

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTOR

Course Title	ELECTRICA	ELECTRICAL AND ELECTRONICS ENGINEERING LAB				
Course Code	AEE101					
Programme	B. Tech					
Semester	II CS	E IT				
Course Type	Foundation					
Regulation	IARE - R16					
	Theory			Practical		
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits	
	3	1	4	3	2	
Chief Coordinator	Mr. K Lingaswamy, Assistant Professor, EEE					
Course Faculty	Mr. K Lingas Ms. Lekha ch Mr. P Mabu Mr. N Shivap	Mr. K Lingaswamy, Assistant Professor, EEE Ms. Lekha chandran, Associate Professor, EEE Mr. P Mabu Hussain, Assistant Professor, EEE Mr. N Shiyaprasad, Assistant Professor, EEE				

I. COURSE OVERVIEW:

Electrical and electronics engineering laboratory is introduced to get the practical experience on with identification of all the electrical components. It also aims to get the knowledge of the different electronic devices like diodes, rectifiers, transistors and to measure the electrical quantities with different measuring devices and CRO

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AHS006	Ι	Engineering Physics	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA	Total Marks
		Examination	
ELECTRICAL AND ELECTRONICS ENGINEERING LAB	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	×	Quiz	×	Assignments	×	MOOCs
×	LCD / PPT	>	Seminars	×	Mini Project	>	Videos
~	Open Ended Experime	ents					

V. EVALUATION METHODOLOGY:

Marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

20 %	To test the preparedness for the experiment.
20 %	To test the performance in the laboratory.
20 %	To test the calculations and graphs related to the concern experiment.
20 %	To test the results and the error analysis of the experiment.
20 %	To test the subject knowledge through viva – voce.

The emphasis on the experiments is broadly based on the following criteria:

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Table 1: Assessment p	pattern for CIA
-----------------------	-----------------

Component	La		
Type of Assessment	Day to day performance	Final internal lab assessment	Total Marks
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

Preparation	Performance	Calculations and Graph	Results and Error Analysis	Viva	Total
2	2	2	2	2	10

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an	3	Calculations
	engineering specialization to the solution of complex engineering problems.		
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	Videos
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	2	Characteristic curves

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.	2	Analyzing theorems procedure
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	2	MATLAB simulation

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional Skills: The ability to understand, analyze	-	-
	and develop computer programs in the areas related to		
	algorithms, system software, multimedia, web design,		
	big data analytics, and networking for efficient design of		
	computer-based systems of varying complexity.		
PSO 2	Problem-Solving Skills: The ability to apply standard	2	Presentation on
	practices and strategies in software project development		real-world problems
	using open-ended programming environments to deliver		
	a quality product for business success.		
PSO 3	Successful Career and Entrepreneurship: The ability	-	-
	to employ modern computer languages, environments,		
	and platforms in creating innovative career paths to be		
	an entrepreneur, and a zest for higher studies.		

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The co	The course should enable the students to:			
Ι	Analyze basic electrical circuits by implementing different circuits.			
II	Apply circuit theorems to evaluate the behavior of electrical circuits.			
III	Gain knowledge on semiconductor devices like diode and transistor			
IV	Interpret different transistor configurations			

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AEE101.1	CLO 1	Apply Kirchhoff's current and voltage laws to linear electrical circuits using hardware	PO 1, PO 2	3
AEE101.2	CLO 2	Verification of superposition theorem using hardware	PO 1, PO 2	2
AEE101.3	CLO 3	Verification of Thevenin's theorem using hardware	PO 2, PO 3	2
AEE101.4	CLO 4	Verification of Norton's theorem using hardware.	PO 2, PO 3	2

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AEE101.5	CLO 5	Verification of maximum power transfer theorem using hardware	PO 1, PO 4	3
AEE101.6	CLO 6	Apply Kirchhoff's current and voltage laws to linear electrical circuits using digital simulation	PO 1, PO 2, PO 5	3
AEE101.7	CLO 7	Verification of superposition and Thevenin's theorem using digital simulation.	PO 1, PO 2, PO 5	2
AEE101.8	CLO 8	Verification of Norton's theorem and maximum power transfer theorem using digital simulation.	PO 1, PO 2, PO 5	2
AEE101.9	CLO 9	Understand the PN junction diode characteristics	PO 1, PO 2	2
AEE101.10	CLO 10	Understand the zener diode characteristics	PO 1, PO 2	2
AEE101.11	CLO 11	Build half wave and full wave rectifier circuits	PO 1, PO 2, PO 3	2
AEE101.12	CLO 12	Understand transistor common base characteristics	PO 1, PO 2	2
AEE101.13	CLO 13	Understand transistor common emitter characteristics	PO 1, PO 2	2
AEE101.14	CLO 14	Explore the knowledge and skills of employability to succeed in national and international level competitive examinations.	PO 1, PO 2, PO 3, PO 4, PO 5	2

3 = High; 2 = Medium; 1 = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning	Program Outcomes (POs)										Program Specific Outcomes (PSOs)				
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	3	2												3	
CLO 2	3	2													
CLO 3		2	2												
CLO 4		2	2											2	
CLO 5	3			2										2	
CLO 6	2	2			2									2	
CLO 7	2	2			2									2	
CLO 8	2	2			2									1	
CLO 9	2	2												1	
CLO 10	2	2												1	
CLO 11	2	2	2											1	
CLO 12	2	2												1	
CLO 13	2	2												1	
CLO 14	2	2	2	2	2									1	

3 = High; **2** = Medium; **1** = Low

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO 1, PO 2	SEE	PO 1, PO 2	Assignments	-	Seminars	-
	PO 3, PO 4, PO 5	Exams	PO 3, PO 4 , PO 5				
Laboratory	PO 1, PO 2	Student	PO 1, PO 2	Mini	-	Certification	-
Practices	PO 3, PO 4, PO 5	Viva	PO 3, PO 4, PO 5	Project			

XII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

LIST OF EXPERIMENTS								
Week-1	KIRCHOFF'S LAWS							
Practical v	Practical verification of Kirchhoff's current law and voltage law.							
Week-2	SUPERPOSITION THEOREM							
Illustration	Illustration of superposition theorem.							
Week-3	THEVENIN'S THEOREM							
Obtain the	equivalent circuit of the given electrical network using Thevenin's theorem.							
Week-4	NORTON'S THEOREM							
Practical v	erification of Norton's theorem and obtain the equivalent circuit.							
Week-5	MAXIMUM POWER TRANSFER THEOREM							
Verificatio	n of maximum power transfer theorem.							
Week-6	KVL AND KCL							
Verificatio	n of KVL and KCL using digital simulation							
Week-7	DIGITAL SIMULATION OF THEOREMS							
Superposit	Superposition theorem and Thevenins theorem using digital simulation							
Week-8	NORTON'S THEOREM AND MAXIMUM POWER TRANSFER THEOREM							
Norton's th	neorem and maximum power transfer theorem using digital simulation.							
Week-9	P-N JUNCTION DIODE							
Volt Ampe	re characteristics of p-n junction diode.							
Week-10	ZENER DIODE							
Understand	the zener diode characteristics							
WeeK-11	RECTIFIERS							
Build half	Build half wave and full wave rectifier circuits							
Week-12	COMMON BASE TRANSISTOR							
Understand	Understand transistor common base characteristics							
Week-13	COMMON EMITTER TRANSISTOR							
Understand	Understand transistor common emitter characteristics							
Text Books	Text Books:							
1. A Chakrabarthy, "Electric Circuits", DhanipatRai & Sons, 6 th Edition, 2010.								

- 2. C L Wadhwa "Electrical Circuit Analysis including Passive Network Synthesis", New Age International, 2nd Edition, 2009.
- J P J Millman, C C Halkias, Satyabrata Jit, Millman's, "Electronic Devices and Circuits", Tata McGraw Hill, 2nd Edition, 1998.

Reference Books:

- 1. A Sudhakar, Shyammohan S Palli, "Circuits and Networks", Tata McGraw-Hill, 4th Edition, 2009.
- 2. R. L. Boylestad, Louis Nashelsky,"Electronic Devices and Circuits", PEI/PHI, 9th Edition, 2006.
- 3. A. K. Theraja, "Textbook of Electrical Technology", S. Chand, 1st Edition, 2014..
- 4. David A Bell, "Electric circuits", Oxford University Press, 7th Edition, 2009.

Web References:

- 1. https://www.nptel.ac.in/Courses/117106108
- 2. https://www.gnindia.dronacharya.info/EEEDept/labmanuals.html
- 3. https://www.textofvideo.nptel.iitm.ac.in
- 4. https://www.textofvideo.nptel.iitm.ac.in/

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Week	Topics to be covered	Course Learning Outcomes	Reference
No		(CLOs)	
1	Apply Kirchhoff's current and voltage laws to	CLO 1	T1:2.1,
	linear electrical circuits using hardware		R1:1.6
2	Verification of superposition theorem using	CLO 2	T1:3.1,
	hardware		R1:2.8
3	Verification of Thevenin's theorem using	CLO 3	T1:3.2,
	hardware		R1:2.11
4	Verification of Norton's theorem using hardware.	CLO 4	T1:3.3,
			R1:3.4
5	Verification of maximum power transfer theorem	CLO 5	T1:3.4,
	using hardware		R1:3.10
6	Apply Kirchhoff's current and voltage laws to	CLO 6	T1:2.1,
	linear electrical circuits using digital simulation		R1:3.10
7	Verification of superposition and Thevenin's	CLO 7	T1:3.1,
	theorem using digital simulation.		R1:3.10
8	Verification of Norton's theorem and maximum	CLO 8	T1:3.4,
	power transfer theorem using digital simulation.		R1:7.1
9	Understand the PN junction diode characteristics	CLO 9	T3:7.6,
			R2:7.4
10	Understand the zener diode characteristics	CLO 10	T3:7.7,
			R2:7.6
11	Build half wave and full wave rectifier circuits	CLO 11	T3: 7.7,
			R2:7.3
12	Understand transistor common base	CLO 12	ТЗ:7.7.7,
	characteristics		R2:7.3
13	Understand transistor common emitter	CLO 13	Т3:7.7.7,
	characteristics		R2:7.5

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	Include more DC Electrical network	Guest	PO 1, PO 5	PSO 2
	theorems	lectures		

Prepared by:

Mr. K Lingaswamy, Assistant Professor, EEE

HOD, FRESHMAN ENGINEERING