

**INSTITUTE OF AERONAUTICAL ENGINEERING** 

(Autonomous) Dundigal, Hyderabad -500 043

# **ELECTRICAL AND ELECTRONICS ENGINEERING**

# **COURSE DESCRIPTOR**

| Course Title      | POWER SYSTEM COMPUTER AIDED DESIGN LABORATORY |         |                |                |            |         |  |
|-------------------|-----------------------------------------------|---------|----------------|----------------|------------|---------|--|
| Course Code       | AEE11                                         | 3       |                |                |            |         |  |
| Programme         | B.Tech                                        |         |                |                |            |         |  |
| Semester          | VII                                           | VII EEE |                |                |            |         |  |
| Course Type       | Core                                          |         |                |                |            |         |  |
| Regulation        | IARE -                                        | R16     |                |                |            |         |  |
|                   | Theory                                        |         |                |                | Practical  |         |  |
| Course Structure  | Lectu                                         | res     | Tutorials      | Credits        | Laboratory | Credits |  |
|                   | 3                                             |         | 1              | 4              | 3          | 2       |  |
| Chief Coordinator | Mr. A Naresh Kumar, Assistant Professor       |         |                |                |            |         |  |
| Course Faculty    | Mr. A                                         | Nar     | esh Kumar, Ass | istant Profess | sor        |         |  |

## I. COURSE OVERVIEW:

Power System Computer Aided Design Laboratory comprises of protection, simulation, high voltage and machine related experiments. Varieties of Power system Simulation packages like Load flow, PSCAD and MATLAB are available.

## **II.** COURSE PRE-REQUISITES:

| Level | Course Code | Semester | Prerequisites | Credits |
|-------|-------------|----------|---------------|---------|
| UG    | AEE113      | VII      | Power System  | 4       |

## **III. MARKS DISTRIBUTION:**

| Subject                                          | SEE Examination | CIA<br>Examination | Total Marks |
|--------------------------------------------------|-----------------|--------------------|-------------|
| Power System Computer Aided Design<br>Laboratory | 70 Marks        | 30 Marks           | 100         |

## IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

| × | Chalk & Talk           | × | Quiz     | × | Assignments  | × | MOOCs  |
|---|------------------------|---|----------|---|--------------|---|--------|
| ~ | LCD / PPT              | × | Seminars | × | Mini Project | × | Videos |
| × | Open Ended Experiments |   |          |   |              |   |        |

## V. EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

**Semester End Examination (SEE):** The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

| Τ | The emp | hasis | on the | experin | nents i | is broa | dly | based | on the | follov | ving | criteria: |   |
|---|---------|-------|--------|---------|---------|---------|-----|-------|--------|--------|------|-----------|---|
|   |         |       |        |         |         |         |     |       |        |        |      |           | _ |

| 20 % | To test the preparedness for the experiment.                           |
|------|------------------------------------------------------------------------|
| 20 % | To test the performance in the laboratory.                             |
| 20 % | To test the calculations and graphs related to the concern experiment. |
| 20 % | To test the results and the error analysis of the experiment.          |
| 20 % | To test the subject knowledge through viva – voce.                     |

#### **Continuous Internal Assessment (CIA):**

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

| Component          | Component Laboratory   |                                  |              |  |
|--------------------|------------------------|----------------------------------|--------------|--|
| Type of Assessment | Day to day performance | Final internal lab<br>assessment | 1 otal Marks |  |
| CIA Marks          | 20                     | 10                               | 30           |  |

Table 1: Assessment pattern for CIA

#### **Continuous Internal Examination (CIE):**

One CIE exams shall be conducted at the end of the 16<sup>th</sup> week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

| Preparation | Performance | Calculations<br>and Graph | Results and<br>Error Analysis | Viva | Total |
|-------------|-------------|---------------------------|-------------------------------|------|-------|
| 2           | 2           | 2                         | 2                             | 2    | 10    |

## VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

|      | Program Outcomes (POs)                                                                                                                                                                                                                                | Strength | Proficiency assessed by |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------|
| PO 1 | <b>Engineering knowledge:</b> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                               | 3        | Lab related Exercises   |
| PO 2 | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.             | 2        | Lab related Exercises   |
| PO 5 | <b>Modern tool usage</b> : Create, select, and apply<br>appropriate techniques, resources, and modern<br>engineering and IT tools including prediction and<br>modeling to complex engineering activities with an<br>understanding of the limitations. | 2        | Lab related Exercises   |

**3** = High; **2** = Medium; **1** = Low

### VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

|       | Program Specific Outcomes (PSOs)                                                                                                                                                                                                                                                              | Strength | Proficiency assessed by |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------|
| PSO 1 | <b>Professional Skills:</b> An ability to understand the basic concepts in Electronics & Communication Engineering and to apply them to various areas, like Electronics, Communications, Signal processing, VLSI, Embedded systems etc., in the design and implementation of complex systems. | 2        | Lab related Exercises   |
| PSO 2 | <b>Problem-Solving Skills:</b> An ability to solve complex Electronics and communication Engineering problems, using latest hardware and software tools, along with analytical skills to arrive cost effective and appropriate solutions.                                                     | -        | _                       |
| PSO 3 | <b>Successful Career and Entrepreneurship:</b> An understanding of social-awareness & environmental-wisdom along with ethical responsibility to have a successful career and to sustain passion and zeal for real-world applications using optimal resources as an Entrepreneur.              | -        | -                       |

3 = High; 2 = Medium; 1 = Low

# VIII. COURSE OBJECTIVES (COs):

| The course should enable the students to: |                                                                                            |  |  |  |  |
|-------------------------------------------|--------------------------------------------------------------------------------------------|--|--|--|--|
| Ι                                         | Simulate transmission lines using PSCAD software to analyze faults in transmission system. |  |  |  |  |
| II                                        | Demonstrate load flow studies using static load flow methods using MATLAB.                 |  |  |  |  |
| III                                       | Analyze transient state stability in power systems                                         |  |  |  |  |

| CLO<br>Code | CLO's  | At the end of the course, the student will have the ability to:                  | PO's<br>Mapped | Strength of<br>Mapping |
|-------------|--------|----------------------------------------------------------------------------------|----------------|------------------------|
| AEC111.01   | CLO 1  | Understand the MATLAB environment and programming concepts.                      | PO 1<br>PO 5   | 2                      |
| AEC111.02   | CLO 2  | Understand the PSCAD environment.                                                | PO 1<br>PO 2   | 2                      |
| AEC111.03   | CLO 3  | Develop the Transient stability analysis concepts.                               | PO 1<br>PO 5   | 3                      |
| AEC111.04   | CLO 4  | Understand the symmetrical and unsymmetrical faults.                             | PO 1<br>PO 2   | 2                      |
| AEC111.05   | CLO 5  | Understand the load flow studies.                                                | PO 5           | 2                      |
| AEC111.06   | CLO 6  | Understand the transient response of RLC circuit.                                | PO 1<br>PO 2   | 2                      |
| AEC111.07   | CLO 7  | Analyse the transformer inrush current under unbalanced three phase parameters.  | PO 2<br>PO 5   | 2                      |
| AEC111.08   | CLO 8  | Analyse the reactive power and power factor correction.                          | PO 5           | 2                      |
| AEC111.09   | CLO 9  | Analyse the single machine-infinite bus with STATCOM.                            | PO 5           | 2                      |
| AEC111.10   | CLO 10 | Develop the typical transmission line modeling.                                  | PO 2           | 2                      |
| AEC111.11   | CLO 11 | Analyze and develop the frequency response of single and two area power systems. | PO 5           | 1                      |
| AEC111.12   | CLO 12 | Develop a distance protection scheme in long transmission line.                  | PO 1           | 3                      |

# IX. COURSE LEARNING OUTCOMES (CLOs):

3 = High; 2 = Medium; 1 = Low

## X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

| Course<br>Learning | Program Outcomes (POs) |     |     |     |     |     |            |     | Program Specif<br>Outcomes (PSC |      | pecific<br>PSOs) |      |      |      |      |
|--------------------|------------------------|-----|-----|-----|-----|-----|------------|-----|---------------------------------|------|------------------|------|------|------|------|
| Outcomes<br>(CLOs) | PO1                    | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9                             | PO10 | PO11             | PO12 | PSO1 | PSO2 | PSO3 |
| CLO 1              | 3                      |     |     |     | 2   |     |            |     |                                 |      |                  |      | 1    |      |      |
| CLO 2              | 2                      | 3   |     |     |     |     |            |     |                                 |      |                  |      | 1    |      |      |
| CLO 3              | 3                      |     |     |     | 3   |     |            |     |                                 |      |                  |      | 1    |      |      |
| CLO 4              | 2                      |     |     |     | 2   |     |            |     |                                 |      |                  |      | 2    |      |      |
| CLO 5              |                        |     |     |     | 2   |     |            |     |                                 |      |                  |      | 3    |      |      |
| CLO 6              | 2                      | 2   |     |     |     |     |            |     |                                 |      |                  |      | 1    |      |      |
| CLO 7              |                        | 2   |     |     | 2   |     |            |     |                                 |      |                  |      | 2    |      |      |
| CLO 8              |                        |     |     |     | 2   |     |            |     |                                 |      |                  |      | 1    |      |      |
| CLO 9              |                        | 3   |     |     | 2   |     |            |     |                                 |      |                  |      | 2    |      |      |
| CLO 10             |                        | 2   |     |     |     |     |            |     |                                 |      |                  |      | 1    |      |      |
| CLO 11             |                        |     |     |     | 1   |     |            |     |                                 |      |                  |      | 2    |      |      |

| Course<br>Learning | Program Outcomes (POs) |     |     |     |     |     |            |            | Program Specific<br>Outcomes (PSOs) |      |      |      |      |      |      |
|--------------------|------------------------|-----|-----|-----|-----|-----|------------|------------|-------------------------------------|------|------|------|------|------|------|
| Outcomes<br>(CLOs) | PO1                    | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | <b>PO8</b> | PO9                                 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| CLO 12             | 3                      |     |     |     |     |     |            |            |                                     |      |      |      | 2    |      |      |

**3** = High; **2** = Medium; **1** = Low

# XI. ASSESSMENT METHODOLOGIES – DIRECT

| CIE Exams               | PO 1,PO 2,PO 5 | SEE<br>Exams    | PO 1,PO 2,PO 5 | Assignments     | - | Seminars      | - |
|-------------------------|----------------|-----------------|----------------|-----------------|---|---------------|---|
| Laboratory<br>Practices | PO 1,PO 2,PO 5 | Student<br>Viva | PO 1,PO 2,PO 5 | Mini<br>Project | - | Certification | - |
| Term Paper              | -              |                 |                |                 |   |               |   |

# XII. ASSESSMENT METHODOLOGIES - INDIRECT

| ~ | Early Semester Feedback                | ~ | End Semester OBE Feedback |
|---|----------------------------------------|---|---------------------------|
| × | Assessment of Mini Projects by Experts |   |                           |

# XIII. SYLLABUS

| LIST OF EXPERIMENTS    |                                                                                                                                         |  |  |  |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Week-1                 | FORMATION OF BUS ADMITTANCE AND IMPEDANCE MATRICES                                                                                      |  |  |  |  |
| Formation building al  | Formation of bus admittance matrices by adding one element at a time and also write a program for Zbus building algorithm using MATLAB. |  |  |  |  |
| Week-2                 | LOAD FLOW SOLUTION USING GAUSS SEIDEL METHOD                                                                                            |  |  |  |  |
| Write a M.<br>Method.  | Write a MATLAB program for load flow studies without and with generator buses using Gauss Seidel Method.                                |  |  |  |  |
| Week-3                 | LOAD FLOW SOLUTION USING NEWTON RAPHSON AND FDLF METHOD                                                                                 |  |  |  |  |
| Write a M<br>(FDLF) m  | Write a MATLAB program for load flow studies using Newton Raphson and Fast Decoupled Load Flow (FDLF) method.                           |  |  |  |  |
| Week-4                 | POWER SYSTEM FAULT ANALYSIS                                                                                                             |  |  |  |  |
| Analysis o             | f symmetrical and unsymmetrical faults using symmetrical components using MATLAB.                                                       |  |  |  |  |
| Week-5                 | POINT BY POINT METHOD                                                                                                                   |  |  |  |  |
| Developm<br>multi macl | ent of MATLAB program for Transient stability analysis of single machine infinite bus and hine system by point by point method.         |  |  |  |  |
| Week-6                 | TRANSIENT RESPONSE OF RLC CIRCUIT                                                                                                       |  |  |  |  |
| Obtain trai            | nsient response of RLC circuit using PSCAD.                                                                                             |  |  |  |  |
| Week-7                 | THREE PHASE SHORT CIRCUIT ANALYSIS IN A SYNCHRONOUS MACHINE                                                                             |  |  |  |  |
| Analyze sy             | Analyze symmetrical faults and short circuit studies in a given synchronous machine using PSCAD.                                        |  |  |  |  |
| Week-8                 | Week-8 STUDY OF TRANSMISSION SYSTEM AND SHORT CIRCUIT ANALYSIS OF 9<br>BUS SYSTEM                                                       |  |  |  |  |
| Study of si<br>PSCAD.  | imple transmission system and also Perform short circuit analysis on IEEE 9 bus system using                                            |  |  |  |  |

| Week-9                                                     | TRANSFORMER INRUSH CURRENT                                                                       |  |  |  |  |  |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Determina                                                  | Determination of transformer inrush current under unbalanced three phase parameters using PSCAD. |  |  |  |  |  |
| WeeK-10                                                    | SMALL SIGNAL STABILITY ANALYSIS                                                                  |  |  |  |  |  |
| Developm                                                   | ent of PSCAD Model for stability analysis of single machine-infinite bus with STATCOM.           |  |  |  |  |  |
| Week-11                                                    | TRANSMISSION LINE PARAMETERS                                                                     |  |  |  |  |  |
| Obtaining p                                                | Obtaining parameters of a typical transmission line and modelling it in PSCAD.                   |  |  |  |  |  |
| Week 12                                                    | LOAD FREQUENCY CONTROL                                                                           |  |  |  |  |  |
| Obtain the                                                 | frequency response of single and two area power system using PSCAD.                              |  |  |  |  |  |
| Week 13                                                    | POWER QUALITY                                                                                    |  |  |  |  |  |
| Familiariza                                                | tion with PSCAD and Understanding of                                                             |  |  |  |  |  |
| a) Rea                                                     | ctive power and power factor correction in AC circuits.                                          |  |  |  |  |  |
| b) Current harmonics drawn by power electronics interface. |                                                                                                  |  |  |  |  |  |
| Week 14                                                    | 4 DISTANCE PROTECTION                                                                            |  |  |  |  |  |
| Developme                                                  | nt of PSCAD model to study the distance protection scheme in long transmission line.             |  |  |  |  |  |

# XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

| Week<br>No. | Topics to be covered                                                                                                                                  | Course Learning<br>Outcomes | Reference           |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------|
| 1           | Formation of bus admittance matrices by adding one<br>element at a time and also write a program for Zbus<br>building algorithm using MATLAB          | CLO 1                       | T1-2.1 to 2.7       |
| 2           | Write a MATLAB program for load flow studies<br>without and with generator buses using Gauss Seidel<br>Method.                                        | CLO 1                       | T1-20.1 to 20.2     |
| 3           | Write a MATLAB program for load flow studies using<br>Newton Raphson and Fast Decoupled Load Flow<br>(FDLF) method.                                   | CLO 2                       | T1-8.1 to 8.2       |
| 4           | Analysis of symmetrical and unsymmetrical faults using symmetrical components using MATLAB.                                                           | CLO 3                       | T1–8.3 to<br>8.7    |
| 5           | Development of MATLAB program for Transient<br>stability analysis of single machine infinite bus and<br>multi machine system by point by point method | CLO 4                       | T1-10.1 to<br>10.10 |
| 6           | Obtain transient response of RLC circuit using PSCAD.                                                                                                 | CLO 5                       | T1-10.11<br>to10.13 |
| 7           | Analyze symmetrical faults and short circuit studies in a given synchronous machine using PSCAD.                                                      | CLO 6                       | T1-11.1 to<br>11.5  |
| 8           | Study of simple transmission system and also Perform<br>short circuit analysis on IEEE 9 bus system using<br>PSCAD.                                   | CLO 7                       | T1 –11.12           |
| 9           | Determination of transformer inrush current under<br>unbalanced three phase parameters using PSCAD.                                                   | CLO 8                       | T1–17.1 to<br>17.6  |
| 10          | Development of PSCAD Model for stability analysis of single machine-infinite bus with STATCOM.                                                        | CLO 9                       | T1–14.1 to<br>14.3  |
| 11          | Obtaining parameters of a typical transmission line and modelling it in PSCAD.                                                                        | CLO 10                      | T1-14.9             |
| 12          | Obtain the frequency response of single and two area power system using PSCAD                                                                         | CLO 11                      | T1-19.1 to<br>19.3  |
| 13          | Familiarization with PSCAD and Understanding of<br>a) Reactive power and power factor correction in AC                                                | CLO 12                      | T1–17.1 to<br>17.6  |

| Week<br>No. | Topics to be covered                                                                           | Course Learning<br>Outcomes | Reference          |
|-------------|------------------------------------------------------------------------------------------------|-----------------------------|--------------------|
|             | <ul><li>circuits.</li><li>b) Current harmonics drawn by power electronics interface.</li></ul> |                             |                    |
| 14          | Development of PSCAD model to study the distance protection scheme in long transmission line.  | CLO 12                      | T1–14.1 to<br>14.3 |

# XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

| S NO | Description                                                                                                         | Proposed<br>actions | Relevance with<br>POs | Relevance with<br>PSOs |
|------|---------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------|------------------------|
| 1    | To improve standards and analyze the concepts.                                                                      | Seminars            | PO 1, PO 2            | PSO 1                  |
| 2    | Conditional probability, Sampling<br>distribution, correlation,<br>regression analysis and testing of<br>hypothesis | Seminars /<br>NPTEL | PO 2, PO5             | PSO 1                  |
| 3    | Encourage students to solve real<br>time applications and prepare<br>towards competitive<br>examinations.           | NPTEL               | PO 5                  | PSO 1                  |

**Prepared by:** Mr. A Naresh Kumar, Assistant Professor

HOD, EEE