

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad -500 043

ELECTRICAL AND ELECTRONIC ENGINEERING

COURSE DESCRIPTOR

Course Title	SOLID ST	SOLID STATE ELECTRIC MOTOR DRIVES LABORATORY				
Course Code	AEE109					
Programme	B.Tech	B.Tech				
Semester	VI EE	VI EEE				
Course Type	Core					
Regulation	IARE - R16					
	Theory Practical					
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits	
	3	1	4	3	2	
Chief Coordinator	Mr. S. Srikanth, Assistant Professor					
Course Faculty		alidhar Nayak, Pro anth, Assistant Pro				

I. COURSE OVERVIEW:

The aim of this course is to conduct experiments on AC and DC drives. Control of DC motor drives with single phase and three phase converters and choppers are to be studied. The control of AC motor drives with variable frequency converters and variable voltage are to be conducted.

II. COURSE PRE-REQUISITES:

Level	Course code	Semester	Prerequisites	Credits
	AEE004	III	DC Machines	4
UG	AEE007	IV	AC Machines	4
	AEE010	V	Power Electronics	4

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total marks
Solid state electric motor drives laboratory	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

X	Chalk & talk	X	Quiz	X	Assignments	X	MOOCs
	LCD / PPT	X	Seminars	X	Mini project	X	Videos
	Open ended experiments						

V. EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

The emphasis on the experiments is broadly based on the following criteria:

20 %	To test the preparedness for the experiment.		
20 %	To test the performance in the laboratory.		
20 %	To test the calculations and graphs related to the concern experiment.		
20 %	To test the results and the error analysis of the experiment.		
20 %	To test the subject knowledge through viva – voce.		

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Table 1: Assessment pattern for CIA

Component	La	Laboratory	
Type of Assessment	Day to day performance	Final internal lab assessment	Total Marks
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

Preparation	Performance	Calculations and Graph	Results and Error Analysis	Viva	Total
2	2	2	2	2	10

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes	Strength	Proficiency assessed by
PO1	Engineering knowledge: Apply the knowledge of mathematics,	2	Calculations
	science, engineering fundamentals, and an engineering specialization		of the
	to the solution of complex engineering problems.		observations
PO2	Problem analysis: Identify, formulate, review research literature,	2	Characteristic
102	and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences,		curves
	and engineering sciences.		

	Program Outcomes	Strength	Proficiency assessed by
PO3	Design/development of solutions: Design solutions for complex	3	Seminar
	engineering problems and design system components or processes		
	that meet the specified needs with appropriate consideration for the		
	public health and safety, and the cultural, societal, and		
	environmental considerations.		
PO4	Conduct investigations of complex problems: Use research-based	2	Conducting
101	knowledge and research methods including design of experiments,		experiments
	analysis and interpretation of data, and synthesis of the information		
	to provide valid conclusions.		
PO5	Modern tool usage: Create, select, and apply appropriate	3	Characteristic
	techniques, resources, and modern engineering and IT tools		curves
	including prediction and modeling to complex engineering activities		
	with an understanding of the limitations.		

³⁼ High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes	Strength	Proficiency assessed by
PSO1	Problem Solving Skills: Exploit the knowledge of high voltage	-	-
	engineering in collaboration with power systems in innovative,		
	dynamic and challenging environment, for the research based team		
	work.		
PSO2	Professional Skills: Identify the scientific theories, ideas,	2	Term
1502	methodologies and the new cutting edge technologies in renewable		observations
	energy engineering, and use this erudition in their professional		
	development and gain sufficient competence to solve the current and		
	future energy problems universally.		
PSO3	Modern Tools in Electrical Engineering To be able to utilize of	-	-
PSU3	technologies like PLC, PMC, process controllers, transducers and		
	HMI and design, install, test, maintain power systems and industrial		
	applications.		

3= High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES:

Th	The course should enable the students to:				
I	Apply principles of power electronics in speed control of various drives.				
II	Demonstrate the concept of four quadrant operations of drives.				
III	Discuss various drives used in industries to control torque and speed.				

IX. COURSE OUTCOMES(COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Analyze the speed control of DC motors using	CLO 1	Understand the speed control of DC shunt motor using single phase rectifier.
	rectifiers	CLO 2	Analyze the speed control of DC separately excited shunt motor using three phase rectifier.
		CLO 3	Demonstrate the speed measurement and closed loop control of PMDC motor using thyristorized drive.
CO 2	Describe the speed control of DC motor and	CLO 4	Understand the four quadrant operation of PMDC motor using chopper.
	induction motor with	CLO 5	Describe the speed control of induction motor using AC voltage controller.

COs	Course Outcome	CLOs	Course Learning Outcome
	various converters	CLO 6	Describe the study of DC Jones Chopper circuit
CO 3	Understand the speed control of DC motor and	CLO 7	Analyze the speed control of DC motor with external contacts and potentiometer arrangement
	synchronous motor with various converters	CLO 8	Understand the speed control of Synchronous motor with Variable Frequency Drive
CO 4	Demonstrate the speed control of special motors	CLO 9	Analyze the stepper motor speed control using digital simulation
	using power electronic converters with digital	CLO 10	Demonstrate the universal motor speed control using digital simulation
	simulation	CLO 11	Describe the SVPWM VSI fed induction motor drive simulation using MATLAB.
CO 5	Analyze the speed control of DC motors and	CLO 12	Understand the direct torque control of induction motor drive simulation using MATLAB.
	induction motor using power electronic converters with digital	CLO 12	Analyze the four quadrant operation of DC drives with three phase converter simulation using MATLAB.
	simulation	CLO 14	Demonstrate the simulation of BLDC motor drive using MATLAB

X. COURSE LEARNING OUTCOMES:

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's mapped	Strength of mapping
AEE109.01	CLO 1	Understand the speed control of DC shunt motor using single phase rectifier.	PO3, PO4	2
AEE109.02	CLO 2	Analyze the speed control of DC separately excited shunt motor using three phase rectifier.	PO3, PO4	2
AEE109.03	CLO 3	Demonstrate the speed measurement and closed loop control of PMDC motor using thyristorized drive.	PO2, PO4	3
AEE109.04	CLO 4	Understand the four quadrant operation of PMDC motor using chopper.	PO1, PO3	3
AEE109.05	CLO 5	Describe the speed control of induction motor using AC voltage controller.	PO3, PO4	2
AEE109.06	CLO 6	Describe the study of DC Jones Chopper circuit	PO1, PO2	3
AEE109.07	CLO 7	Analyze the speed control of DC motor with external contacts and potentiometer arrangement	PO2, PO4	2
AEE109.08	CLO 8	Understand the speed control of Synchronous motor with Variable Frequency Drive	PO2, PO4	2
AEE109.09	CLO 9	Analyze the stepper motor speed control using digital simulation	PO3, PO4, PO5	3
AEE109.10	CLO 10	Demonstrate the universal motor speed control using digital simulation	PO3, PO4, PO5	3
AEE109.11	CLO 11	Describe the SVPWM VSI fed induction motor drive simulation using MATLAB.	PO3, PO5	3
AEE109.12	CLO 12	Understand the direct torque control of induction motor drive simulation using MATLAB.	PO3, PO4, PO5	3
AEE109.13	CLO 13	Analyze the four quadrant operation of DC drives with three phase converter simulation using MATLAB.	PO3, PO5	3
AEE109.14	CLO 14	Demonstrate the simulation of BLDC motor drive using MATLAB	PO3, PO4, PO5	3

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's mapped	Strength of mapping
AEE109.15	CLO 15	Apply the concept of solid state electric	PO1, PO2	2
		drives to solve real time world applications		
AEE109.16	CLO 16	Explore the knowledge and skills of	PO1, PO2	2
		employability to succeed in national and		
		international level competitive examinations		

^{3 =} High; 2 = Medium; 1 = Low

XI. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

Course	Program Outcomes (POs)									
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5					
CO 1		2	2	2						
CO 2	2	2	2	1						
CO 3		2		2						
CO 4			2	2	2					
CO 5	1		2	2	3					

3 = High; 2 = Medium; 1 = Low

XII. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

CLOs	Program Outcomes (POs)								Program Specific Outcomes (PSOs)						
2205	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1			2	2											
CLO 2			2	2										2	
CLO 3		3		3											
CLO 4	3		3												
CLO 5			2	2										2	
CLO 6	3	3													
CLO 7		2		2										2	
CLO 8		2		2											
CLO 9			3	2	3									2	
CLO 10			2	3	3									3	
CLO 11			3		3										
CLO 12			3	2	3									2	
CLO 13			2		3										
CLO 14			3	2	3									2	
CLO 15	2														
CLO 16		2												2	

3 = High; 2 = Medium; 1 = Low

XIII. ASSESSMENT METHODOLOGIES – DIRECT:

CIE Exams	PO1, PO2, PO3, PO4, PO5	SEE Exams	PO1, PO2, PO3, PO4, PO5	Assignments	ı	Seminars	ı
Laboratory practices	PO1, PO2, PO3, PO4, PO5	Student viva	PO1, PO2, PO3, PO4, PO5	Mini project	ı	Certification	-
Term paper	-						

XIV. ASSESSMENT METHODOLOGIES – INDIRECT:

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XV. SYLLABUS:

	LIST OF EXPERIMENTS
Week-1	SINGLE PHASE RECTIFIER FED DC SHUNT MOTOR
Speed cont	rol of DC shunt motor using single phase rectifier
Week-2	THREE PHASE RECTIFIER FED DC SEPARATELY EXCITED MOTOR
Speed cont	rol of DC separately excited shunt motor using three phase rectifier
Week-3	SPEED MEASUREMENT AND CLOSED LOOP CONTROL OF PMDC MOTOR
Speed mea	asurement and closed loop control of PMDC motor using thyristorized and MOSFET based ve.
Week-4	FOUR QUADRANT CHOPPER DRIVE
Four quadr	rant operation of PMDC motor using chopper
Week-5	AC VOLTAGE CONTROLLER FED INDUCTION MOTOR
Speed cont	rol of induction motor using AC voltage controller
Week-6	DC JONES CHOPPER
Verificatio	n of DC Jones chopper
Week-7	SPEED CONTROL OF DC MOTOR
Speed cont	rol of DC motor with external contacts and potentiometer arrangement
Week-8	SYNCHRONOUS MOTOR SPEED CONTROL
Speed cont	rol of synchronous motor using VFD
Week-9	SPEED CONTROL OF STEPPER MOTOR USING DIGITAL SIMULATION
Stepper mo	otor speed control using MATLAB
Week-10	UNIVERSAL MOTOR SPEED CONTROL USING DIGITAL SIMULATION
Universal 1	motor speed control using MATLAB
WeeK-11	SVPWM CONTROL OF INDUCTION MOTOR USING DIGITAL SIMULATION
SVPWM V	/SI fed induction motor drive simulation using MATLAB
Week-12	DIRECT TORQUE CONTROL OF INDUCTION MOTOR DRIVE USING DIGITAL SIMULATION
Direct torq	ue control of induction motor drive simulation using MATLAB
Week-13	FOUR QUADRANT OPERATION OF DC MOTOR USING DIGITAL SIMULATION

Four quadrant operation of DC drives with three phase converter simulation using MATLAB

Week-14 BLDC MOTOR DRIVE USING DIGITAL SIMULATION

Simulation of BLDC motor drive using MATLAB

Text Books:

- 1. PV Rao, "Power Semiconductor Drives", BS Publications, 1st Edition, 2014.
- 2. G K Dubey, "Fundamentals of Electric Drives", Narosa Publications, 2nd Edition, 2001.
- 3. SB Devan, GR Slemon, A Straughen, "Power semiconductor drives", Wiley Pvt. Ltd,. 4th Edition, 2001.
- 4. B K Bose, "Modern Power Electronics and AC Drives", Prentice Hall India Learning Private Limited, 2005

Reference Books:

- 1. P S Bimbhra, "Power Electronics", Khanna Publishers, 5th Edition, 2012.
- 2. M D Singh, K B Kanchandhani, "Power Electronics", Tata Mc Graw Hill Publishing Company, 7th Edition, 2007.

XVI. COURSE PLAN:

The course plan is meant as a guideline. There may probably be changes.

Lecture No	Topics to be covered	Course Learning Outcomes (CLOs)	References
1-3	Understand the speed control of DC shunt motor using single phase rectifier.	CLO 1	T2: 5.11
4-6	Analyze the speed control of DC separately excited shunt motor using three phase rectifier.	CLO 2	T2: 5.13
7-9	Demonstrate the speed measurement and closed loop control of PMDC motor using thyristorized drive.	CLO 3	T2: 5.14
10-12	Understand the four quadrant operation of PMDC motor using chopper.	CLO 4	T2: 5.20
13-15	Describe the speed control of induction motor using AC voltage controller.	CLO 5	T2: 6.11
16-18	Describe the study of DC Jones Chopper circuit	CLO 6	T2: 5.19
19-21	Analyze the speed control of DC motor with external contacts and potentiometer arrangement	CLO 7	T2: 5.12
22-24	Understand the speed control of Synchronous motor with Variable Frequency Drive	CLO 8	T2: 7.3.2
25-27	Analyze the Stepper motor speed control using digital simulation	CLO 9	T2: 6.12
28-30	Demonstrate the Universal motor speed control using digital simulation	CLO 10	T2: 6.15
31-33	Describe the SVPWM VSI fed induction motor drive simulation using MATLAB.	CLO 11	T2: 7.16
34-36	Understand the Direct torque control of induction motor drive simulation using MATLAB.	CLO 12	T2: 7.18
37-39	Demonstrate the four quadrant operation of DC drives with three phase converter simulation using MATLAB.	CLO 13	T2: 8.19
40-42	Analyze the simulation of BLDC motor drive using MATLAB	CLO 14	T2: 8.19

XVII.GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed	Relevance with	Relevance
		actions	POs	with PSOs
1	Vector control of induction motor using	Laboratory	PO5	PSO2
	MATLAB	practice		
2	Speed control of special motors using	Laboratory	PO5	PSO2
	converters using MATLAB	practice		

Prepared by:

Mr. S. Srikanth, Assistant Professor

HOD, EEE