

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

COMPUTER SCIENCE AND ENGINEERING

COURSE DESCRIPTOR

Course Title	SOFT COMPUTING LABORATORY						
Course Code	BCSB	BCSB12					
Programme	M.Tecl	M.Tech					
Semester	Π	II CSE					
Course Type	Core						
Regulation	IARE -	R18					
			Theory		Practica	1	
Course Structure	Lect	ures	Tutorials	Credits	Laboratory	Credits	
	-		-	-	4	2	
Course Faculty	Ms. K.	Saisa	ranya, Assistant	Professor, CSE			

I. COURSE OVERVIEW:

The course introduces the concepts of neural networks, Evolutionary algorithms and fuzzy Logic. Moreover the course pays a special attention to solve typical uncertainty problems which are primarily explored by fuzzy logic concepts. The principle aim of the course is to help students to find out more about appropriate computing techniques and use it for their problem of choice.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
PG	BCSB10	Ι	Data Science Laboratory	2

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Soft Computing Laboratory	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	LCD / PPT	~	Student viva	~	Mini Project	×	Videos
~	Open Ended Experiments						

V. METHODOLOGY:

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

I.	The emphasis on the experiments is broadly based on the following criteria:					
20 %	To test the preparedness for the experiment.					
20 %	To test the performance in the laboratory.					
20 %	To test the calculations and graphs related to the concern experiment.					
20 %	To test the results and the error analysis of the experiment.					
20 %	To test the subject knowledge through viva – voce.					

The emphasis on the experiments is broadly based on the following criteria:

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

Table 1: Assessment pattern for CIA
·

Component	Labo	Total	
Type of Assessment	Day to day performance	Final internal lab assessment	Marks
CIA Marks	20	10	30

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

Preparation	Performance	Calculations and Graph	Results and Error Analysis	Viva	Total
2	2	2	2	2	10

VI. HOW PROGRAM OUTCOMES AREASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	An ability to analyze a problem, and to identify and define	3	Laboratory
	the computing requirements appropriate to its solution.		practices,
			student viva
PO 2	Solve complex heterogeneous data intensive analytical	3	Laboratory
	based problems of real time scenario using state of the art		practices,
	hardware/software tools		student viva
PO 7	To engage in life-long learning and professional	3	Laboratory
	development through self-study, continuing education,		practices,
	Professional and doctoral level studies.		Mini project

3 = High; **2** = Medium; **1** = Low

VII. COURSE OBJECTIVES(COs):

The o	The course should enable the students to:				
Ι	Explore methods that implements neural network techniques.				
II	Practice the fuzzy set relations using different operations.				
III	Design Regression techniques for a set of data points.				
IV	Capture an appropriate classification model for analytical tasks.				

VIII. COURSE LEARNING OUTCOMES(CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength Of Mapping
BCSB12.1	CLO 1	Demonstrate the Conceptual model of Increment learning algorithm.	PO 1	3
BCSB12.2	CLO 2	Identify and understand the methods used in neural networks.	PO 1	3
BCSB12.3	CLO 3	Analyze and understand the operations on fuzzy sets	PO 2	2
BCSB12.4	CLO 4	Creation of Fuzzy relation by Cartesian product and their implementation on fuzzy sets	PO 2	3
BCSB12.5	CLO 5	Explore the applications of Genetic algorithms.	PO 7	3
BCSB12.6	CLO 6	Analyze and understand a basic statistics approach to analyze quantitative data.	PO 1,PO 2	2
BCSB12.7	CLO 7	Demonstrate Crisp partition and their modeling techniques	PO 1	2
BCSB12.8	CLO 8	Analyze delta rule which are required for strengthening weights between neuron networks	PO 1	3
BCSB12.9	CLO 9	Illustrate the use of logic gates and their modeling techniques.	PO 2	2
BCSB12.10	CLO 10	Identify and analyze appropriate classification techniques for analytical task.	PO 2	3

3 = **High**; **2** = **Medium**; **1** = Low

IX. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFICOUTCOMES:

Course Learning Outcomes			
(CLOs)	PO1	PO2	PO7
CLO 1	3		
CLO 2	3		
CLO 3		2	
CLO 4		3	
CLO 5			3
CLO 6	2	3	
CLO 7	2		
CLO 8	3		
CLO 9		2	
CLO 10		3	

3 = **High**; **2** = **Medium**; **1** = **Low**

X. ASSESSMENT METHODOLOGIES –DIRECT

CIE Exams	PO 1, PO 2, PO 7	SEE Exams	PO 1, PO 2, PO 7	Laboratory Practices	PO 1, PO 2, PO 7	Student Viva	PO 1, PO 2
Mini Project	PO7						

XI. ASSESSMENT METHODOLOGIES -INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XII. SYLLABUS

LIST OF EXPERIMENTS					
Week-1	PERCEPTRON				
Create a perceptron with appropriate number of inputs and outputs. Train it using fixed increment learning algorithm until no change in weights is required. Output the final weights					
Week-2	ARTIFICIAL NEAURAL NETWORKS				
Write a program to implement artificia	Write a program to implement artificial neural network without back propagation. Write a program to implement artificial neural network with back propagation.				
Week-3	FUZZY SETS				
Implement Union, Intersection, Complement and Difference operations on fuzzy sets. Also create fuzzy relation by Cartesian product of any two fuzzy sets and perform max-min composition on any two fuzzy relations					
Week-4	GENETIC ALGORITHMS				
Implement travelli	ng sales person problem (TSP) using genetic algorithms.				
Week-5	COVARIANCE				
Plot the correlation plot on dataset and visualize giving an overview of relationships among data on soya bins data. Analysis of covariance: variance (ANOVA), if data have categorical variables on iris data.					
Week-6	DATA FITTING BY REGRESSION				
Implement linear r	regression and multi-regression for a set of data points.				
Week-7	CRISP MODEL				
Implement crisp p	artitions for real-life iris dataset.				
Week-8	PERCEPTRON RULE				
Write a program to implement Hebb's rule Write a program to implement Delta rule.					
Week-9	LOGIC GATES				
Write a program to implement logic gates.					
Week-10	CLASSIFICATION				
Implement SVM classification by Fuzzy concepts.					
Text Books:					
 J. S. R. Jang, C. T. Sun, E. Mizutani, Neuro, "Fuzzy and Soft Computing", PHI, Pearson Education, 1stEdition, 2004. S. N. Sivanandan, S. N. Deepa, "Principles of Soft Computing", Wiley India, 2nd Edition, 2007. 					
Reference Books:	Reference Books:				
1. D.K Prathikar,	1. D.K Prathikar, "Soft Computing", Narosa Publishing House, New Delhi, 2008.				

Web References:

1. https://ldrp.ac.in/images/syllabus/BEComputer/8023%20soft%20computing.pdfhttp://itmgoi.in/down load/CSE%20&%20IT/Soft%20Computing%20IT%20(IT-802).pdf.

2. http://mirlab.org/jang/book/

SOFTWARE AND HARDWARE REQUIREMENTS FOR A BATCH OF 60 STUDENTS: HARDWARE:18 numbers of Intel Desktop Computers with 4 GB RAM. **SOFTWARE:** Python

XIII. COURSEPLAN:

The course plan is meant as a guideline. Probably there may be changes.

Week No.	Topics to be covered	Course Learning Outcomes (CLOs)	Reference
1	Perceptron	CLO 1	T1:1.1
2	Artificial neural networks	CLO 1, CLO 2	T1:2.3
3	Fuzzy sets	CLO 3, CLO 4	T1:4.1
4	Genetic algorithrms	CLO 5	T1:5.1
5	Covariance	CLO 6	T1:6.1
6	Data fitting by regression	CLO 6	T1:7.1.1
7	Crisp model	CLO 7	T1:12.5
8	Perceptron rule	CLO 1,CLO 2, CLO 8	T1:15.1
9	Logic gates	CLO 9	T1:20.5
10	Classification	CLO 10	T1:20.8

Prepared by: Ms. K. Sai Saranya, Assistant Professor, CSE

HOD, CSE