INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous)

Dundigal, Hyderabad -500 043

AERONAUTICAL ENGINEERING

COURSE DESCRIPTOR

Course Title	ENGINEEI	ENGINEERING CHEMISTRY LABORATORY			
Course Code	AHS103				
Programme	B.Tech				
Semester	I AE	CE ME			
Course Type	Foundation				
Regulation	IARE - R16	IARE - R16			
		Theory		Practio	cal
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits
	3	1	4	3	2
Chief Coordinator	Mr. M Prave	een, Assistant Pro	ofessor		
Course Faculty	Dr. V Anith Mr. B Raju, Mr. G Mahe Ms. T Malli Ms. M Laks	Dr. C Mahendar, Professor Dr. V Anitha Rani, Associate Professor Mr. B Raju, Assistant Professor Mr. G Mahesh Kumar, Assistant Professor Ms. T Mallika, Assistant Professor Ms. M Lakshmi Prasanna, Assistant Professor Ms. M Swathi, Assistant Professor			

I. COURSE OVERVIEW:

The aim of this Engineering Chemistry laboratory is to develop the analytical ability of the students by better understanding the concepts experimental chemistry. The experiments carried out like preparation of aspirin, thiokol rubber, conductometry, potentiometry, physical properties like viscosity and surface tension of liquids. The volumetric analytical experiments like determination of hardness of water, dissolved oxygen and copper in brass can be carried out in the laboratory.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
	-	-	Basic principles of chemistry laboratory	-

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks	
Engineering Chemistry Laboratory	70 Marks	30 Marks	100	

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	Chalk & Talk	×	Quiz	×	Assignments	×	MOOCs
~	LCD / PPT	×	Seminars	×	Mini Project	>	Videos
~	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks forinternal assessment and 70 marks for semester end lab examination. Out of 30 marks of of of the day today performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end labexamination for 70 marks shall be conducted by two examiners, one of them beingInternal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

The emphasis on the experiments is broadly based on the following criteria:

20 %	To test the preparedness for the experiment.
20 %	To test the performance in the laboratory.
20 %	To test the calculations and graphs related to the concern experiment.
20 %	To test the results and the error analysis of the experiment.
20 %	To test the subject knowledge through viva – voce.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Table 1: Assessment pattern for CIA

Component	L	Total Mayles	
Type of Assessment	Day to day performance	Final internal lab assessment	Total Marks
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

Preparation	Performance	Calculations and Graph	Results and Error Analysis	Viva	Total
2	2	2	2	2	10

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.	2	Calculations of the observations
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.	2	Characteristics curves
PO 7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	1	-

^{3 =} High; 2 = Medium; 1 = Low

VII. HOW PROGRAM SPECIFIC OUTCOMES ARE ASSESSED:

	Program Specific Outcomes (PSOs)	Strength	Proficiency assessed by
PSO 1	Professional skills: Able to utilize the knowledge of	1	Open ended experiments
	aeronautical/aerospace engineering in innovative, dynamic		
	and challenging environment for design and development of		
	new products		
PSO2	Problem-solving Skills: Imparted through simulation	-	-
	language skills and general purpose CAE packages to solve		
	practical, design and analysis problems of components to		
	complete the challenge of airworthiness for flight vehicles.		
PSO 3		-	-
	different types of in house and training and industry practice		
	to fabricate and test and develop the products with more		
	innovative technologies		
PSO 4	Successful career and entrepreneurship: To prepare the	-	-
	students with broad aerospace knowledge to design and		
	develop systems and subsystems of aeronautical/aerospace		
	allied systems to become technocrats.		

^{3 =} High; 2 = Medium; 1 = Low

VIII. COURSE OBJECTIVES (COs):

The c	The course should enable the students to:				
I	The course intends to provide an overview of the working principles and mechanism of reactions.				
II	This course relies on elementary treatment and qualitative analysis and makes use of simple models and equation to illustrate the concepts involved.				
III	To provide an overview of preparation and identification of organic compounds.				
IV	To gain the knowledge on existing future upcoming devices, materials and methodology.				

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AHS103.01	CLO 1	Extrapolate the knowledge of preparation of acetyl salycilic acid.	PO 1, PO 7	2
AHS103.02	CLO 2	Use innovative methods to improve the quality of soft water for industrial purpose at cheaper cost.	PO 1, PO 2, PO 7	2

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
AHS103.03	CLO 3	Evaluate conductometry and conductometric titrations	PO 1	1
AHS103.04	CLO 4	Estimate potentiometry and potantiometric titrations.	PO 1	1
AHS103.05	CLO 5	Compare the results of experiments with conductometry	PO 1	1
AHS103.06	CLO 6	Describe potentiometry and potantiometric titrations	PO 1	1
AHS103.07	CLO 7	Explain certain properties of water using the concepts of cohesive forces and surface tension.	PO 1, PO 7	3
AHS103.08	CLO 8	Identify the formula for viscosity, and explain each variable	PO 1, PO7	3
AHS103.09	CLO 9	Understand the analysis of water to improve the quality of soft water	PO 1, PO2, PO 7	2
AHS103.10	CLO10	Extrapolate the knowledge of preparation of artificial rubber	PO 1	1
AHS103.11	CLO11	Examine the amount of percentage by volumetric analysis	PO 1	1
AHS103.12	CLO 12	Estimate the composition by volumetric analysis	PO 1	1

3 = High; 2 = Medium; 1 = Low

X. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

Course Learning	Program Outcomes (POs)								Program Specific Outcomes (PSOs)							
Outcomes (CLOs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO 4
CLO 1	2						2									
CLO 2	2	2											1			
CLO 3	1															
CLO 4	1															
CLO 5	1															
CLO 6	1															
CLO 7	3						2						2			
CLO 8	3						2						2			
CLO 9	2						2						1			
CLO 10	1															
CLO 11	1															
CLO 12	1															

3 = High; 2 = Medium; 1 = Low

XI. ASSESSMENT METHODOLOGIES-DIRECT

CIE Exams	PO 1	SEE Exams	PO 1	Assignments	-	Seminars	-
Laboratory Practices	PO 1, PO 7	Student Viva	PO 1	Mini Project	-	Certification	-

XII. ASSESSMENT METHODOLOGIES-INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIII. SYLLABUS

LIST OF EXPERIMENTS								
Week-1	PREPARATIONS OF ORGANIC COMPOUNDS							
Preparation of Aspirin								
Week-2	VOLUMETRIC ANALYSIS							
Estimation	Estimation of hardness of water by EDTA method							
Week-3	CONDUCTOMETRIC TITRATIONS							
Conductome	Conductometric titration of strong acid Vs strong base							
Week-4	Week-4 POTENTIOMETRIC TITRATIONS							
Potentiomet	Potentiometric titration of strong acid Vs strong base							
Week-5	CONDUCTOMETRIC TITRATIONS							
Conductometric titration of mixture of acid Vs strong base								
Week-6	Week-6 POTENTIOMETRIC TITRATIONS							
Potentiometr	ric titration of weak acid Vs strong base							
Week-7	Week-7 PHYSICAL PROPERTIES							
Determination	Determination of surface tension of a given liquid using stalagmometer							
Week-8	Week-8 PHYSICAL PROPERTIES							
Determination of viscosity of a given liquid by using Ostwald's viscometer								
Week-9 VOLUMETRIC ANALYSIS								
Estimation of dissolved oxygen in water								
Week-10	PREPARATIONS OF RUBBER							
Preparation of Thiokol rubber								

WeeK-11	VOLUMETRIC ANALYSIS					
Determination of percentage of copper in brass						
Week-12	VOLUMETRIC ANALYSIS					
Estimation of MnO ₂ in pyrolusite						
Reference Books:						

- 1. A text book on experiments and calculation Engg. S.S. Dara.
- 2. Instrumental methods of chemical analysis, Chatwal, Anand, Himalaya Publications.

XIV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Week No	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Preparation of Aspirin	CLO1	R1,R2
2	Estimation of hardness of water by EDTA method	CLO 2	R1,R2
3	Conductometric titration of strong acid Vs strong base	CLO 3	R1,R2
4	Potentiometric titration of strong acid Vs strong base	CLO 4	R1,R2
5	Conductometric titration of mixture of acid Vs strong base	CLO 5	R1,R2
6	Potentiometric titration of weak acid Vs strong base	CLO 6	R1,R2
7	Determination of surface tension of a given liquid using stalagmometer	CLO 7	R1,R2
8	Determination of viscosity of a given liquid by using Ostwald's viscometer	CLO 8	R1,R2
9	Estimation of dissolved oxygen in water	CLO 9	R1,R2
10	Preparation of Thiokol rubber	CLO 10	R1,R2
11	Determination of percentage of copper in brass	CLO 11	R1,R2
12	Estimation of MnO ₂ in pyrolusite	CLO 12	R1,R2

XV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed actions	Relevance with POs	Relevance with PSOs
1	To improve standards and analyze the concepts.	Open ended experiments	PO 1	PSO 1
2	Encourage students to solve real time applications and prepare towards competitive examinations.	Open ended experiments	PO 1	PSO 1

Prepared by:

Mr. M Praveen, Assistant Professor

HOD, FRESHMAN ENGINEERIMG