

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	COMPUTER AIDED AIRCRAFT ENGINEERING DRAWING					
Course Code	AAE106	AAE106				
Programme	B.Tech	B.Tech				
Semester	V AE					
Course Type	Core					
Regulation	IARE - R16					
	Theory			Practical		
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits	
	-	-	-	3	2	
Chief Coordinator	Mr. R Sabari Vihar, Assistant Professor					
Course Faculty	Mr. R Saba Ms. M Shr	ari Vihar, Assistan avani, Assistant pi	t Professor ofessor			

I. COURSE OVERVIEW:

Computer aided aircraft engineering drawing lab aims to equip students with knowledge of components of aircraft and also with a designing tool CATIA which is current trend in industry. This course helps students will learn five workbenches of CATIA, which are common for any three dimensional CAD designing tool.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AME102	II	Computer aided engineering drawing	2

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Computer aided aircraft engineering drawing	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	×	Quiz	×	Assignments	×	MOOCs
~	LCD / PPT	×	Seminars	×	Mini Project	~	Videos
×	Open Ended Experime	ents					

V. EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

20 %	To test the preparedness for the experiment.
20 %	To test the performance in the laboratory.
20 %	To test the calculations and graphs related to the concern experiment.
20 %	To test the results and the error analysis of the experiment.
20 %	To test the subject knowledge through viva – voce.

The emphasis on the experiments is broadly based on the following criteria:

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

,	Table	1:	Assessment	pattern	for	CIA	

Component	L			
Type of Assessment	Day to day performance	Final internal lab assessment	l otal Marks	
CIA Marks	20	10	30	

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

Preparation	Performance	Calculations and Graph	Results and Error Analysis	Viva	Total
2	2	2	2	2	10

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.	3	Calculations of the observations
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	3	Lab practices

3 = High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional skills: Able to utilize the knowledge of	2	Lab Practices
	aeronautical/aerospace engineering in innovative,		
	dynamic and challenging environment for design and		
	development of new products		
PSO2	Problem-solving Skills: Imparted through simulation	2	Lab Practices
	language skills and general purpose CAE packages to		
	solve practical, design and analysis problems of		
	components to complete the challenge of airworthiness		
	for flight vehicles.		
PSO 3	Practical implementation and testing skills: Providing		
	different types of in house and training and industry		
	practice to fabricate and test and develop the products		
	with more innovative technologies		
PSO 4	Successful career and entrepreneurship: To prepare		
	the students with broad aerospace knowledge to design		
	and develop systems and subsystems of		
	aeronautical/aerospace allied systems to become		
	technocrats.		

3 = High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES (COs):

The co	The course should enable the students to:				
Ι	Understand the concepts and various tools used in design module.				
II	Understand the design of typical structural components.				
III	Understand the design of typical aircraft components.				
IV	Understand the design of three view diagram of a typical aircraft				

IX. COURSE LEARNING OUTCOMES (CLOs):

AAE106.01 CLO 1 Undestand the interface of threedimensional computer aided drawing softwares. PO5 3 AAE106.02 CLO 2 Gain knowledge about different omponents in computer aided three dimensional interactive application (CATIA) PO5 2 AAE106.03 CLO 3 Ability to model different components in CATIA. PO3 2 AAE106.04 CLO 4 Understand difference between surface, sheet, plate and component. PO3 2 AAE106.05 CLO 5 Remember different tools in different workbenche to design desired component in CATIA. PO5 2 AAE106.06 CLO 6 Ability to use tools in each workbench to design desired component in CATIA. PO5 2 AAE106.07 CLO 7 Understand different theem in sheetmetal operations and hote to execute them in sheetmetal design workbench. PO3 2 AAE106.09 CLO 9 Understand different terminolgies used in sheetmetal operations and how to execute them in sheetmetal design workbench. PO3 2 AAE106.09 CLO 9 Understand different terminolgies used in sheetmetal operations. PO3 2 AAE106.10 CLO 10 Gain knowledge about different operations in surface design workbench. PO3 2 AAE106.11 <t< th=""><th>CLO Code</th><th>CLO's</th><th>At the end of the course, the student will have the ability to:</th><th>PO's Mapped</th><th>Strength of Mapping</th></t<>	CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AAE106.02 CLO 2 Gain knowledge about different workbenches in computer aided three dimensional interactive application (CATIA) PO5 2 AAE106.03 CLO 3 Ability to model different components in CATIA. PO3 2 AAE106.04 CLO 4 Understand difference between surface, sheet, plate and component. PO3 2 AAE106.05 CLO 5 Remember different tools in different workbenches and to be able to use them efficiently. PO3 3 AAE106.06 CLO 6 Ability to use tools in each workbench to design desired component in CATIA. PO5 3 AAE106.07 CLO 7 Understand what are boolean operations and where they are used. PO3 2 AAE106.08 CLO 8 Gain knowledge about different sheetmetal operations and hoe to execute them in sheetmetal design workbench. PO3 2 AAE106.09 CLO 9 Understand different terminolgies used in sheetmetal operations. PO3 2 AAE106.10 CLO 10 Gain knowledge about different operations used in surface design workbench. PO3 2 AAE106.11 CLO 10 Gain knowledge about top down and bottom up assembly methods and where to use which method. PO3 2 AAE106.12 CLO 12 Gain kn	AAE106.01	CLO 1	Undestand the interface of	PO5	3
AAE106.02CLO 2Gain knowledge about different workbenches in computer aided three dimensional interactive application (CATIA)PO52AAE106.03CLO 3Ability to model different components in CATIA.PO32AAE106.04CLO 4Understand difference between surface, sheet, plate and component.PO32AAE106.05CLO 5Remember different tools in different workbenches and to be able to use them efficiently.PO33AAE106.06CLO 6Ability to use tools in each workbench to design desired component in CATIA.PO52AAE106.07CLO 7Understand what are boolcan operations and where they are used.PO32AAE106.08CLO 8Gain knowledge about different sheetmetal operations and hoe to execute them in sheetemetal design workbench.PO32AAE106.10CLO 10Gain knowledge about different operations used in surface design workbench.PO32AAE106.11CLO 11Understand how to make complex shapes using different tools in surface design worbench.PO32AAE106.12CLO 12Gain knowledge about top down and bottom up assembly methods and where to use which method.PO32AAE106.13CLO 14Understand how different tolerances and how tolerances are given to components.PO32AAE106.14CLO 14Understand how different tolerances and how tolerances are given to components.PO32AAE106.14CLO 15Ability to read and understand different how tolerances are advected.PO3			threedimensional computer aided drawing		
AAE106.02 CLO 2 Gain knowledge about different workbenches in computer aided three dimensional interactive application (CATIA) PO5 2 AAE106.03 CLO 3 Ability to model different components in CATIA. PO3 2 AAE106.04 CLO 4 Understand difference between surface, sheet, plate and component. PO3 2 AAE106.05 CLO 5 Remember different tools in different workbenches and to be able to use them efficiently. PO5 2 AAE106.06 CLO 6 Ability to use tools in each workbench to design desired component in CATIA. PO5 3 AAE106.07 CLO 7 Understand what are boolean operations and where they are used. PO3 2 AAE106.08 CLO 8 Gain knowledge about different sheetmetal operations and hoe to execute them in sheetmetal design workbench. PO3 2 AAE106.10 CLO 10 Gain knowledge about different operations used in surface design workbench. PO3 2 AAE106.11 CLO 11 Understand how to make complex shapes using different tools in surface design worbench. PO3 2 AAE106.12 CLO 12 Gain knowledge about different components are assembly methods and where to use which method. PO3 2 AAE106.12 CLO			softwares.		
workbenches in computer aided three dimensional interactive application (CATIA)PO32AAE106.03CLO 3Ability to model different components in CATIA.PO32AAE106.04CLO 4Understand difference between surface, sheet, plate and component.PO32AAE106.05CLO 5Remember different tools in different workbenches and to be able to use them efficiently.PO33AAE106.06CLO 6Ability to use tools in each workbench to design desired component in CATIA.PO52AAE106.07CLO 7Understand what are boolean operations and where they are used.PO32AAE106.08CLO 8Gain knowledge about different sheetmetal operations and hoe to execute them in sheetmetal design workbench.PO32AAE106.09CLO 9Understand different treminolgies used in sheetmetal doperations.PO32AAE106.10CLO 10Gain knowledge about different operations using different tools in surface design workbench.PO32AAE106.11CLO 11Understand how to make complex shapes using different tools in surface design worbench.PO32AAE106.12CLO 12Gain knowledge about top down and bottom up assembly methods and where to use which method.PO32AAE106.13CLO 14Understand how different components are assembled types.PO32AAE106.14CLO 15Ability to read and understand different how tolerances are given to components.PO32AAE106.15CLO 15Ability to re	AAE106.02	CLO 2	Gain knowledge about different	PO5	2
AAE106.03 CLO 3 Ability to model different components in CATTA. PO3 2 AAE106.04 CLO 4 Understand difference between surface, sheet, plate and component. PO3 2 AAE106.05 CLO 5 Remember different tools in different workbenches and to be able to use them efficiently. PO3 3 AAE106.06 CLO 6 Ability to use tools in each workbench to design desired component in CATTA. PO5 2 AAE106.07 CLO 7 Understand what are boolean operations and where they are used. PO3 2 AAE106.08 CLO 8 Gain knowledge about different sheetmetal operations and hoe to execute them in sheetmetal design workbench. PO3 2 AAE106.09 CLO 9 Understand different terminolgies used in sheetermetal operations. PO3 2 AAE106.10 CLO 10 Gain knowledge about different operations used in surface design workbench. PO3 2 AAE106.10 CLO 11 Understand how to make complex shapes using different tools in surface design worbench. PO3 2 AAE106.12 CLO 12 Gain knowledge about top down and bottom up assembly methods and where to use which method. PO3 2 AAE106.13 CLO 12 Gain knowledge about op com			workbenches in computer aided three		
(CATIA)PO32AAE106.03CLO 3Ability to model different components in CATIA.PO32AAE106.04CLO 4Understand difference between surface, sheet, plate and component.PO32AAE106.05CLO 5Remember different tools in different workbenches and to be able to use them efficiently.PO33AAE106.06CLO 6Ability to use tools in each workbench to design desired component in CATIA.PO52AAE106.07CLO 7Understand what are boolean operations and where they are used.PO32AAE106.08CLO 8Gain knowledge about different sheetmetal operations and hoe to execute them in sheetmetal design workbench.PO32AAE106.09CLO 9Understand different terminolgies used in sheetmetal design workbench.PO32AAE106.10CLO 10Gain knowledge about different operations used in surface design workbench.PO32AAE106.11CLO 11Understand how to make complex shapes using different tools in surface design worbench.PO32AAE106.12CLO 12Gain knowledge about top down and main assembly methods and where to use which method.PO32AAE106.13CLO 14Understand about different components are assembly and main assembly types.PO32AAE106.15CLO 14Ability to read and understand different how tolerances are given to components.PO32AAE106.16CLO 16Ability to read and understand different kinds of symbols used in manufacturing ind			dimensional interactive application		
AAE106.03CLO 3Ability to model different components in CATIA.PO32AAE106.04CLO 4Understand difference between surface, sheet, plate and component.PO32AAE106.05CLO 5Remember different tools in different workbenches and to be able to use them efficiently.PO33AAE106.06CLO 6Ability to use tools in each workbench to design desired component in CATIA.PO52AAE106.07CLO 7Understand what are boolean operations and where they are used.PO32AAE106.08CLO 8Gain knowledge about different sheetmetal operations and hoe to execute them in sheetmetal design workbench.PO32AAE106.09CLO 9Understand different terminolgies used in sheetmetal design workbench.PO32AAE106.10CLO 10Gain knowledge about different operations used in surface design workbench.PO32AAE106.11CLO 11Understand how to make complex shapes using different tools in surface design worbench.PO32AAE106.12CLO 12Gain knowledge about top down and bottom up assembly methods and where to use which method.PO32AAE106.13CLO 14Understand about different tolerances and how tolerances are given to components.PO32AAE106.14CLO 14Understand about different tolerances and how tolerances are given to components.PO32AAE106.16CLO 16Ability to design different taircraft components using different taircraft components using different tools in three d			(CATIA)		
AAE106.04CLO 4Understand difference between surface, sheet, plate and component.PO32AAE106.05CLO 5Remember different tools in different workbenches and to be able to use them efficiently.PO33AAE106.06CLO 6Ability to use tools in each workbench to design desired component in CATIA.PO52AAE106.07CLO 7Understand what are boolean operations and where they are used.PO32AAE106.08CLO 8Gain knowledge about different sheetmetal operations and hoe to execute them in sheetmetal design workbench.PO32AAE106.09CLO 9Understand different terminolgies used in sheetmetal operations.PO32AAE106.10CLO 10Gain knowledge about different operations used in surface design workbench.PO32AAE106.11CLO 11Understand how to make complex shapes using different tools in surface design worbench.PO32AAE106.12CLO 12Gain knowledge about top down and bottom up assembly methods and where to use which method.PO32AAE106.13CLO 14Understand about different tolerances and how tolerances are given to components.PO32AAE106.14CLO 14Ability to read and understand different kinds of symbols used in manufacturing industry and how they are achieved.PO32AAE106.16CLO 16Ability to design different tools in sufface design worbench.PO32AAE106.15CLO 12Gain knowledge about top down and bottom up assembly methods and where to u	AAE106.03	CLO 3	Ability to model different components in CATIA.	PO3	2
AAE106.05CLO 5Remember different tools in different workbenches and to be able to use them efficiently.PO33AAE106.06CLO 6Ability to use tools in each workbench to design desired component in CATIA.PO52AAE106.07CLO 7Understand what are boolean operations and where they are used.PO53AAE106.08CLO 8Gain knowledge about different sheetmetal operations and hoe to execute them in sheetmetal design workbench.PO32AAE106.09CLO 9Understand different terminolgies used in sheetmetal operations.PO32AAE106.10CLO 10Gain knowledge about different operations used in surface design workbench.PO32AAE106.11CLO 10Gain knowledge about different operations used in surface design workbench.PO32AAE106.11CLO 11Understand how to make complex shapes using different tools in surface design worbench.PO32AAE106.12CLO 12Gain knowledge about top down and bottom up assembly methods and where to use which method.PO32AAE106.13CLO 13Understand about different tolerances and how tolerances are given to components.PO32AAE106.15CLO 14Understand about different tolerances and how tolerances are given to components.PO32AAE106.16CLO 16Ability to design different aircraft components using different aircraft componen	AAE106.04	CLO 4	Understand difference between surface,	PO3	2
AAE106.05CLO 5Remember different tools in different workbenches and to be able to use them efficiently.PO33AAE106.06CLO 6Ability to use tools in each workbench to design desired component in CATIA.PO52AAE106.07CLO 7Understand what are boolean operations and where they are used.PO32AAE106.08CLO 8Gain knowledge about different sheetmetal operations and hoe to execute them in sheetmetal design workbench.PO32AAE106.09CLO 9Understand different terminolgies used in sheetmetal operations.PO32AAE106.10CLO 10Gain knowledge about different operations used in surface design workbench.PO32AAE106.11CLO 11Understand how to make complex shapes using different tools in surface design worbench.PO53AAE106.12CLO 12Gain knowledge about top down and bottom up assembly methods and where to use which method.PO32AAE106.13CLO 13Understand how different components are assembled based on sub assembly and main assembly types.PO32AAE106.15CLO 14Understand about different tolerances and how tolerances are given to components.PO32AAE106.16CLO 16Ability to edsign different aircraft components using different tools in three dimensional C AD softwaresPO33			sheet, plate and component.		
AAE106.06CLO 6Ability to use tools in each workbench to design desired component in CATIA.PO52AAE106.07CLO 7Understand what are boolean operations and where they are used.PO53AAE106.08CLO 8Gain knowledge about different sheetmetal operations and hoe to execute them in sheetmetal design workbench.PO32AAE106.09CLO 9Understand different terminolgies used in sheetmetal operations.PO32AAE106.10CLO 10Gain knowledge about different operations used in sheetmetal operations.PO32AAE106.10CLO 10Gain knowledge about different operations used in surface design workbench.PO32AAE106.11CLO 11Understand how to make complex shapes using different tools in surface design worbench.PO32AAE106.12CLO 13Understand how different components are assembly methods and where to use which method.PO32AAE106.13CLO 13Understand how different tolerances and how tolerances are given to components.PO32AAE106.15CLO 15Ability to read and understand different kinds of symbols used in manufacturing industry and how they are achieved.PO32AAE106.16CLO 16Ability to read and understand different kinds of symbols used in manufacturing industry and how they are achieved.PO33	AAE106.05	CLO 5	Remember different tools in different	PO3	3
AAE106.06CLO 6Ability to use tools in each workbench to design desired component in CATIA.PO52AAE106.07CLO 7Understand what are boolean operations and where they are used.PO33AAE106.08CLO 8Gain knowledge about different sheetmetal operations and hoe to execute them in sheetmetal design workbench.PO32AAE106.09CLO 9Understand different terminolgies used in sheetmetal operations.PO32AAE106.10CLO 10Gain knowledge about different operations used in surface design workbench.PO32AAE106.11CLO 11Understand how to make complex shapes using different tools in surface design worbench.PO32AAE106.12CLO 12Gain knowledge about top down and bottom up assembly methods and where to use which method.PO32AAE106.13CLO 13Understand how different components are assembled based on sub assembly and main assembly types.PO32AAE106.15CLO 15Ability to read and understand different how tolerances are given to components.PO32AAE106.16CLO 16Ability to design different aircraft components using different arcraft components using different arcraft components using different tools in three dimensional CAD softwaresPO53			workbenches and to be able to use them		
AAE106.06 CLO 6 Ability to use tools in each workbench to design desired component in CATIA. PO5 2 AAE106.07 CLO 7 Understand what are boolean operations and where they are used. PO3 3 AAE106.08 CLO 8 Gain knowledge about different sheetmetal operations and hoe to execute them in sheetmetal design workbench. PO3 2 AAE106.09 CLO 9 Understand different terminolgies used in sheetmetal operations. PO3 2 AAE106.10 CLO 10 Gain knowledge about different operations used in surface design workbench. PO3 2 AAE106.11 CLO 11 Understand how to make complex shapes using different tools in surface design worbench. PO3 2 AAE106.12 CLO 12 Gain knowledge about top down and bottom up assembly methods and where to use which method. PO3 2 AAE106.13 CLO 14 Understand how different components are assembled based on sub assembly and main assembly types. PO3 2 AAE106.15 CLO 15 Ability to read and understand different kinds of symbols used in manufacturing industry and how they are achieved. PO3 3 AAE106.16 CLO 16 Ability to design different arcraft components using different arcraft components using different tools in three dimensional CAD softwa			efficiently.		
AAE106.07CLO 7Understand what are boolean operations and where they are used.PO53AAE106.08CLO 8Gain knowledge about different sheetmetal operations and hoe to execute them in sheetmetal design workbench.PO32AAE106.09CLO 9Understand different terminolgies used in sheetmetal operations.PO32AAE106.10CLO 10Gain knowledge about different operations used in surface design workbench.PO32AAE106.11CLO 10Gain knowledge about different operations used in surface design workbench.PO32AAE106.11CLO 11Understand how to make complex shapes using different tools in surface design worbench.PO32AAE106.12CLO 12Gain knowledge about top down and bottom up assembly methods and where to use which method.PO32AAE106.13CLO 13Understand how different components are assembled based on sub assembly and main assembly types.PO32AAE106.14CLO 14Understand about different tolerances and how tolerances are given to components.PO32AAE106.15CLO 15Ability to read and understand different kinds of symbols used in manufacturing industry and how they are achieved.PO33AAE106.16CLO 16Ability to design different tols in three dimensional CAD softwaresPO53	AAE106.06	CLO 6	Ability to use tools in each workbench to	PO5	2
AAE106.07CLO 7Understand what are boolean operations and where they are used.PO53AAE106.08CLO 8Gain knowledge about different sheetmetal operations and hoe to execute them in sheetmetal design workbench.PO32AAE106.09CLO 9Understand different terminolgies used in 			design desired component in CATIA.		
AAE106.08CLO 8Gain knowledge about different sheetmetal operations and hoe to execute them in sheetmetal design workbench.PO32AAE106.09CLO 9Understand different terminolgies used in sheetmetal operations.PO32AAE106.10CLO 10Gain knowledge about different operations used in surface design workbench.PO32AAE106.11CLO 10Gain knowledge about different operations used in surface design workbench.PO32AAE106.11CLO 11Understand how to make complex shapes using different tools in surface design worbench.PO32AAE106.12CLO 12Gain knowledge about top down and bottom up assembly methods and where to use which method.PO32AAE106.13CLO 13Understand how different components are assembled based on sub assembly and main assembly types.PO32AAE106.14CLO 14Understand about different tolerances and how tolerances are given to components.PO32AAE106.15CLO 15Ability to read and understand different kinds of symbols used in manufacturing industry and how they are achieved.PO53AAE106.16CLO 16Ability to design different tools in three dimensional CAD softwaresPO53	AAE106.07	CLO 7	Understand what are boolean operations	PO5	3
AAE106.08CLO 8Gain knowledge about different sheetmetal operations and hoe to execute them in sheetmetal design workbench.PO32AAE106.09CLO 9Understand different terminolgies used in sheeetmetal operations.PO32AAE106.10CLO 10Gain knowledge about different operations used in surface design workbench.PO32AAE106.11CLO 11Understand how to make complex shapes using different tools in surface design worbench.PO53AAE106.12CLO 12Gain knowledge about top down and bottom up assembly methods and where to use which method.PO32AAE106.13CLO 13Understand how different components are assembled based on sub assembly and main assembly types.PO52AAE106.14CLO 14Understand about different tolerances and how tolerances are given to components.PO32AAE106.15CLO 15Ability to read and understand different kinds of symbols used in manufacturing industry and how they are achieved.PO33AAE106.16CLO 16Ability to design different tolers in three dimensional CAD softwaresPO53		at a a	and where they are used.		
AAE106.09CLO 9Understand different terminolgies used in sheetmetal operations.PO32AAE106.09CLO 9Understand different terminolgies used in sheetmetal operations.PO32AAE106.10CLO 10Gain knowledge about different operations used in surface design workbench.PO32AAE106.11CLO 11Understand how to make complex shapes using different tools in surface design worbench.PO53AAE106.12CLO 12Gain knowledge about top down and bottom up assembly methods and where to use which method.PO52AAE106.13CLO 13Understand how different components are assembled based on sub assembly and main assembly types.PO32AAE106.14CLO 14Understand about different tolerances and how tolerances are given to components.PO32AAE106.15CLO 15Ability to read and understand different kinds of symbols used in manufacturing industry and how they are achieved.PO53AAE106.16CLO 16Ability to design different tolers in three dimensional CAD softwaresPO53	AAE106.08	CLO 8	Gain knowledge about different sheetmetal	PO3	2
AAE106.19CLO 9Understand different terminolgies used in sheeetmetal operations.PO32AAE106.10CLO 10Gain knowledge about different operations used in surface design workbench.PO32AAE106.11CLO 11Understand how to make complex shapes using different tools in surface design worbench.PO53AAE106.12CLO 12Gain knowledge about top down and bottom up assembly methods and where to use which method.PO32AAE106.13CLO 13Understand how different components are assembled based on sub assembly and main assembly types.PO52AAE106.14CLO 14Understand about different tolerances and how tolerances are given to components.PO32AAE106.15CLO 15Ability to read and understand different kinds of symbols used in manufacturing industry and how they are achieved.PO33AAE106.16CLO 16Ability to design different aircraft components using different tools in three dimensional CAD softwaresPO53			operations and hoe to execute them in		
AAE106.09 CLO 9 Understand different terminoligies used in sheeetmetal operations. PO3 2 AAE106.10 CLO 10 Gain knowledge about different operations used in surface design workbench. PO3 2 AAE106.11 CLO 11 Understand how to make complex shapes using different tools in surface design worbench. PO5 3 AAE106.12 CLO 12 Gain knowledge about top down and bottom up assembly methods and where to use which method. PO3 2 AAE106.13 CLO 13 Understand how different components are assembled based on sub assembly and main assembly types. PO5 2 AAE106.14 CLO 14 Understand about different tolerances and how tolerances are given to components. PO3 2 AAE106.15 CLO 15 Ability to read and understand different program assemble used in manufacturing industry and how they are achieved. PO3 3 AAE106.16 CLO 16 Ability to design different aircraft components using different tools in three dimensional CAD softwares PO5 3	A AE106.00	CLOO	sheetmetal design workbench.	DO3	2
AAE106.10CLO 10Gain knowledge about different operations used in surface design workbench.PO32AAE106.11CLO 11Understand how to make complex shapes using different tools in surface design worbench.PO53AAE106.12CLO 12Gain knowledge about top down and bottom up assembly methods and where to use which method.PO32AAE106.13CLO 13Understand how different components are assembled based on sub assembly and main assembly types.PO52AAE106.14CLO 14Understand about different tolerances and how tolerances are given to components.PO32AAE106.15CLO 15Ability to read and understand different industry and how they are achieved.PO33AAE106.16CLO 16Ability to design different tools in three dimensional CAD softwaresPO53	AAE100.09	CLO 9	shapetmetal operations	105	2
AAE106.11 CLO 11 Understand how to make complex shapes using different tools in surface design worbench. PO5 3 AAE106.12 CLO 12 Gain knowledge about top down and bottom up assembly methods and where to use which method. PO3 2 AAE106.13 CLO 13 Understand how different components are assembled based on sub assembly and main assembly types. PO5 2 AAE106.14 CLO 14 Understand about different tolerances and how tolerances are given to components. PO3 2 AAE106.15 CLO 15 Ability to read and understand different kinds of symbols used in manufacturing industry and how they are achieved. PO3 3 AAE106.16 CLO 16 Ability to design different aircraft components using different tools in three dimensional CAD softwares PO5 3	AAE106.10	CLO 10	Gain knowledge about different operations	PO3	2
AAE106.11CLO 11Understand how to make complex shapes using different tools in surface design worbench.PO53AAE106.12CLO 12Gain knowledge about top down and bottom up assembly methods and where to use which method.PO32AAE106.13CLO 13Understand how different components are assembled based on sub assembly and main assembly types.PO52AAE106.14CLO 14Understand about different tolerances and how tolerances are given to components.PO32AAE106.15CLO 15Ability to read and understand different kinds of symbols used in manufacturing industry and how they are achieved.PO33AAE106.16CLO 16Ability to design different aircraft components using different tools in three dimensional CAD softwaresPO53		01010	used in surface design workbench	105	_
AAE106.12CLO 12Gain knowledge about top down and bottom up assembly methods and where to use which method.PO32AAE106.13CLO 12Gain knowledge about top down and bottom up assembly methods and where to use which method.PO52AAE106.13CLO 13Understand how different components are assembled based on sub assembly and main assembly types.PO52AAE106.14CLO 14Understand about different tolerances and how tolerances are given to components.PO32AAE106.15CLO 15Ability to read and understand different kinds of symbols used in manufacturing industry and how they are achieved.PO53AAE106.16CLO 16Ability to design different aircraft components using different tools in three dimensional CAD softwaresPO53	AAE106.11	CLO 11	Understand how to make complex shapes	PO5	3
AAE106.12CLO 12Gain knowledge about top down and bottom up assembly methods and where to use which method.PO32AAE106.13CLO 13Understand how different components are assembled based on sub assembly and main assembly types.PO52AAE106.14CLO 14Understand about different tolerances and how tolerances are given to components.PO32AAE106.15CLO 15Ability to read and understand different kinds of symbols used in manufacturing industry and how they are achieved.PO33AAE106.16CLO 16Ability to design different aircraft components using different tools in three dimensional CAD softwaresPO53			using different tools in surface design		_
AAE106.12CLO 12Gain knowledge about top down and bottom up assembly methods and where to use which method.PO32AAE106.13CLO 13Understand how different components are assembled based on sub assembly and main assembly types.PO52AAE106.14CLO 14Understand about different tolerances and how tolerances are given to components.PO32AAE106.15CLO 15Ability to read and understand different kinds of symbols used in manufacturing industry and how they are achieved.PO33AAE106.16CLO 16Ability to design different aircraft components using different tools in three dimensional CAD softwaresPO53			worbench.		
bottom up assembly methods and where to use which method.AAE106.13CLO 13Understand how different components are assembled based on sub assembly and main assembly types.PO52AAE106.14CLO 14Understand about different tolerances and how tolerances are given to components.PO32AAE106.15CLO 15Ability to read and understand different kinds of symbols used in manufacturing industry and how they are achieved.PO33AAE106.16CLO 16Ability to design different aircraft components using different tools in three dimensional CAD softwaresPO53	AAE106.12	CLO 12	Gain knowledge about top down and	PO3	2
AAE106.13CLO 13Understand how different components are assembled based on sub assembly and main assembly types.PO52AAE106.14CLO 14Understand about different tolerances and how tolerances are given to components.PO32AAE106.15CLO 15Ability to read and understand different kinds of symbols used in manufacturing industry and how they are achieved.PO33AAE106.16CLO 16Ability to design different aircraft components using different tools in three dimensional CAD softwaresPO53			bottom up assembly methods and where to		
AAE106.13CLO 13Understand how different components are assembled based on sub assembly and main assembly types.PO52AAE106.14CLO 14Understand about different tolerances and how tolerances are given to components.PO32AAE106.15CLO 15Ability to read and understand different kinds of symbols used in manufacturing industry and how they are achieved.PO33AAE106.16CLO 16Ability to design different aircraft components using different tools in three dimensional CAD softwaresPO53			use which method.		
AAE106.14CLO 14Understand about different tolerances and how tolerances are given to components.PO32AAE106.15CLO 15Ability to read and understand different kinds of symbols used in manufacturing industry and how they are achieved.PO33AAE106.16CLO 16Ability to design different aircraft components using different tools in three dimensional CAD softwaresPO53	AAE106.13	CLO 13	Understand how different components are	PO5	2
main assembly types.AAE106.14CLO 14Understand about different tolerances and how tolerances are given to components.PO32AAE106.15CLO 15Ability to read and understand different kinds of symbols used in manufacturing industry and how they are achieved.PO33AAE106.16CLO 16Ability to design different aircraft components using different tools in three dimensional CAD softwaresPO53			assembled based on sub assembly and		
AAE106.14 CLO 14 Understand about different tolerances and how tolerances are given to components. PO3 2 AAE106.15 CLO 15 Ability to read and understand different kinds of symbols used in manufacturing industry and how they are achieved. PO3 3 AAE106.16 CLO 16 Ability to design different aircraft components using different tools in three PO5 3		<u> </u>	main assembly types.		
AAE106.15 CLO 15 Ability to read and understand different kinds of symbols used in manufacturing industry and how they are achieved. PO3 3 AAE106.16 CLO 16 Ability to design different aircraft components using different tools in three PO5 3	AAE106.14	CLO 14	Understand about different tolerances and	PO3	2
AAE106.15 CLO 15 Ability to read and understand different kinds of symbols used in manufacturing industry and how they are achieved. PO3 3 AAE106.16 CLO 16 Ability to design different aircraft components using different tools in three dimensional CAD softwares PO5 3	A AE106 15	CL 0 15	how tolerances are given to components.	DO2	2
AAE106.16 CLO 16 Ability to design different aircraft components using different tools in three dimensional CAD softwares PO5 3	AAE106.15	CLO IS	Ability to read and understand different	P03	3
AAE106.16 CLO 16 Ability to design different aircraft components using different tools in three dimensional CAD softwares PO5 3			industry and how they are achieved		
components using different tools in three dimensional CAD softwares	AAE106.16	CLO 16	Ability to design different aircraft	PO5	3
dimensional CAD softwares			components using different tools in three	105	5
differentiate of the softwares.			dimensional CAD softwares.		

3 = High; 2 = Medium; 1 = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning	Program Outcomes (POs)								Program Specific Outcomes (PSOs)							
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CLO 1					3								2			
CLO 2					2									2		
CLO 3			2										2			
CLO 4			2											2		
CLO 5			3										2			
CLO 6					2								2			
CLO 7					3									2		
CLO 8			2											2		
CLO 9			2											2		
CLO 10			2										2			
CLO 11					3								3			
CLO 12			2											2		
CLO 13					2									2		
CLO 14			2											2		
CLO 15			3											2		
CLO 16					3								3			

3 = High; **2** = Medium; **1** = Low

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO 3, PO 5, PSO 1, POS 2	SEE Exams	PO 3, PO 5, PSO 1, POS 2	Assignments	-	Seminars	-
Laboratory Practices	PO 3, PO 5, PSO 1, POS 2	Student Viva	-	Mini Project	-	Certification	1

XII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

	LIST OF EXPERIMENTS							
Week-1	SKETCHER							
Interface, Sketch Tools, View Tool bar, Profile Tool bar, Operation Tool bar, Tools, Constrain tool bar, Transformation Tool bar, User Selection Filter, Standards, Visualizations.								
Week-2	PART DESIGN							
Sketch Base Measure, Th	d Features, Dress up Features, Transformation Features, Reference Elements, ickness, Boolean Operations.							
Week-3	SHEET METAL DESIGN							
Walls, Cuttin	Walls, Cutting and Stamping, Bending, Rolled Walls,							
Week-4	SURFACE DESIGN							
Surfacer, Op	erations, Wireframe, Replication.							
Week-5	ASSEMBLY							
Product Stru	cture Tools, Constrains.							
Week-6	GD&T							
Introduction of Tolerance	Introduction to Geometric Dimensioning and Tolerance, Weld Symbols, GD&T Symbols, Types of Tolerances, Types of views, Roughness Symbols.							
Week-7	DRAFTING							
Views, Anno	otations, Sheet Background.							
Week-8	DESIGN OF AIRCRAFT WING							
Design of an	y two types of Aircraft structures							
Week-9	DESIGN OF FUSELAGE							
Design of fu	selage with internal components							
Week-10	DESIGN OF NOSE CONE							
Design of No	Design of Nose cone structures							
WeeK-11	DESIGN OF LANDING GEAR							
Design of Main landing gear and nose landing gear								
Week-12	REVISION							
Revision								
 Reference Books: 1. http://www.ehu.eus/asignaturasKO/DibujoInd/Manuales/R12_manual_catia_v5.pdf 2. http://www.engr.psu.edu/xinli/edsgn497k/TeaPotAssignment.pdf 3. http://file1.engineering.com/pdf/PartDesign.pdf 4. https://www.3ds.com/fileadmin/general/Terms/Licensed-Program Specifications /CATIA /CATIA_ V5R18.pdf 								

XIV. COURSE PLAN:

Week No.	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Introduction about CATIA and different workbenches in it.	CLO 1, CLO 2, CLO3, CLO4	R3: 172
2	Interface, Sketch Tools, View Tool bar, Profile Tool bar, Operation Tool bar, Tools, Constrain tool bar, Transformation Tool bar, User Selection Filter, Standards, Visualizations.	CLO 5	R3: 173
3	Sketch Based Features, Dress up Features, Transformation Features, Reference Elements, Measure, Thickness, Boolean Operations.	CLO 6, CLO 7	R3: 174
4	Walls, Cutting and Stamping, Bending, Rolled Walls	CLO 8, CLO 9	R3: 178
5	Surfacer, Operations, Wireframe, Replication.	CLO 10, CLO 11	R3: 179
6	Product Structure Tools, Constrains.	CLO 12, CLO 13	R3: 181
7	Introduction to Geometric Dimensioning and Tolerance, Weld Symbols, GD&T Symbols, Types of Tolerances, Types of views, Roughness Symbols.	CLO 14, CLO 15	R3: 184
8	Views, Annotations, Sheet Background.	CLO 14, CLO 15	R3: 185
9	Design of any two types of Aircraft structures	CLO 16	R3: 186
10	Design of fuselage with internal components	CLO 16	R3: 187
11	Design of Nose cone structures	CLO 16	R3: 195
12	Design of Main landing gear and nose landing gear	CLO 16	R3: 198

The course plan is meant as a guideline. Probably there may be changes.

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	To organize certifiation programs	Certifications	PO 5	PSO 1
	that will help students to stay			
	ahead in competative world.			

Prepared by:

Mr. R Sabari Vihar, Assistant Professor

HOD, AE