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AMEB06.01	CLO 1	Understand the Pattern design and making, casting drawing.	PO1	1
AMEB06.02	CLO 2	Utilize and determination of Sand properties testing for strengths and permeability	PO 1	1
AMEB06.03	CLO 3	Demonstrate practical understanding moulding and melting and casting	PO 1	1
AMEB06.04	CLO 4	Demonstrate practical understanding of ARCwelding lap and butt joint	PO 1	1
AMEB06.05	CLO 5	Demonstrate practical understanding of Spot welding, TIG welding	PO 2	2
AMEB06.06	CLO 6	Demonstrate practical understanding ofPlasmawelding and brazing (water plasma device).	PO 2	2
AMEB06.07	CLO 7	Understand Blanking and piercing, operationand study of simple, compound and progressive press tool.	PO 2	2
AMEB06.08	CLO 8	Demonstrate practical understanding of Hydraulic press, deep drawing and extrusion operation.	PO 3	3
AMEB06.09	CLO 9	Understand the Bending and other operation	PO 3	3
AMEB06.10	CLO 10	Demonstrate practical understanding Injectionmoulding process	PO 4	3
AMEB06.11	CLO 11	Demonstrate practical understanding Blow moulding process	PO 3	3
AMEB06.12	CLO 12	Demonstrate practical understanding MIG welding exercises and Riveting of plates.	PO 4	3

VIII. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	Level	Proficiency Assessed by
PO1	Engineering Knowledge: Capability to apply the knowledge of mathematics, science and engineering in the field of mechanical engineering.	3	Exercise, Discussion and Seminars
PO2	Problem Analysis: An ability to analyze complex engineering problems to arrive at relevant conclusion using knowledge of mathematics, science and engineering.	3	Exercise and Discussion
PO3	Design/development of solutions : Competence to design a system, component or process to meet societal needs within realistic constraints.	2	Exercise,Discussion and Seminars
PO4	Conduct investigations of complex problems : To design and conduct research oriented experiments as well as to analyze and implement data using research methodologies.	3	Lab Experiments
PO5	Modern tool usage: An ability to formulate solve complex engineering problem using modern engineering and Information technology tools.	2	Seminars

3 = High; 2 = Medium; 1 = Low

IX. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Level	Proficiency assessed by
PSO1	Professional Skills: To produce engineering professional capable of synthesizing and analyzing mechanical systems including allied engineering streams.	0	-
PSO2	Problem solving skills : An ability to adopt and integrate current technologies in the design and manufacturing domain to enhance the employability.	0	-
PSO3	Successful career and Entrepreneurship : To build the nation, by imparting technological inputs and managerial skills to become technocrats.	2	Lab Experiments

3 = High; **2** = Medium; **1** = Low

X. SYLLABUS:

	LIST OF EXERCISES					
Week-1	PATTERN MAKING					
Pattern des	sign and making, casting drawing.					
Week-2	SAND PROPERTIES TESTING					
Sand prop	erties testing for strengths and permeability.					
Week-3	3 METAL CASTING					
Moulding,	melting and casting					
Week-4	Week-4 ARC WELDING					
ARC weld	ARC welding lap and butt joint.					
Week-5	SPOT WELDING					

Spot weldir	Spot welding, TIG welding.				
Week-6	PLASMA WELDING AND BRAZING				
Plasma wel	ding and brazing (water plasma device).				
Week-7	APPLICATION OF SIMPLE AND COMPOUND DIE				
Blanking ar	nd piercing,				
Week-8	APPLICATION OF PROGRESSIVE DIE				
Hydraulic p	press: Operation and study of simple, compound and progressive press tool				
Week-9	MECHANICAL PRESS WORKING				
Bending an	d other operation				
Week-10	PROCESSING OF PLASTICS				
Injection m	oulding.				
Week-11	PROCESSING OF PLASTICS				
Blow mould	Blow moulding				
Week-12	BEYOND SYLLABUS				
Riveting of	Riveting of a plates				
Week-13	EXAMINATIONS				

Reference Books:

- 1. R. K. Jain, "Production Technology", Khanna Publishers, 18th Edition, 2013.
- 2. T. V. RamanaRao, "Metal Casting", New Age, 1st Edition, 2010.
- 3. Philips Rosenthal, "Principles of Metal Castings", TMH, 2nd Edition, 2001.
- 4. B. S.Raghuwamshi, "A Course in Workshop Technology", DhanpatRai& Sons, 2014.
- 5. Kalpakjin S, "Manufacturing Engineering and Technology", Pearson Education, 7th edition,2014.

6. HMT, "Production Technology", McGraw-Hill Education, 1st Edition, 20

Web References:

https://www.iare.ac.in/

XI. COURSE PLAN:

The course plan is meant as a guideline. There may probably be changes.

Exp. No.	Experiment	Program outcomes attained	Program specific outcomes attained	Reference
1	Pattern design and making, casting drawing	PO1, PO4	-	T1,T2
2	Sand properties testing for strengths and permeability	PO1, PO4	-	T1,T2
3	Moulding, melting and casting.	PO1, PO3	-	T1,T2
4	ARC welding lap and butt joint	PO2, PO3	-	T1,T2
5	Spot welding, TIG welding.	PO1, PO3	-	T1,T2
6	Plasma welding and brazing (water plasmadevice).	PO1, PO3	-	T1,T2

7	Blanking and piercing, operation and study of simple, compound and progressive press tool.	PO2, PO3	-	T1,T2
8	Hydraulic press: deep drawing and extrusionoperation.	PO1, PO2	-	T1,T2
9	Bending and other operation.	PO1, PO2	-	T1,T2
10	Injection moulding.	PO2, PO3	PSO 3	T1,T2
11	Blow moulding.	PO1, PO2	-	T1,T2
14	MIG welding exercises and Riveting of a plates	PO1, PO4	-	T1,T2

XII. GAPS IN THE SYLLABUS - TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

S. No	Description	Proposed Actions	Relevance With POs	Relevance With PSOs		
1	To improve standards and analyze the concepts.	Class room teaching, Video Lecture	PO 1, PO 4	PSO 1		

XIII. MAPPING COURSE OBJECTIVES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

	ourse					Prog	gram (Outcor	nes						Progra Specifi Jutcon	ic
Ubj	ectives	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	РО 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
	Ι	3	2	-	-	-	-	-	-	-	-	-	-	-	-	3
	II	2	3	2	-	-	-	-	-	-	-	-	-	-	-	3
	III	2	2	3	2	-	-	-	-	-	-	-	I	-	-	2

XIV. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAMOUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course					Р	rogra	ım Oı	itcom	es				Program Specific Outcomes							
Learning Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3					
AMEB06.01	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-					
AMEB06.02	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-					
AMEB06.03	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-					
AMEB06.04	-	-	2	-	-	-	-	-	-	-	-	-	-	-	-					
AMEB06.05	-	2	2	-	-	-	-	-	-	-	-	-	-	-	-					
AMEB06.06	-	2	-	-	-	-	-	-	-	-	-	-		-	-					
AMEB06.07	-	-	2	2	-	-	-	-	-	-	-	-		-	-					
AMEB06.08	-	3	-	2	-	-	-	-	-	-	-	-	-	-	-					
AMEB06.09	-	3	-	-	-	-	-	-	-	-	-	-	-	-	3					
AMEB06.10	-	-	-	2	-	-	-	-	-	-	-	-	-	-	-					
AMEB06.11	-	2	2	-	-	-	-	-	-	-	-	-	-	-	-					

AMEB06.12	-	2	-	-	-	-	-	_	-	-	-	-		-	-
-----------	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---

XV. DESIGN BASED PROBLEMS (DP) / OPEN ENDED PROBLEM:

- 1. Explore the application of shaping or molding and welding methods
- 2. Develop the components or assembly of components in manufacturing techniques.
- 3. To illustrate new designs by using various manufacturing equipment's in daily used parts for industries

Prepared by: Mr. G. Aravind Reddy, Assistant Professor

HOD, ME