

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

CIVIL ENGINEERING

COURSE DESCRIPTOR

Course Title	SURVEYING AND GEOMATICS LABORATORY									
Course Code	ACEBO	ACEB03								
Programme	B.Tech									
Semester	III	III CIVIL								
Course Type	Core									
Regulation	IARE - R18									
			Theory	Practical						
Course Structure	Lectures		Tutorials	Credits	Laboratory	Credits				
	-		-	-	3	1.5				
Chief Coordinator	Mr. B Suresh, Assistant Professor									
Course Faculty	Mr. B Suresh, Assistant Professor Mr. P Vinay Kumar, Assistant Professor									

I. COURSE OVERVIEW:

The Surveying Laboratory is equipped with the instruments and tools that students use throughout the surveying course. Students learn techniques for gathering field data with both traditional and modern instruments. A set of instruments are used, including auto level, theodolite, and total station, level rods, tripods, tape measures, chaining pins, and other common surveying tools and ancillary equipment's.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites				
UG	AHSB02	Ι	Linear Algebra and Calculus				

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks		
Surveying And Geomatics Laboratory	70 Marks	30 Marks	100		

×	Chalk & Talk	×	Quiz	×	Assignments	×	MOOCs				
~	LCD / PPT	~	✓ Seminars		Mini Project	~	Videos				
×	Open Ended Experiments										

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

V. EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

20 %	To test the preparedness for the experiment.
20 %	To test the performance in the laboratory.
20 %	To test the calculations and graphs related to the concern experiment.
20 %	To test the results and the error analysis of the experiment.
20 %	To test the subject knowledge through viva – voce.

The emphasis on the experiments is broadly based on the following criteria:

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Table 1: Assessment pattern for CIA

Component	L	T-4-1 M las		
Type of Assessment	Day to day performance	Final internal lab assessment	i otar ivlarks	
CIA Marks	20	10	30	

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

Preparation	Performance	Calculations and Graph	Results and Error Analysis	Viva	Total	
2	2	2	2	2	10	

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge: Apply the knowledge of	2	Presentation on
	mathematics, science, engineering fundamentals, and an		real-world problems
	engineering specialization to the solution of complex		
	engineering problems.		
PO 2	Problem analysis: Identify, formulate, review research	2	Open Ended
	literature, and analyze complex engineering problems		Experiments
	reaching substantiated conclusions using first principles of		
	mathematics, natural sciences, and engineering sciences.		
	Modern tool usage: Create, select, and apply appropriate	2	Presentation on
	techniques, resources, and modern engineering and IT		real-world problems
PO 5	tools including prediction and modeling to complex		
	engineering activities with an understanding of the		
	limitations.		
	Individual and team work: Function effectively as an	1	Open Ended
PO 9	individual, and as a member or leader in diverse teams,		Experiments
	and in multidisciplinary settings.		

3 = High; **2** = Medium; **1** = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Engineering Knowledge: Graduates shall demonstrate	1	Presentation on
	sound knowledge in analysis, design, laboratory		real-world problems
	investigations and construction aspects of civil		
	engineering infrastructure, along with good foundation		
	in mathematics, basic sciences and technical		
	communication.		
PSO 2	Broadness and Diversity: Graduates will have a broad	-	-
	understanding of economical, environmental, societal,		
	health and safety factors involved in infrastructural		
	development, and shall demonstrate ability to function		
	within multidisciplinary teams with competence in		
	modern tool usage.		
PSO 3	Self-Learning and Service: Graduates will be	-	-
	motivated for continuous self-learning in engineering		
	practice and/ or pursue research in advanced areas of		
	civil engineering in order to offer engineering services		
	to the society, ethically and responsibly.		

3 = High; **2** = Medium; **1** = Low

VIII. COURSE OBJECTIVES (COs):

The co	urse should enable the students to:
Ι	Gain the practical knowledge on calculation of an area, volume of an irregular and regular land
	surface using chains and tapes.
II	Operate different types of instruments in surveying. Perform leveling and contouring of ground
	surfaces.
ш	Apply knowledge of mathematics in surveying field to calculate areas and volumes for different
111	projects.
IV	Utilize total station and other modern survey instruments.

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
ACEB03.01	CLO 1	Measurement of an area by chain survey	PO 1	1
ACEB03.02	CLO 2	Chaining across obstacles	PO 1 PO 2	1
ACEB03.03	CLO 3	Calculation of distance between two points with compass survey.	PO 5	2
ACEB03.04	CLO 4	Corrections for local attraction by prismatic compass	PO 5	2
ACEB03.05	CLO 5	Radiation method and intersection methods by plane table survey	PO 1	1
ACEB03.06	CLO 6	An exercise of longitudinal section and cross section and plotting.	PO 2	2
ACEB03.07	CLO 7	Measurement of horizontal angles	PO 2	2
ACEB03.08	CLO 8	Trigonometric leveling- heights and distance problems	PO 1, PO 2	1
ACEB03.09	CLO 9	Heights and distances using principles of tacheometric survey	PO 2	2
ACEB03.10	CLO10	Curve setting: different methods	PO 2	2
ACEB03.11	CLO11	Determination of an area using total station	PO 5, PO 9	2
ACEB03.12	CLO 12	Determination of remote height using total station	PO 5, PO 9	2
ACEB03.13	CLO 13	Calculating distance, gradient and different heights between two inaccessible points using total station.	PO 5, PO 9	2

IX. COURSE LEARNING OUTCOMES (CLOs):

3 = High; **2** = Medium; **1** = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning	g Program Outcomes (POs)									Program Specific Outcomes (PSOs)					
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 1	1														
CLO 2	2	1											1		
CLO 3					2										
CLO 4					2								1		
CLO 5	1														
CLO 6		2											2		
CLO 7		2													
CLO 8	1	2											1		
CLO 9		2											1		
CLO 10		2											2		

Course Learning	Program Outcomes (POs)							Program Specific Outcomes (PSOs)							
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO 11					2				2						
CLO 12					2				2				2		
CLO 13					2				2						

3 = **High; 2** = **Medium; 1** = **Low**

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO 1, PO 2, PO5, PO9, PSO1	SEE Exams	PO 1, PO 2, PO5, PO9, PSO1	Assignments	-	Seminars	-
Laboratory	PO 1, PO 2,	Student	PO 1, PO 2,	Mini Project	-	Certification	-
Practices	PO5, PO9	Viva	PO5, PO9	5			

XII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

LIST OF EXPERIMENTS					
Week-1	SURVEY OF AN AREA BY CHAIN SURVEY (CLOSED TRAVERSE) AND PLOTTING				
Batch I: Measu	rement of an area by chain survey				
Batch II: Meas	urement of an area by chain survey				
Week-2	CHAINING ACROSS OBSTACLES				
Batch I: Chaini	ng across obstacles				
Batch II: Chain	ing across obstacles				
Week-3	DETERMINATION OF DISTANCE BETWEEN TWO INACCESSIBLE POINTS WITH COMPASS				
Batch I: Calcul	ation of distance between two points with compass survey.				
Batch II: Calcu	lation of distance between two points with compass survey.				
Week-4	CORRECTION FOR LOCAL ATTRACTION BY PRISMATIC COMPASS				
Batch I: Correc	tions for local attraction by prismatic compass.				
Batch II: Corre	ctions for local attraction by prismatic compass				
Week-5	RADIATION METHOD, INTERSECTION METHODS BY PLANE TABLE SURVEY				
Batch I: Radiation method and intersection methods by plane table survey.					
Batch II: Radiation method and intersection methods by plane table survey					
Week-6	AN EXERCISE OF LONGITUDINAL SECTION AND CROSS SECTION AND PLOTTING				
Batch I: An exe	ercise of longitudinal section and cross section and plotting.				
Batch II: An ex	ercise of longitudinal section and cross section and plotting.				

Week-7	MEASUREMENT OF HORIZONTAL ANGLES BY METHOD OF REPETITION AND REITERATION					
Batch I: Measurement of horizontal angles						
Batch II: Measurement of horizontal angles						
Week-8	TRIGONOMETRIC LEVELING- HEIGHTS AND DISTANCE PROBLEMS					
Batch I: Trigon	ometric leveling- heights and distance problems					
Batch II: Trigo	nometric leveling- heights and distance problems					
Week-9	HEIGHTS AND DISTANCES USING PRINCIPLES OF TACHEOMETRIC SURVEY					
Batch I: Height	s and distances using principles of tacheometric survey.					
Batch II: Heigh	its and distances using principles of tacheometric survey					
Week-10	CURVE SETTING –DIFFERENT METHODS					
Batch I: Curve	setting: different methods.					
Batch II: Curve	setting: different methods					
WeeK-11	DETERMINATION OF AN AREA USING TOTAL STATION					
Batch I: Detern	nination of an area using total station.					
Batch II: Deter	mination of an area using total station.					
Week-12	DETERMINATION OF REMOTE HEIGHT USING TOTAL STATION					
Batch I: Determination of remote height using total station.						
Batch II: Determination of remote height using total station						
Week-13	CALCULATING DISTANCE, GRADIENT AND DIFFERENT HEIGHTS BETWEEN TWO INACCESSIBLE POINTS USING TOTAL STATION					
Batch I: Calcul	ating distance, gradient and different heights between two inaccessible points using total					
station.						
Batch II: Calcu station.	lating distance, gradient and different heights between two inaccessible points using total					
l.						

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Week	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Measurement of an area by chain survey	CL01	T1,T2
2	Chaining across obstacles	CLO 2	T1,T2
3	Calculation of distance between two points with compass survey.	CLO 3	T1,T2
4	Corrections for local attraction by prismatic compass	CLO 4	T1,T2
5	Radiation method and intersection methods by plane table survey	CLO 5	T1,T2
6	An exercise of longitudinal section and cross section and plotting.	CLO 6	T1,T2
7	Measurement of horizontal angles	CLO 7	T1,T2
8	Trigonometric leveling- heights and distance problems	CLO 8	T1,T2
9	Heights and distances using principles of tacheometric survey	CLO 9	T1,T2
10	Curve setting: different methods	CLO 10	T1,T2

Week	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
11	Determination of an area using total station	CLO 11	T1,T2
12	Determination of remote height using total station	CLO 12	T1,T2
13	Calculating distance, gradient and different heights between two inaccessible points using total station.	CLO 13	T1,T2

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S NO	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	To improve standards and analyze the concepts.	Open ended problems	PO 1	PSO 1
2	Encourage students to solve real time applications such as Photogrammetric survey, GIS and GPS	Open ended problems	PO 1	PSO 1

Prepared by:

Mr. B Suresh, Assistant Professor

HOD, CE