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UNIT-1
INTRODUCTION TO PROBABILITY



Probability (Mathematical Definition)

Definition: If a trial results in n-exhaustive mutually exclusive, and
equally likely cases and m of them are favorable to the happening of
an event E then the probability of an event E is denoted by P(E) and is
defined as

P(E) = noof favourablecasestoevent _m
Total noof exaustivecases n



Statistical or Empirical Probability:

If a trial is repeated a no. of times under
essential homogenous and identical conditions,
then the limiting value of the ratio of the no. of
times the event happens to the total no. of trials,
as the number of trials become indefinitely large,
is called the probability of happening of the
event.( It is assumed the Ilimit is finite and
unique)



e A random variable X on a sample space S is a
function X: S - Rfrom S onto the set of real
numbers R, which assigns a real number X (s)
to each sample point ‘s’ of S.

e Random variables (r.v.) bare denoted by the
capital letters X,Y,Z,etc..

e Random variable is a single valued function.

e Sum, difference, product of two random
variables is also a random variable .Finite
linear combination of r.v is also a r.v .Scalar

multiple of a random variable is also random
variable.



e A random variable, which takes at most a
countable number of values, it is called a
discrete r.v. In other words, a real valued
function defined on a discrete sample space
is called discrete r.v.

e A random variable X is said to be continuous
if it can take all possible values between
certain limits .In other words, ar.v is said to
be continuous when it’s different values
cannot be put in 1-1 correspondence with a
set of positive integers.



e A continuous r.vis ar.vthat can be measured to any
desired degree of accuracy. Ex : age, height, weight
etc..

e Discrete Probability distribution: Each event in a sample
has a certain probability of occurrence . A formula
representing all these probabilities which a discrete r.v.
assumes is known as the discrete probability
distribution.



e The probability function or probability mass
function (p.m.f) of a discrete random variable X is
the function f(x) satisfying the following
conditions.

i) f(x)=0

ii) ; f(x) =1
iii) P(X =x) = f(x)

e Cumulative distribution or simply distribution of
a discrete r.v. X is F(x) defined by F(x) = P(X< x) =

> f (t) for —co<X <0
<X



e For a continuous r.v. X, the function f(x) satisfying the
following is known as the probability density
function(p.d.f.) or simply density function:

i) f(x) >0 ,-00<x <0

i) Tf(x)dx=1

b
iii) P(a<X<b)=£f (X)dx= Area under f(x) between

ordinates x=a and x=b



e Cumulative distribution for a continuous r.v.
X with p.d.f. f(x), the cumulative distribution
F(x) is defined as

F(x)= P(X<x)= [f(t)dt -oco<x<co

It follows that F(-o0) = 0, F(o0)=1, O<F(x)<1
for -co<x<oo

f(x)= d/dx(F(x))= F*(x)>0 and P(a < x < b)=
F(b)-F(a)
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In case of discrete r.v. the probability at a
point i.e., P(x=c) is not zero for some fixed c
however in case of continuous random
variables the probability at appoint is always
zero. l.e., P(x=c) = 0O for all possible values of

C.

P(E) = O does not imply that the event E is
null or impossible event.

11



If X and Y are two discrete random variables
the joint probability function of X and Y is
given by P(X=x,Y=y) = f(x,y) and satisfies

(i) f(xy)=0 (ii)§1§ f(xy)=1

12



The joint probability function for X and Y can

be reperesented by a joint probability table.

Table
Y1 Y2 |eeeee Vn Totals
Y
X1 f(X1,¥2) | ceeeeees | F(X1,Yn) f1(x1)
f(x1,¥1) =P(X=x,)

13




X> F(x2,v1) | f(x2,¥2) |........ f(x2,¥n) f1(x2)
=P(X=x3)
Xm f(xmtyl) f(meVZ) ------- f(xm;yn) fl(xm)
=P(X=Xm)
Totals fz(V1) fz(yz) ........ fZ(yn) 1
=P(Y=y,) | =P(Y=y) =P(Y=yn)
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The probability ofX = x; is obtained by adding all
entries in arrow corresponding to X = x;

Similarly the probability of Y =y, is obtained by all
entries in the column corresponding to Y =y,

f1(x) and fy(y) are called marginal probability
functions of X and Y respectively.

The joint distribution function of Xand Y is

defined by F(x,y)= P(X=x,Y<y)= > > f(u,v)
Uxv<3y
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The probability ofX = x; is obtained by adding all

entries in arrow corresponding to X = x;

Similarly the probability of Y = y, is obtained by
all entries in the column corresponding to Y =y,

f1(x) and fy(y) are called marginal probability
functions of X and Y respectively.
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eTwo discrete random variables X and Y are
independent iff

P(X=x,Y=y)=P(X=x)P(Y=y) Vx,y (or)

f(x,y) = fi(x)faly) V x,y

e Two continuous random variables X and Y are
independent iff
PIX<Xx,Y<y)=P(X<Xx)P(Y V)V Xy

(or)

f(x,y) = fi(x)f2(y) V x, vy
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If X and Y are two discrete r.v. with joint

probability function f(x,y) then

P(Y = y | X=x) = ff(;z;g)’) = fly|x)

. _ —v) = FT(XYy)
Similarly, P(X = x|Y=y) () f(x]y)

18



Median is the point, which divides the entire
distribution into two equal parts. In case of
continuous distribution median is the point,
which divides the total area into two equal

M
parts. Thus, if M is the median then [ f (x)dx
—00

= Off (x)dx=1/2. Thus, solving any one of the
M

equations for M we get the value of median.
Median is unique
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Mode: Mode is the value for f(x) or P(x;) at

attains its maximum

For continuous r.v. X mode is the solution
of f'(x) =0 and f'*(x) <0
provided it lies in the given interval. Mode

may or may not be unique.
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° Variance: Variance characterizes the variability in the
distributions with same mean can still have different dispersion
of data about their means

Variance of r.v. X denoted by Var(X) and is defined as

Var(X) = E{ (X -u )2 } = ;(X—,U)zf(X) ( for discrete
<

for continuous

Tx- 21 ()

N~
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where = E(X)

e If c is any constant then E(cX) = c E(X)
e If Xand Y are two r.v.’s then E(X+Y) = E(X)+E(Y)

e IF X,Y are two independent r.v.’s then E(XY) =
E(X)E(Y)
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o |f X{,X5,-————-- ,Xn are independent r.v's then E
[ﬂxileﬂ[E(xi) if all expectations exists.

i=1

e Var (X) = E (X?) —[E (X)]?
e If ‘'C’ is any constant then var (cX) = c*var(X)
e The quantity E[(X-a)?] is minimum when a =u= E(X)

e If Xand Y are independentr.v.”s then Var(X £Y) =
Var(X) = Var(Y)
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1:A random variable x has the following probability
function:

o))

x |01 1]3 |4 |5 7
P(x)|0 |k [2k|2k|3k|k*|7k’+k

Find (i) k (ii) P(x<6) (iii) P( x>6)
Solution:since the total probability is unity, we

have ﬁ p(x)=1
X=0

i.e., 0+ k +2k+ 2k+ 3k+ K+ 7K’+k=1
i.e., 8k°+ 9k-1=0
k=1,-1/8

24



P(x<6)=0+ k +2k+ 2k + 3k

=1+2+2+4+3=8

i) P(x>6)= k> +7k°+k
=9
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2. Let X denotes the minimum of the two
numbers that appear when a pair of fair dice is
thrown once. Determine (i) Discrete probability
distribution (ii) Expectation (iii) Variance

Solution:

When two dice are thrown, total number of
outcomes is 6x6=36

26



N\ N\ ST N N—

TN e N e

N—

In this case, sample space S



If the random variable X assigns the minimum of
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The minimum number could be 1,2,3,4,5,6

For minimum 1, the favorable cases are 11
Therefore, P(x=1)=11/36

P(x=2)=9/36, P(x=3)=7/36, P(x=4)=5/36,
P(x=5)=3/36, P(x=6)=1/36
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The probability distribution is

X

1

2

3

4

P(x)

11/36

9/36

7/36

5/36

3/36

1/36

(i)Expectation mean =% p. X

E(X)=1

Or u=

11+29+37+45+53+61

36

36 36 36 36 36 36

36

1 [11+8+21+20+15+6}=2=2.5278

30



ii) variance =3 p;x2i —u?

_ 119,94, 79,5 3 135 (257
E(x)—%1+%4+%9+%16+%25+%36 (2.5

=1.9713
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A continuous random variable has the probability density
function

£ () = kxe **, forx>0,1>0
O, otherwise

Determine (i) k (ii) Mean (iii) Variance

Solution:

(i) since the total probability is unity, we have off xXdx =1
—00
)
dex+ojokxe—ﬂde=1
—O0 O
i.e., Ojokxe—ﬂbxdx:l
0

=ne

o0
ork=22
@)

k
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(i)

mean of the distribution «= ojoxf (x)dx
—00

0
| ()dx+ofD kx2e—AXdx

ﬂzlxz[e_ﬁxJ—ZXLE_ﬂx

—A 22

2
A

4

e—/lx
23

J

© @)

O
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Variance of the distribution

o2= ofxz f (xdx— 222
—00
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Out of 800 families with 5 children each, how
many would you expect to have (i)3 boys (ii)5girls
(iii)either 2 or 3 boys ? Assume equal probabilities

for boys and girls
Solution(i)

P(3boys)=P(r=3)=P(3)= 5503 16per family

Thus for 800 families the probability of number of

families having 3 boys= 156(800] 250families
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P(5 girls)=P(no boys)=P(r=O)— 5C

0= 32 Per
Family Thus for 800 families the probability of
number

of families having 5girls= [800) 25families

32
P(either 2 or 3 boys =P(r=2)+P(r=3)=P(2)+P(3)

1 1 :
5CZ+255C =5/8 per family

Expected number of families with 2 or 3 boys =

2[800)2500families.
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4. In 1000 sets of trials per an event of small probability the

frequencies f of the number of x of successes are

X 101|112 13 1|4 |56 |7 |To
tal

P(|13 |3 /2 (8 (2 |9 |2 |1 |10
X)|0 |6 |1 |0 |8 00
5510

of 10 randomly chosen tape recorders. Find (i) P(X=0) (ii)
P(X=1) (iii) P(X=2) (iv) P (1<X<4).
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Bionomial Distribution

~ A random variable X is said to follow binomial distribution if it
assumes only non-negative values and its probability mass
function is given by

P(X = x) { P(x) = @pq where x=0,1,2,3,...n gq=1-p

O other wise

where n, p are known as parameters, n- number of independent
trials p- probability of success in each trial, g- probability of
failure.
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Mode of the Binomial distribution: Mode of B.D. Depending
upon the values of (n+1)p

(i) If (n+1)pis not an integer then there exists a unique modal
value for binomial distribution and it is ‘m’= integral part of
(n+1)p

(i) If (n+1)p is an integer say m then the distribution is Bi-
Modal and the two modal values are m and m-1
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Poisson distribution:

- Poisson Distribution is a limiting case of the Binomial distribution under
the following conditions:

(i) n, the number of trials is infinitely large.
(ii) P, the constant probability of success for each trial is indefinitely small.

(iii) np= A, is finite where A is a positive real number.

40



A random variable X is said to follow a Poisson distribution if it assumes

-only non-negative values and its p.m.f. is given by

— A %
P(x,k){P(X= X)= ——a—: x=0,1,23,...4>0
0 Other wise

Here A is known as the parameter of the distribution.

41



We shall use the notation X~ P(A) to denote that X is a Poisson
variate with parameter A

Mean and variance of Poisson distribution are equal to A.

' The coefficient of skewness and kurtosis of the poisson distribution
are y; = VB1= 1/vA and y,= B,-3=1/A. Hence the poisson distribution
is always a skewed distribution. Proceeding to limit as A tends to
infinity we get 3, =0 and [3,=3
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Mode of Poisson Distribution: Mode of P.D. Depending upon the value of A

(i) when A is not an integer the distribution is uni- modal and integral part of
A is the unigue modal value.

(i) When A =k is an integer the distribution is bi-modal and the two modals
are k-1 and k.

(iii) Sum of independent poisson variates is also poisson variate.

(iii) The difference of two independent poisson variates is not a poisson
(iv) variate.

43



- Moment generating function of the P.D.

I X~ P(A) then My(t) = e
 Recurrence formula for the probabilities of P.D. ( Fitting of P.D.)
P = A
Oc+d) X+1 P(X)

' Recurrence relation for the probabilities of B.D. (Fitting of B.D.)
= |[n—=XxP
Pix+1) = (0=X Bl p(x)
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1. Average number of accidents on any day on a national
highway is 1.8. Determine th probability that the number of
accidents is (i) at least one (ii) at most one

Solution:
Mean=4 =1.8

—Ajx —1.8 X
We have P(X=x)=p(x)= A* _e 718

x! x!

45



i) P (at least one) =P( x=>1)=1-P(x=0)

=1-0.1653
=0.8347

i) P (at most one) =P (x<1)
=P(x=0)+P(x=1)
= 0.4628

46



Exercise problems:

3
2.If a Poisson distribution is such thatP(X =1)=2P(X=3) then find
(i) P(X >1)
(i) P(X <3) (iii)) P2< X £9)

a7



NORMAL DISTRIBUTION

Normal Distribution

A random variable X is said to have a normal distribution with
parameters u called mean and o called variance if its density
function is given by the probability law

X_

1 2
f(x; u, o) = mexp{%{ G”}] , -0<X<0,-0<U<0,c>0

48



" A r.v. X with mean p and variance o” follows the normal
distribution is denoted by

X~ N(u, 6°)

XY N(, c°) then Z = A is a standard normal variate with

E(Z) = 0 and var(Z)=0 and we write Z~ N(0,1)

49



' The p.d.f. of standard normal variate Z is given by f(Z) = Ee

-0 < /< 00

Z
. . je‘tzlzdt

' The distribution function F(Z) = P(Z < z) 27[

F(-z) =1-F(z2)
"Pla<z<b)=P(a<z<b)=Pla<z<b)=P(a<z<b)=F(b)-F(a)
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X —u

If X~ N(u, 6°) then Z =

then P(@<X<b)= F(b%ﬂj ) F(a_ﬂj

(o2 (o}

N.D. is another limiting form of the B.D. under the following
conditions:

i) n, the number of trials is infinitely large.

ii)Neither p nor g is very small
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i) The maximum probability occurring at the point x= p and is given by

[P(X)]max = 1/ 211

i) By=0and 3,=3
Upe1 =0 (r=0,1,2......) and py, = 1.3.5....(2r-1)c”

iii) Since f(x) being the probability can never be negative no portion of
the curve lies below x- axis.
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i) Linear combination of independent normal variate is also a normal
variate.

i) X- axis is an asymptote to the curve.

iii) The points of inflexion of the curve are givenby x=pn *+ o, f(x) =
1
€

oV2r

2 4 2 4
iv)Q.D. : M.D.: S.D.:: 3°:g9t0ni g 1 Or QD.:M.D.: S.D.
:10:12:15
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Problems

Problems:

1. The mean weight of 800 male students at a certain college is 140kg and
the standard deviation is 10kg assuming that the weights are normally
distributed find how many students weigh 1) Between 130 and 148kg ii) more
than 152kg

Solution:

Let #4 be the mean and o be the standard deviation. Then #=140kg and o
=10pounds
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_ X—pu  138-140

(i) Whenx=138 = TR

Z_X—,u_148—140_
Whenx=138,° 5 10

08=12,
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i)

x—u_152-140

When x=152,

- 10 = 1.2=21

Therefore P(x>152)=P(z>z,)=0.5-A(z,)
=0.5-0.3849=0.1151
Therefore number of students whose weights are more than 152kg

=800x0.1151=92.
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Exercise Problems:

1. Two coins are tossed simultaneously. Let X denotes the number of heads ther
find i) E(X) ii) E(X°) i) E(X’) iv) V(X)

2.1f f(x)=ke ™ is probability density function in the interval, -o<x<x, then find i) k
i) Mean iii) Variance iv) P(0<x<4)
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3. If X'is a normal variate with mean 30 and standard deviation 5.
Find the probabilities that i) P(26 < X<40) i) P( X >45)

4, The marks obtained in Statistics in a certain examination found
to be normally distributed. If 15% of the students greater than or
equal to 60 marks, 40% less than 30 marks. Find the mean and
standard deviation.
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t-distribution

e |fx is the mean of a random sample of size n taken from a
normal population having the mean u and the variance G,

i(Xi—Y)Z N/ . .
and s2-2 thent="-#isar.v. having the
o

t- distribution with the parameter v = (n-1)dof
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e The overall shape of a t-distribution is similar to that of a
normal distribution both are bell shaped and symmetrical
about the mean. Like the standard normal distribution t-
distribution has the mean 0, but its variance depends on the
parameter v (nu), called the number of degrees of freedom.
The variance of t- distribution exceeds1, but it approaches 1 as
n—o0. The t-distribution with v-degree of freedom approaches
the standard normal distribution as v—oo.

The standard normal distribution provides a good

approximation to the t-
distribution for samples of size 30 or more
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Producer of ‘gutkha’ claims that the nicotine content in his ‘gutkha’
on the average is 83 mg. can this claim be accepted if a random
sample of 8 ‘gutkhas’ of this type have the nicotine contents of

20,1.7,2.1,1.9,2.2,2.1,2.0,1.6 mg.

Solution: Given n=8 and»=1.83 mg
1. Null hypothesis(Hp): »=1.83
2. Alternative hypothesis(H,): x»1.83

3. Level of significance: ~=0.05
t, for n-1 degrees of freedom t,,; for 8-1 degrees of freedom is

1.895
Test statistic:

t = H

S

n
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(x-%)

(x-x)°

2.0

0.05 0.0025
1.7 -0.25 0.0625
2.1 0.15 0.0225
1.9 -0.05 0.0025
2.2 0.25 0.0625
2.1 0.15 0.0225
2.0 0.05 0.0025
1.6 -0.35 0.1225

Total=15.6

62



15.6 (x-%X)* 0.3

X =— =% gnd s’= 2= S=0.21

2

X — B
t:Tﬂ=1'93—21'83=1.62 1-1.62

Jn V8

Conclusion:

‘t‘ < ta ~We accept the Null hypothesis.
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The means of two random samples of sizes 9,7 are 196.42
and 198.82.the sum of squares of deviations from their
respective means are 26.94,18.73.can the samples be
considered to have been the same population?

Solution: Given n,=9, n,=7, X,=196.42, X,=198.82 and
Y (%-%)'=26.94,

Z(Xi_)_(z)2=18.73
2 Z(Xi _X1)2 +Z(Xi ‘Xz)2
ST, =3.26

-.5=1.81
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X

Null hypothesis(Hp): X1 =
Alternative hypothesis(H;): "1. "2
Level of significance: ».=0.05

t_ for 4,2 degrees of freedom
toos for 9+7-2=14 degrees of freedom is 2.15

Test statistic: (. %% = 162 1me-563 [17263
S i+i 2.81) 1+1
n, n, V9 7

Conclusion:
= >1, ~We reject the Null hypothesis.
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F-distribution

2 2 . .
e IfS;"and S, are the variances of independent random
samples of size n; and n, respectively, taken from two normal

. . . 2,
populations having the same variance, then F=z—12 isar.v.
2

having the F- distribution with the parameter’s v;=n;-1 and
L,=N,-1 are called the numerator and denominator degrees of
freedom respectively.

o F1q(L1,05)=—

Fo (02,01)
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In one sample of 8 observations the sum of squares of
deviations of the sample values from the sample mean was
84.4 and another sample of 10 observations it was 102.6 .test
whether there is any significant difference between two

sample variances at at 5% level of significance.

G\2
Solution: Given n;=8, n,=10, Z(Xi_xl) =84.4 and ).(x-%)'=102.6

X — X, )?
S’ = 2.0 =%) _ 844 15057
n, -1

X, —X;)°
26 -x)" 1026 .,
n, -1

S,
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Null hypothesis(Hp): s'=s.
Alternative hypothesis(H;): s/’
Level of significance: »=0.05
F, For (o, -1n,-1 degrees of freedom
F.. For (7,9) degrees of freedom is 3.29

Test statistic: -5

2
2

Conclusion: - [f<f,

=12057 =1 057
4

11
IF|=1.057

~We accept the Null hypothesis.
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Chi-square test

e If S” is the variance of a random sample of size n taken from
a normal population having the variance o”, then

(n-1s2 20 -X)° . . .
7’ =+——="——— s ar.v. having the chi-square

o) o

distribution with the parameter v =n-1

e The chi-square distribution is not symmetrical
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The following table gives the classification of 100 workers according to gender and nature
of work. Test whether the nature of work is independent of the gender of the worker.

Sta |Uns |Tot
ble |tabl |al
e
Male 40 |20 |60
Female |10 |30 |40
Total 50 |50 [100

Solution: Given that

row total Xcolumn total

Expected frequencies =

grand total
90x100 =4 § 90x100 =4 § 90
200 200
90x100 =5 5 90x100 =55 110
200 200
100 100 200
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Calculation of 7°:

Observed Expected ©.-E) ©-E)
Frequency(O;) | Frequency(E;) |
60 45 225 5

30 45 225 5

40 55 225 4.09
/0 55 225 4.09

18.18
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(0. -E)°

2" =y =18.18
1. Null hypothesis(Hp): o -k,
2. Alternative hypothesis(H;):  0;#E
3. Level of significance: »=0.05
».2 For(r-1)(c-1) degrees of freedom

Zoos. FOr (2-1)(2-1)=1 degrees of freedom is 3.84

72



Ve =Z_(Oi ;iE_i)z =18.18

1. Null hypothesis(Hp): o, =k,
2. Alternative hypothesis(H;): o, =E,
3. Level of significance: ~=0.05
ZO{Z For (r-1)(c-1) degrees of freedom

Yoo FOr (2-1)(2-1)=1 degrees of freedom is 3.84
4. Test statistic: Z2=z(oi‘E—_Ei)2=18.18,
x*|=1.057
Conclusion: .. |2?|> »..?

~We reject the Null hypothesis.
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UNIT-I
TESTING OF STATISTICAL HYPOTHESIS
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e Null Hypothesis (N.H) denoted by H, is statistical hypothesis, which is to
be actually tested for acceptance or rejection. NH is the hypothesis,
which is tested for possible rejection under the assumption that it is true.

e Any Hypothesis which is complimentary to the N.H is called an
Alternative Hypothesis denoted by H;

e Simple Hypothesis is a statistical Hypothesis which completely specifies
an exact parameter. N.H is always simple hypothesis stated as a equality
specifying an exact value of the parameter. E.g. NH=Hg: u=py N.H.=
Ho: 1~ 1= 0

e Composite Hypothesis is stated in terms of several possible values.

e Alternative Hypothesis(A.H) is a composite hypothesis involving
statements expressed as inequalities such as <, > or #

i) A.H:Hi:u>po (Right tailed) i) AH:Hi: u< o (Left tailed)

iii) A\H : Hi: u# yo (Two tailed alternative)
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ERRORS IN SAMPLING

e Errors in sampling:
Type | error: Reject Hy when it is true

Type Il error: Accept Howhen it is wrong (i.e) accept if when H; is true.

Accept Hg Reject Hy

Hoy is True |Correct Type 1
Decision error

Ho is False | Type 2 error |Correct
Decision

e If P{ Reject Hy when it is true}= P{ Reject Hy | Ho}=o and
P{ Accept Hy when it is false}= P{ Accept Hy | Hi} = B then o, 3 are called the
sizes of Type | error and Type |l error respectively. In practice, type | error

amounts to rejecting a lot when it is good and type Il error may be regarded as
accepting the lot when it is bad.
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e o and [3 are referred to as producers risk and consumers risk

respectively.

e A region (corresponding to a statistic t) in the sample space S
that amounts to rejection of Hy is called critical region of
rejection.

e Level of significance is the size of the type | error ( or
maximum producer’s risk)

e The levels of significance usually employed in testing of
hypothesis are 5% and 1% and is always fixed in advance
before collecting the test information.

e A test of any statistical hypothesis where AH is one tailed(
right tailed or left tailed) is called a one—tailed test. If AH is
two-tailed such as: Hg: 1 = Lo, againstthe AH. Hy:u#= o (u >
Lo and u < ) is called Two-Tailed Test.
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e The value of test statistics which separates the critical ( or
rejection) region and the acceptance region is called Critical value
or Significant value. It depends upon (i) The level of significance
used and (ii) The Alternative Hypothesis, whether it is two-tailed

or single tailed
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Critical Value |Level of significance (o)

(Z,) 1% 5% 10%
Two-Tailed -Z,/, =-2.58 -Zy, =-1.96 Lo/
test =-1.645

Za/z = 2.58 Za/z =1.96 Za/z
= 1.645
Right-Tailed |z, = 2.33 Z, =1.645 Z, =
test 1.28
Left-Tailed -Z, = -2.33 -Z, =-1.645 -Z,
Test =-1.28
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e When the size of the sample is increased, the probability of

committing both types of error 1 and Il (i.e) oc and [3 are small, the
test procedure is good one giving good chance of making the
correct decision.

e P-value is the lowest level ( of significance) at which observed value
of the test statistic is significant.
e A test of Hypothesis (T. O.H) consists of
1.Null Hypothesis (NH) : Hq

2.
. Level of significance: a

. Critical Region pre determined by o
. Calculation of test statistic based on the sample data.

O U AW

Alternative Hypothesis (AH) : H;

Decision to reject NH or to accept it.
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Maximum error E of a population mean u by using large sample mean is

E = Za/Z%

The most widely used values for 1-a. are 0.95 and 0.99 and the
corresponding values of Z,/, are Zy ;5 = 1.96 and Z gp5 = 2.575
Sample size n = [ZMET
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CONFIDENCE INTERVAL

e Confidence interval for u ( for large samples n > 30 ) o known

7, Z <2l
-alzﬁ< “<X+ a/2\/ﬁ

o |f the sampling is without replacement from a population of finite size
N then the confidence interval for p with known is

_ N=n
X-2,, 21 < M <xtz, T 25
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1.

Large sample confidence interval for u - 6 unknown is
X_ al2 S < l"" < X+Z

al?2 \/_

Large sample confidence interval for u; - 1, ( where 6; and &, are
unknowns)

(Xl—fz)izoc/z [32 S—]

n N

The end points of the confidence interval are called Confidence
Limits.
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LARGE SAMPLE TESTS

Test statistic for T.O.H. in several cases are

Statistic for test concerning mean o known

Z e Y_/UO
olvn

Statistic for large sample test concerning mean with o unknown
Z e Y‘ﬂo

S/n
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or Hi: g -y <OorHyi g -, #90

Statistic for large samples concerning the difference between two means

(o1 and o, are unknown)
(x_l_)TZ)_g

/=
(SﬁJ
nl n2
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Statistics for large sample test concerning one proportion

X
\/ﬁunder the N.H: Ho: p = p, against Hy: p # po or p > pg or

p <Pg

Statistic for test concerning the difference between two proportions

Ky Xy

7= \/f)(l—lf))(nﬁzhl) with p =212 " under the NH : Hy: p1=p, against the AH

Hi:pi< pyor pi>p,0r pi# p;
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e Large sample confidence interval for difference of two proportions (p;- p;)

IS
Xl(l_le Xz[l_sz
X Xy 47 n n +n2 n,
— ~al2
nl n2 nl n2

e Maximum error of estimate E = ZQ/ZW/@ with observed value x/n

substituted for p we obtain an estimate of E

e Sample size n= p(l-p)[%f when p is known

n= %[Z?j when p is unknown

e One sided confidence interval is of the form p < (1/2n))(a2 with (2n+1)
degrees of freedom.
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LARGE SAMPLE TESTS PROBLEMS

1. A sample of 400 items is taken from a population whose standard deviation
is 10.The mean of sample is 40.Test whether the sample has come from a
population with mean 38 also calculate 95% confidence interval for the
population.

Solution: Given n=400, x-4 and.=38 and~-=10
1. Null hypothesis(Hg): .=38

Alternative hypothesis(H;): .-38

2
3. Level of significance: .=0.05 and 2,=1.96
4

Test statistic: z- *;ﬂ
L2

_X—4=40-38—
Z= o 10 4

NG 400
z| =4
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_ o _ o
Confidence interval = (X—Zaﬁ,ﬂza ﬁj

10
40-196—40+196
| g
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Samples of students were drawn from two universities and from their weights in kilograms
mean and S.D are calculated and shown below make a large sample test to the significance of
difference between means.

MEAN S.D SAMPLE SIZE
University-A 55 10 400
University-B 57 15 100
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Solution: Given n;=400, n,=100, x=55, x,=57
51=10 and 52=15

R WN R

5.

Null hypothesis(Hy): ==x,
Alternative hypothesis(H;): x-x,
Level of significance: .=0.05 and z,=1.96
Test statistic: - > = _>° =-126
s s2 100 225
Un, ", 400 " 100
z/-1.26
Conclusion:

- zI<z,

~We accept the Null hypothesis.
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LARGE SAMPLE TESTS PROBLEMS

1. A sample of 400 items is taken from a population whose standard
deviation is 10.The mean of sample is 40.Test whether the sample has
come from a population with mean 38 also calculate 95% confidence
interval for the population.

Solution: Given n=400, x-40 andx=38 and-=10
1. Null hypothesis(Hg): »=38

2. Alternative hypothesis(H;): .-38

3. Level of significance: .=0.05 and 2,=1.96

4. Test statistic: z-*#

Jn
_ X— 4 =40-38 = _
=2 1= 4 z21-4
Jn Jaoo
5. Conclusion:
. lz|>z,

~We reject the Null hypothesis.
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. . — o _ o
Confidence interval = (X ~Z,——=,X+Z, ﬁj

=[40—1.96£,40 +1.96£j
J400 400

_(39.02,40.98)
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1. Samples of students were drawn from two universities and from their

weights in kilograms mean and S.D are calculated and shown below make a
large sample test to the significance of difference between means.

MEAN S.D SAMPLE SIZE

University-A 55 10 400

University-B 57 15 100
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Solution: Given n,=400, n,=100, =55, x,=57
S.:=10 and S,=15

ol I -

5.

Null hypothesis(Hp): x=x
Alternative hypothesis(H,):

X, # X,

Level of significance: .=0.05 and z,=1.96

Test statistic: -

%%
- 2 2
S, Sy
nl n2

z/-1.26
Conclusion:
-~ zI<z,
~We accept the Null hypothesis.

55-57 =_1.26
100 225
400 100
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LARGE SAMPLE TESTS PROBLEMS

1. Inasample of 1000 people in Karnataka 540 are rice eaters and the
rest are wheat eaters. Can we assume that both rice and wheat are
equally popular in this state at 1% level of significance?

Solution: Given »=400, =540
= X=3%0=(,54
P N 00

p=120.5, 0= 0.5

Null hypothesis(Hp): »=0.5
Alternative hypothesis(H;): »-.0.5
Level of significance: .=1% and z,=2.58
Test statistic: z:%
7-P-P=05-05=7 532 7-.2.532 . z<z, ~.We accept the Null hypothesis.

Q 0.5x0.5

PWONR

n 1000
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4.Random sample of 400 men and 600 women were asked whether they

would like to have flyover near their residence .200 men and 325 women
were in favour of proposal. Test the hypothesis that the proportion of

men and women in favour of proposal are same at 5% level.
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Solution:

p=n1p1+n2p2: 400

Given n1=400, n2=600 ;X =200 and X, =325

200

p, = 200 0.5
325
=277 0541
P 600

400><200+6OO><225

0 _ o505

n +n, 400+ 600
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Null hypothesis(Hp): .=y,

Alternative hypothesis(H,): S

Level of significance: ».=0.05 and z,=1.96

P - P — P> 0.5—0.541
Test statistic: ¢~ = — 2
\/ pq( + j \/ 0.525 % 0.425( N j
n, n, 400 600
Z|=1.28
Conclusion:

L zI<z,

~We accept the Null hypothesis.

=-1.28
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ANALYSIS OF VARIANCE

ANOVA:

It is abbreviated form for ANALYSIS OF VARIANCE which is a method for

comparing several population means at the same time. It is performed using F
distribution

Assumptions of ANALYSIS OF VARIANCE:
1. The data must be normally distributed.
2. The samples must draw from the population randomly and independently.

3. The variances of population from which samples have been drawn are
equal.

Types of Classification:
There are two types of model for analysis of variance
1. One-Way Classification

2. Two-Way Classification.
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PROCEDURE FOR ANOVA

Step 1 : State the null and alternative hypothesis.
Ho: 4=w-4(The means for three groups are equal).
H.: At least one pair is unequal.

Step 2: Select the test criterion to be used.

We have to decide which test criterion or distribution should be used. As our
assumption involves means for three normally distributed populations. We
should use the F-distribution to test the hypothesis.
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Step 3. Determine the rejection and non-rejection regions

We decide to use 0.05 level of significance. As on one-way ANOVA test is
always right-tail, the area in the right tail of the F-distribution curve is 0.05,
which is the rejection region. Now, we need to know the degrees of freedom
for the numerator and the denominator. Degrees of freedom for the
numerator=k-1, where k is the number of groups. Degree of freedom for
denominator =n-k where n is total number of observations

Step 4. Calculate the value of the test statistics by applying ANOVA. ie., F

Calculated

Step 5: conclusion
I) If F CaIcuIated<F Critical » then HO is accepted

”) |f F caIcuIated<F critical » then HO is rejeCted
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The analysis of variance table for two-way classification is taken as follows;

Source of Sum of Degree of |Mean squares

variation squares SS | freedom df | Ms

Between columns |SSC (c-1) MSC=SSC/(c-
1)

Within rows SSR (r-10 MSR=SSR/(r-
1)

Residual(ERROR) |SSE (c-1)(r-1) |MSE=SSE/(c-
1)(r-1)

total SST Cr-1

The abbreviations used in the table are:

SSC= sum of squares between column s.

SSR= sum of square between rows.

SST=total sum of squares;

SSE= sum of squares of error, it is obtained by subtracting SSR and SSC from

SST.




(c-1)=number of degrees of freedom between columns.

(r-1)=number of degrees of freedom between rows.
(c-1)(r-1)=number of degree of freedom for residual.
MSC=mean of sum of squares between columns
MSR= mean of sum of squares between rows.

MSE= mean of sum of squares between residuals.

It may be noted that total number of degrees of freedom are =(c-1)+(r-1)+(c-

1)(r-1)=cr-1=N-1
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1.There are three different methods of teaching English that are used on three
groups of students. Test by using analysis of variance whether this method s of
teaching had an effect on the performance of students. Random sample of size 4
are taken from each group and the marks obtained by the sample students in
each group are given below

Marks obtained the students

Group A Group B Group C
16 15 15
17 15 14
13 13 13
18 17 14
Total 64 Total 60 Total 56
Solution:

It is assumed that the marks obtained by the students are distributed normally with
means ., s, for the three groups A, B and C. respectively. Further, is is assumed that
the standard deviation of the distribution of marks for groups A,B and C are equal and
constant. This assumption implies that the mean marks of the groups may differ on
account of using different methods of teaching, but they do not affect the dispersion
of marks.
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Step 1: State the null and alternative hypothesis.

Ho: 4=u-4(The means for three groups are equal).
H,: At least one pair is unequal.
Step 2: Select the test criterion to be used.

We have to decide which test criterion or distribution should be used. As our
assumption involves means for three normally distributed populations. We
should use the F-distribution to test the hypothesis.
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Step 3. Determine the rejection and non-rejection regions

We decide to use 0.05 level of significance. As on one-way ANOVA test is
always right-tail, the area in the right tail of the F-distribution curve is 0.05,
which is the rejection region. Now, we need to know the degrees of freedom
for the numerator and the denominator. Degrees of freedom for the
numerator=k-1=3-1=2, where k is the number of groups. Degree of freedom
for denominator =n-k=12-3=9, where n is total number of observations.

Step 4. Calculate the value of the test statistics by applying ANOVA. i.e., F

Calculated

Worksheet for calculating Variances
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Xi; (X1j- %) (x1j- )<i)2 X3; (X2j- xi) (X2j- )<i)2 X3j (x3j- xi) | (xzj- >(i)2
16 0) 0) 15 0) 0) 15 1 1
17 1 1 15 0) 0) 14 |O 0]
13 -3 9 13 -2 4 13 -1 1
18 2 4 17 2 4 14 |O 0)
Total Total Tot
64 60 al

56
Mean Mean Me
16 15 an

14

The sample variances for the groups are

512 =13, -xf =%(14)=3.5

1

2 _ 1

S5?

Sle

2

Py

Z(ij - X_2)2

=

%(8):2

S (xs; — %) = t@a)-05
[ 4
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The denominator is n;+n,+n3=3

Applying the value in the formulas,

. 3% % f — 4[16-15) +(15-15) +(14-15)']
T Ths 31

=4(This is the variance between the samples)

Now, F is to be calculated . F=ratio of two variances

— estimateof o’between samples 4

= =1.498
estimateof o’within samples  2.67
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The foregoing calculations can be summarized in the form of an ANOVA

TABLE.
Source of |Sum of Degrees |Mean of Variance
variation squares SS | of equares ratio F
freedom
df
Between SSB k-1 MSB=SSB/ (k-
sampling 1)
Within SSwW n-k MSW=SSW/(n- | F=MSB/MSW
sampling k)
total SST n-1
Source of |Sum of Degrees |Mean of Variance
variation squares SS | of equares ratio F
freedom
df
Between 6 3-1 8/2=4
sampling
Within 24 12-3 24/8=2.67 |4/2.67=1.498

sampling
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Step: conclusion: The critical value of F for 2 and 9 degrees of freedom at 5

percent level of significance is 4.26. As the calculated value of F=1.0498 is less
than critical values of F.

i.e.,F cicuated <F aitical. The null hypothesis is accepted.

7. A company has appointed four salesman, A,B,C and D. observed their sales
in three seasons -summer, winter, monsoon. The figures (in Rs lakh) are given
in the following table.
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SALESMEN

seasons |A B C D Seasons
totals
summer |36 36 21 35 128
winter 28 29 31 32 120
monsoon | 26 28 29 29 112
Sales 90 93 81 96 360
man
totals

Using 5 percent level of significance, perform an analysis of variance on the
above data and interpret the result.
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Solution:

Step 1 : State the null and alternative hypothesis.

Ho: there is no difference in the mean sales performance of A, B, Cand D in the
three seasons.

H,: there is difference in the mean sales performance of A ,B, Cand D in the
three season.

Step 2: Select the test criterion to be used.
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We have to decide which test criterion or distribution should be used. As our

assumption involves means for three normally distributed populations. We
should use the F-distribution to test the hypothesis.

Step 3. Determine the rejection and non-rejection regions

We decide to use 0.05 level of significance. The degrees of freedom for rows
are (r-1) =2 and for columns are (c-1)=3 and for residual (r-1)(c-1)=2x3=6.
Thus, we have to compare the calculated value of F with the critical value of F
fora)2and 6dfat5%l.0.s b)3 and 6 df at 5% .l. o. s.

Step 4;
Coded Data for ANOVA
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SALESMEN

seasons |A B C D Seasons
totals

summer |6 6 -9 5 8

winter -2 -1 1 2 0

monsoon -4 -2 -1 -1 -8

Sales 0 3 -9 6 0

man

totals

Correction factor C=T2/N=(O)2/12=0

Sum os squares between salesmen

=0°/3+3%/3+(-9%/3)+6%/3=0+3+27+12=42




Sum of squares between seasons=82/4+02/4+(-82/4)=16+0+16=32

Total sum of squares

=(6)°+(-2)"+(-4)"+(6)*+(-1)"+(-2)*+(-9)+(1) *+(-1)*+(5)*+(2)*+(-1)°

=210

Analysis of variance table

Source of Sum of Degree of |Mean
variation squares SS |freedom |squares
df Ms
Between 42 4-1=3 14.00
columns
Within rows 32 3-1=2 16.00
Residual(ERROR)|136 3x2=6 22.67
total 210 12-1=11
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We now test the hypothesis (i) that there is no difference in the sales
performance among the four salesmen and (ii) there is no difference in the

mean sales in the three seasons. For this, we have to first compare the
salesman variance estimate with the residual estimate. This is shown below:

Fa=14/22.67=0.62

In the same manner, we have to compare the season variance estimate with
the residual variances estimate. This is shown below;

Fe=16/22.67=0.71
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Step 5:

It may noted that the critical value of F for 3 and 6 degree of freedom at 5
percent level of significance is 4.76. Since the calculated value of F, is 0.62 is
less than critical value of F. Therefore there is no significance difference

among salesmen.

Also the critical value of F for 2 and 6 degree of freedom at 5 percent level of
significance is 4.76. Since the calculated values of Fz=16/22.67=0.71 is less
than critical value of F. Therefore there is no significance difference among

seasons

The overall conclusion is that the salesmen and seasons are alike in respect of

sales.
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Exercise problems:

1. A company has derived three training methods to train its workers. It
is keen to know which of these three training methods would lead to
greatest productivity after training. Given below are productivity
measures for individual workers trained by each method.

Method |30 |40 |45 |38 |48 |55 |52
1
Method |55 |46 |37 |43 |52 |42 |40
2
Method |42 |38 |49 |40 |55 |36 |41
3

Find out whether the three training methods lead to different levels of
productivity at the 0.05 level of significance.
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1. Consider the following ANOVA TABLE, based on information obtained
for three randomly selected samples from three independent population,

which are normally distributed with equal variances.

Source Sum of |Degree |Mean Value of

of squares |of squares |test

variance |SS freedom | MS statistics
df

Between |60 ? 20 F=

samples

Within ? 14 ?

samples

(A) Complete the ANOVA table by filling in missing values.

(B) test the null hypothesis that the means of the three population are all
equal, using 0.01 level of significance.
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3. The following represent the number of units of production per day turned

out by four different workers using five different types of machines

Machine
type
Worker | A B C D E TOTAL
1 4 5 3 7 6 25
2 5 7 7 4 5 28
3 7 6 7 8 8 36
4 3 5 4 8 2 22
TOTAL |19 23 21 27 21 111

On the basis of this information, can it be concluded that (i) The mean
productivity is the same for different machines. (ii) The workers don’t differ
with regard to productivity.
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UNIT-1II
ORDINARY DIFFERENTIAL EQUATIONS
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1. The important methods of solving ordinary differential equations of

first order numerically are as follows
1) Taylors series method
2) Euler’s method
3) Modified Euler’s method of successive approximations

4) Runge- kutta method

To describe various numerical methods for the solution of ordinary differential

eqn’s,we consider the general 1°° order differential eqn
dy/dx=Ff(x,y)------- (1)

with the initial condition y(xg)=Yo
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The methods will yield the solution in one of the two forms:

i) A series for y in terms of powers of x,from which the value of y can be

obtained by direct substitution.
ii ) A set of tabulated values of y corresponding to different values of x
The methods of Taylor and picard belong to class(i)

The methods of Euler, Runge - kutta method, Adams, Milne etc, belong to class

(ii)
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TAYLOR’S SERIES METHOD

To find the numerical solution of the differential equation

d
=Ty >(1)

With the initial condition yx)-y,=2(2)
yxcan be expanded about the point x in a Taylor’s series in powers of x-x) as

V00 = y06) + E8 o)+ C yry o EEXD g0y = (3)

In equ3, yx,) is known from I.C equ2. The remaining coefficients y).y" ). ...y’ )
etc are obtained by successively differentiating equl and evaluating at x.
Substituting these values in equ3, ywat any point can be calculated from equ3.
Provided nh-x-x, is small.

When x -0, then Taylor’s series equ3 can be written as

y(X) = y(0)+x.y'(0)+% y"(0) +...... +)r(]—n!yn ©)+........ 9(4)
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1. Using Taylor’s expansion evaluate the integral of y'-2y=3¢",y(0)=0, at a)

x=0.2

b) compare the numerical solution obtained with exact solution .
Sol:Given equation can be written as 2y+3¢* =Yy, y(0)=0

Differentiating repeatedly w.r.t to ‘x’ and evaluating at X=0

y'(X) =2y +3e*,y'(0) =2y(0)+ 3¢’ = 2(0)+ 3(1) = 3
y'(X) =2y +3e*,y"(0)=2y'(0)+3e° =2(3)+3=9

y"(X) =2.y"(x)+3e*, y"(0) = 2y"(0) + 3¢’ = 2(9) + 3= 21
vV (X) = 2.y"(x)+3e*, y" (0) = 2(21) + 3e° = 45

v (x)=2.y" +3e*,y'(0) = 2(45)+3° =90+ 3 =93
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In general, Y™ (x)=2.y"(x)+3¢" or y"?(0)=2y™(0)+3¢°

The Taylor’s series expansion of Y(X) about % =0 is

2 3 4 5

y(x) = y(0) + xy'(0) + ”(O) + ’”(O) + ”"(O) + % y""(0) +....

Substituting the values of Y(O), y'(0), ¥y"(0),y"(0),..........

y(X) = O+3x+9x 2 2 e B
2 6 24 120

y(x)=3x+gx2+%x3+l—x X e, > equl

Now put x=o01 in equl
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9 , ;3 15 s, 31 5_
V(0.9 =300+7 (01 +7 0.0+ (0.1 +4—O(o.1)_0.34869

Now put x=02 in equl

y(0.2)=3(0.2)+§(0.2>2 +%(0-2)3+%(0-2)4+2—;(0-2)5=0.811244

9 7 15 31
y(0.3) =3(0.3) + > (0.3)° + > (0.3)° +§ (0.3)* + 20 (0.3 _1.41657075
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Analytical Solution:

y _ x
The exact solution of the equ 4, ~ 2y +3¢" with ¥(0) =0 can be found as

follows

dy X
&—2)'=3e Which is a linear in y.

Here P=-2,0=3¢

pax —2dx 3
_J‘ :J‘ _p
l.LF =) e

General solution is Y€ = I3ex-e_2XdX+C =-3e " +cC
s y=-3e"+ce”whereX=0,y=00=-3+C=c=3

The particular solution is ¥ =38 —3¢* or y(x)=3e> —3¢*
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Put x=01in the above particular solution,

y =3.e"° —3e”" =0.34869

Similarly put X = 0.2
y =3e”* —3e”* =0.811265
put X = 0.3

y =3e"° —3e%° =1.416577
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EULER’S METHOD

It is the simplest one-step method and it is less accurate. Hence it has a limited
application.

Consider the differential equation & = f(x,y) —>(1)
With y(x0) = Yo (2)
Consider the first two terms of the Taylor’s expansion of y(x) at x = xg

y(x) = y(xo) + (x — X0) Y (xo) —>(3)
from equation (1) y'(xo) = f(xo,Y(x0)) = f(Xo,Y0)
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Substituting in equation (3)

~y(x) = y(xo) + (x — %o) f(Xo0,Y0)

At X = X1, Y(X1) = Y(Xo) + (X1 — Xg) f(Xo,Y0)
~Y1=VYo + h f(Xo,yo) where h =x; —Xg
Similarly at x = x5, y> =vy1 + h f(x4,y1),
Proceeding as above, vy .1 = yn + h f(Xn,Yn)

This is known as Euler’s Method
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Modified Euler’s method

Working rule :
i)Modified Euler’s method

ii) When 1=1 ca Y’ n be calculated from Euler’s method
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iii) K=0, 1......... gives number of iteration. i-12.

gives number of times, a particular iteration k is repeated
Suppose consider dy/dx=f(x, y) -------- (1) with y(xo) =yo----------- (2)
To find y(x1) =y; at x=x;=X¢+h

Now take k=0 in modified Euler’s method

We get Y1(1) = Yo +h/2|:f (Xo’ yo)+ f (Xw Y1(i_1))}
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Taking i=1, 2, 3...k+1 in egn (3), we get
Vi =, +h/2[f (%o, yo)] (By Euler’s method)

Y1(1) =Y, +h/2[f (Xo, YO)+ f (Xl’ yl(O))]

W = Yo+ 07 2] £ (%, ¥)+ T (% )]
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. (k) (k+) .
If two successive values of Y1 '+ ¥1 " are sufficiently close to one another, we

will take the common value as Y2 = y(XZ) = y(Xl + h)

We use the above procedure again

1) using modified Euler’s method find the approximate value of Xwhen x=0.3
given that dy/dx=x+y and y(0)=1
sol:  Given dy/dx=x+y and y(0)=1

Here f(Xy)=X+Y,% =0, and y, =1

Take h = 0.1 which is sufficiently small

Here % =0,X =X,+h=0.1,X, =% +h=0.2,x, =X, +h=0.3

The formula for modified Euler’s method is given by

Yk+1(i) =Y, +h/ Z[f (Xk + Yk)+ f (Xk+1’ yk+1(i_1) )} — (1)

136



Stepl: To find y;= y(x;) =y (0.1)
Taking k=0 in egn(1)

Ve =y, +h/2[f (X + Yo )+ f (x1 yl(i‘l))} —(2)

when i=1 ineqn(2)

W = Yo+ /2] £ (%, ¥)+ T (%) ]

(0)
First apply Euler’s method to calculate Y, =y,

Y=y +h (%, )
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= 1+(0.1)f(0.1)
= 1+(0.1)
=1.10

now| X, =0,y, =1, % =0.1,y,(0)=1.10 |

v =y, +O.1/2[f (X Yo )+ f (x1 yl(o))J

= 1+0.1/2[f(0,1) + f(0.1,1.10)
=1+0.1/2[(0+1)+(0.1+1.10)]
=1.11
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When i=2 in egn (2)

yl(Z) = y0+h/2[f (Xo’ yo)"' f ()(1’)/1(1))]

= 1+40.1/2[f(0.1)+f(0.1,1.11)]
=1+0.1/2[(0+1)+(0.1+1.11)]
=1.1105

0 = Yo +h12) (. 0)+ 1 (%37 |

= 1+0.1/2[f(0,1)+f(0.1, 1.1105)]
= 1+0.1/2[(0+1)+(0.1+1.1105)]
=1.1105

Since Y1(2) — Y1(3

- y;=1.1105
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Step:2 To find y, = y(x3) = y(0.2)

Taking k=1 in eqgn (1) , we get

y,) = y1+h/2|: f(x,y, )+ f (xz, yz(i_l))] — (3)

Fori=1
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vo® =y +h/2[ (4 )+ F (%, v, |
(©)

Y5 is to be calculate from Euler’'s method

v, =y, +h f(x.y,)
=1.1105 + (0.1) f(0.1, 1.1105)
=1.1105+(0.1)[0.1+1.1105]
=1.2316

Ly® -1.1105+0.1/2| f(0.1,1.1105)+ f (0.2,1.2316) |

=1.1105 +0.1/2[0.1+1.1105+0.2+1.2316]
=1.2426
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y,® = y1+h/2[f (% 1)+ (Xzyz(l)ﬂ

=1.1105 + 0.1/2[f(0.1, 1.1105) , f(0.2 . 1.2426)]

=1.1105 + 0.1/2[1.2105 + 1.4426]
=1.1105 + 0.1(1.3266)
=1.2432

Y2(3) = y1+h/2|:f (Xl’ y1)+ f (Xzyz(Z)ﬂ

= 1.1105+0.1/2[f(0.1,1.1105)+f(0.2 , 1.2432)]
= 1.1105+0.1/2[1.2105+1.4432)]

=1.1105 + 0.1(1.3268)

= 1.2432

Since Yz(g) = Y2(3)
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Step:3

To find y; = y(x3) =y y(0.3)
Taking k=2 in egqn (1) we get

v, =y, +h/2[f (X5, ¥, )+ f (xg, yg(i_l))] —(4)

For i=1,

vV =y, +h /2] £ 060, vo)+ T (X vs@) |

(0)
y3 is to be evaluated from Euler’s method .
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V. =y, +h £ (%, Y,)

= 1.2432 +(0.1) f(0.2, 1.2432)

= 1.2432+(0.1)(1.4432)
= 1.3875

(1)
Y3 T =1.2432+0.1/2[f(0.2 , 1.2432)+f(0.3, 1.3875)]

= 1.2432 +0.1/2[1.4432+1.6875]
= 1.2432+0.1(1.5654)
= 1.3997
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Y3 ? = y2+h/2[ f (XZ’y2)+ f (Xs’Y:a(l))}

=1.2432+0.1/2[1.4432+(0.3+1.3997)]

= 1.2432+ (0.1) (1.575)
= 1.4003

Vo2 =y, +h/2[ F(x,y,)+f (X3’ yS(Z))}

=1.2432+0.1/2[f(0.2 , 1.2432)+f(0.3 , 1.4003)]
=1.2432 + 0.1(1.5718)
= 1.4004
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Y3 ) = Y2+h/2[ f (X2’y2)+ f (X3’Y3(3))J

=1.2432 + 0.1/2[1.4432+1.7004]

= 1.2432+(0.1)(1.5718)
= 1.4004

Since y3(3) = y3(4)

Hence Y3 =1.4004 - - 110 value of y at x = 0.3 is 1.4004

146



Runge — Kutta Methods

I. Second order R-K Formula

Yier = Yit1/2 (Ki+Ky),

Where K; = h (x;, vi)
Kz = h (xi+h, yit+ki)
Fori=0,1,2-------
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Il. Third order R-K Formula

Yir1 = Yi+1/6 (Ki+4Ky+ K3s),
Where K; = h (x;, yi)
K = h (xi+h/2, yot+ki/2)
Kz = h (xi+h, yi+2ks>-k;)
Fori=0,1,2--——--
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I1l. Fourth order R-K Formula

Yiz1 = YVi+1/6 (Ki+2Ky+ 2K3+K,),
Where K; = h (x;, yi)

Ky = h (xiq+h/2, yi+ky/2)

Kz = h (xi+h/2, yi+ky/2)

Ks = h (x;+h, yi+ks)

Fori=0,1,2--—--

149



1. Using Runge-Kutta method of second order, find y(2'5) from dx = x
v(2)=2, h=0.25.

d

Y

Sol: Given dX = ~x ,vy(2)=2.
X+Yy

Heref(x,y)= x ,% =0,Y0,=2and h=0.25
- X1 = Xg+h = 240.25 = 2.25, x, = x;+h =2.25+0.25 = 2.5

By R-K method of second order,

Yia =Y +1/2(k +k, ),k —hf (x +h,y, +k),i=0,1.... > (1)
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Step -1:-

To find y(x4)i.e y(2.25) by second order R - K method taking i=0 in egn(i)

1
We have Y1 = Yo +§(k1+k2)

Where k= hf (xo,Yo0 ), ko= hf (xo+h,yo+k;)

f (Xo,Yo )=f(2,2)=2+2/2=2

ki=hf (xq,yo )=0.25(2)=0.5

ko= hf (xo+h,yo+k;)=(0.25)f(2.25,2.5)
=(0.25)(2.25+2.5/2.25)=0.528

-y¥1=y(2.25)=2+1/2(0.5+0.528)

=2.514

151



Step2:
To find y(x;) i.e., y(2.5)

i=1in (1)

X1=2.25,y,=2.514,and h=0.25
v>=y1+1/2(ki+k;)

where ki=h f((x1,y; )=(0.25)f(2.25,2.514)
=(0.25)[2.25+2.514/2.25]=0.5293

k,=h f (% +h,y, +k ) =(0.1) f (0.1,1-0.1) = (0.1)(~0.9) = ~0.09
=(0.25)[2.5+2.514+0.5293/2.5]
=0.55433

,.—y (2.5)=2.514+1/2(0.5293+0.55433)
=3.0558
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9.using Runge-kutta method of order 4,compute y(1.1) for the egn
y'=3x+y*y(1)=1.2 h = 0.05

Ans:1.7278
10. using Runge-kutta method of order 4,compute y(2.5) for the eqgn dy/dx =
x+y/X, y(2)=2 [hint h = 0.25(2 steps)]

Ans:3.058
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UNIT- 1V
PARTIAL DIFFERENTIAL EQUATIONS
AND CONCEPTS IN SOLUTION TO
BOUNDARY VALUE PROBLEMS
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Introduction
The concept of a differential equation to include equations that involve partial

derivatives, not just ordinary ones. Solutions to such equations will involve
functions not just of one variable, but of several variables. Such equations arise
naturally, for example, when one is working with situations that involve

positions in space that vary over time. To model such a situation, one needs tc
use functions that have several variables to keep track of the spatial dimensions
and an additional variable for time.
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Examples of some important PDEs:

(1) o2u _c282u One-dimensional wave equation
ot2 7 ox2

(2) 6u =c2 225 One-dimensional heat equation

X

(3) o2u, 82u_q Two-dimensional Laplace equation
ox2 5y2

(4) 02u 82U _ g (X,y) Two-dimensional Poisson equation
ox2  oy2
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Partial differential equations: An equation involving partial derivatives of one
dependent variable with respective more than one independent variables.

Notations which we use in this unit:

__ 0z __ Oz I 8%z _ 0%z t= 9%z
p_ax 'q_ay' T ox2’  oxoy T oy2’

Formation of partial differential equation:
A partial differential equation of given curve can be formed in two ways

1. By eliminating arbitrary constants
2. By eliminating arbitrary functions
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Problems
Form a partial differential equation by
eliminating a,b,c from

2 2

72

xt 'y
t5=1

az-l_b2

2 2 2
) X y z4
leenﬁ+b—2+c—2—1

Differentiating partially w.r.to x and y, we have
1 1 0z
; (ZX) + C_Z (ZZ)a=O

@ +5@p=0__(1)
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1 1 0z
And b—z(Zx) + C—z(Zz)a=o

1 1
=) +—=@)a=0_____ (2)

Diff (1) partially w.r.to x, we have
1 ,p09 , z0p_ 3)

a2 c29x @ cZox S

1 p? z
a_2 + c_z + C—ZT =0
Multiply this equation by x and then subtracting (1) from it

1
C—z(xzr +xp? —pz) =0
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Form a partial differential equation by eliminating the constants from
(x — a)? + (y — b)? = zZcot?a, where a is a parameter

Given (x — a)? + (y — b)? = z?cot?a (1)
Differentiating partially w.r.to x and y, we have
2 (x —a)+0 =2 z pcot’a
(x — a) = Zpcot’a
And 0+2(y-b) = 2zqcot?«
(Y-b) = zqcot?«a
Substituting the values of (x-a) and (y-b) in (1),we get
(zpcot?a)? + (zqgcot’a)? = z%cot?’a
(p? + g?)(cot?a)? = cot’a
p? + g% = tan’«a
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Linear partial differential equations of first order :
Lagrange’s linear equation: An equation of the form Pp + Qq = R is called
Lagrange’s linear equation.

. . . - . dx
To solve Lagrange’s linear equation consider auxiliary equation - =0 =R

Non-linear partial differential equations of first order :
Complete Integral : A solution in which the number of arbitrary constants is

equal to the number of independent variables is called complete integral or
complete solution of the given equation.
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Particular Integral: A solution obtained by giving particular values to the
arbitrary constants in the complete integral is called a particular integral.

Singular Integral: let f(x,y,z,p,q) = O be a partial differential equation whose

complete integral is
To solve non-linear pde we use Charpit’s Method :

There are six types of non-linear partial differential equations of first order as

given below.

1.f(p,gq)=0
2.f(z,p,q) =0
3. f1 (x,p) = f> (y.q)
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4.z = px +qy + f(p,q)
5. f(x" p, y"q) = 0 and f(m”’ p, y"q,z) =0
6. f (pz™, qz™) = 0 and fi(x,pz™) = f,(y,qz™)
Charpit’s Method:
We present here a general method for solving non-linear partial differential
equations. This is known as Charpit's method.
LetF(x,y,u, p.q)=0be a general nonlinear partial differential equation of first-
order. Since u depends on x and y, we have
du=u,dx+u,dy = pdx+qdy where p=u,=2, q = uy=%;

If we can find another relation between x,y,u,p,q such that
f(x,y,u,p,q)=0then we can solve for p and q and substitute them in equation This
will give the solution provided is integrable.
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of
—+
228

To determine f, differentiate w.r.t. x and y so that
oF oF oF ép OF &q

— +—p+——+——=0

OxX  ou op Ox Oq Ox

of of op of &q oF OoF OF op = oF oq
— p+——+——=0 —+t—QqQ+————+—— =
ou op OX Oq ox oy ou op oy o9 oy
of jof  ofop ofca_g

oy " ou" apay " aqoy

Eliminating 2 from, equations and 2from equations we
OX oy

[aFaf 6f6FJ [6F6f afaFj [6F<’7“f afaFjaq
— || === [P+ — =0

OX Op OX Op ou op Ju op og op oq op ) dx
OFof otoF) (oFof of oF )  (OF &fF of oFYop _
oy oq oy &q ou oq ou oq op &q op oq )dy

Adding these two equations and using
éq _ do°u _op

ox oxoy oy

obtain
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and rearranging the terms, we get

OF \ of OF \ of oF OF \ of [BF aFjaf
- —+] - —+| -p -q —+| —+p=— |=—
op ) ox oq ) oy op oq ) ou OX ou ) op
OoF of | of

+| —+9g— |—=0

[ay aujaq

We get the auxiliary system of equations

dx  dy _ du _ dp _ dq _ daf

-0F  -8F _86F _8F ©oF 6F ~ oF oF 0
-P—_—-d_—- —_+P_—~ ——+q_—

op aq op o8q  ox ou oy au

An Integral of these equations, involving p or g or both, can be taken as the

required equation.
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Problems

solve (x%2 —y? —yz)p + (x%? — y% —

zx)q = z(x — y)
Here
P=(x* —y® —yz),Q =
(x? —y® —zx),R=z(x —y)
The subsidiary equations are
dx _ dy _ dz
(x2—y2—yz)  (x2—y2—zx)  z(x—y)
Using 1,-1,0 and x,-y,0 as

multipliers , we have
dz __dx—dy __

z(x—y)  z(&x—y)
x dx —ydy

x2—y2)(x—y)

From the first two rations Of
,we have
dz= dx-dy

integrating , z=x-y-cq oOr x-
Y-Z2 =C1

now taking first and last
ratios in (2) ,we get
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For this next PDE, we create a mathematical model of how he at spreads, or
diffuses through an object, such as a metal rod, or a body of water. To do this
we take advantage of our knowledge of vector calculus and the divergence
theorem to set up a PDE that models such a situation. Knowledge of this
particular PDE can be used to model situations involving many sorts of diffusion
processes, not just heat. For instance the PDE that we will derive can be used
to model the spread of a drug in an organism, of the diffusion of pollutants in a

water supply.
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Solving the Heat Equation in the one-dimensional case

We simplify our heat diffusion modeling by considering the specific case of heat
flowing in a long thin bar or wire, where the cross-section is very small, and
constant, and insulated in such a way that the heat flow is just along the length
of the bar or wire. In this slightly contrived situation, we can model the heat
flow by keeping track of the temperature at any point along the bar using just
one spatial dimension, measuring the position along the bar.

This means that the function, u, that keeps track of the temperature, just
depends on x, the position along the bar, and t, time, and so the heat equation
from the previous section becomes the so-called one-dimensional heat
equation:

(1) 2oe o
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For the rest of this introduction to PDEs we will explore PDEs representing some
of the basic types of linear second order PDEs: heat conduction and wave
propagation. These represent two entirely different physical processes: the
process of diffusion, and the process of oscillation, respectively. The field of
PDEs is extremely large, and there is still a considerable amount of
undiscovered territory in it, but these two basic types of PDEs represent the
ones that are in some sense, the best understood and most developed of all of
the PDEs. Although there is no one way to solve all PDEs explicitly, the main
technique that we will use to solve these various PDEs represents one of the
most important techniques used in the field of PDEs, namely separation of
variables (which we saw in a different form while studying ODEs). The essential
manner of using separation of variables is to try to break up a differential
equation involving several partial derivatives into a series of simpler, ordinary
differential equations.
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Let’s go back to the original idea — start by breaking up the vibrating string into
little segments, examine each such segment using Newton’s F—maequation, and
finally figure out what happens as we let the length of the little string segment
dwindle to zero, i.e. examine the result as axgoes to 0. Do you see any limit
definitions of derivatives kicking around in equation (7)? As agoes to O, the

left-hand side of the equation is in fact just equal to o [8u]:82u' so the whole

thing boils down to:

(8) O2u _ 582u
ox2 T a2

which is often written as

2 o2
(9) 6 u —c2 u
ox2

by bringing in a new constant c: -1 (typically written with <z, to show that it’s a

positive constant).
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Solution of the Wave Equation by Separation of Variables

There are several approaches to solving the wave equation. The first one we
will work with, using a technique called separation of variables, again,
demonstrates one of the most widely used solution techniques for PDEs. The
idea behind it is to split up the original PDE into a series of simpler ODEs, each
of which we should be able to solve readily using tricks already learned. The
second technique, which we will see in the next section, uses a transformation
trick that also reduces the complexity of the original PDE, but in a very different
manner. This second solution is due to Jean Le Rond D’Alembert (an 18"
century French mathematician), and is called D’Alembert’s solution, as a result.
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First, note that for a specific wave equation situation, in addition to the actual
PDE, we will also have boundary conditions arising from the fact that the
endpoints of the string are attached solidly, at the left end of the string, whenx
= 0 and at the other end of the string, which we suppose has overall length /.
Let’s start the process of solving the PDE by first figuring out what these
boundary conditions imply for the solution function, u(x,t).

Answer: for all values of t, the time variable, it must be the case that the vertical
displacement at the endpoints is 0, since they don’t move up and down at all,
so that

(1) u(0,t)=0andu(l,t)=0 for all values of t
are the boundary conditions for our wave equation. These will be key when we
later on need to sort through possible solution functions for functions that
satisfy our particular vibrating string set-up.
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You might also note that we probably need to specify what the shape of the
string is right when time t = O, and you’re right - to come up with a particular
solution function, we would need to know u(x,0). In fact we would also need to
know the initial velocity of the string, which is just ut(X,O). These two

requirements are called the initial conditions for the wave equation, and are
also necessary to specify a particular vibrating string solution. For instance, as
the simplest example of initial conditions, if no one is plucking the string, and
it’s perfectly flat to start with, then the initial conditions would just be u(x,0)=0
(a perfectly flat string) with initial velocity, ut(X,O)zO. Here, then, the solution

function is pretty unenlightening — it’s just u(x,t)=0, i.e. no movement of the
string through time.

To start the separation of variables technique we make the key assumption that
whatever the solution function is, that it can be written as the product of two
independent functions, each one of which depends on just one of the two
variables, x or t. Thus, imagine that the solution function, u(x,t) can be written
as
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(2) uxXD=FQCYG()

whereF, and G, are single variable functions of x and t respectively.
Differentiating this equation for u(x,t)twice with respect to each variable yields

(3) gig F"(x)G(t)and gfg —F ()G (1)

Thus when we substitute these two equations back into the original wave
equation, which is

(4) 82u 282u
ot2 ox2

then we get

2u_

(5) 92U _F(0G"(t)=c292U —c2F"(x)G(t)
Ox2

ot2

Here’s where our separation of variables assumption pays off, because now if
we separate the equation above so that the terms involving F and its second
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The solution given in the last section really does satisfy the one-dimensional
wave equation. To think about what the solutions look like, you could graph a
particular solution function for varying values of time, t, and then examine how
the string vibrates over time for solution functions with different values ofn
and constants C and D. However, as the functions involved are fairly simple, it’s
possible to make sense of the solution v, xyfunctions with just a little more
effort.

For instance, over time, we can see that the st =(ccos@+psin,n) part of the
function is periodic with period equal to ii This means that it has a frequency

equal to ;L” cycles per unit time. In music one cycle per second is referred to as

one hertz. Middle C on a piano is typically 263 hertz (i.e. when someone
presses the middle C key, a piano string is struck that vibrates predominantly at
263 cycles per second), and the A above middle Cis 440 hertz. The solution
function when n is chosen to equal 1 is called the fundamental mode (for a
particular length string under a specific tension). The other normal modes are
represented by different values of n. For instance one gets the 2"%and 3™
normal modes when n is selected to equal 2 and 3, respectively. The
fundamental mode, when n equals 1 represents the simplest possible
oscillation pattern of the string, when the whole string swings back and forth in
one wide swing. In this fundamental mode the widest vibration displacement
occurs in the center of the string (see the figures below).
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= e
o n="a 2

Mrmq( fv)ce)e,s op = \/: Lr‘t;\:) St"-‘hﬁ

Thus suppose a string of length /, and string mass per unit length s, is tightened

so that the values of T, the string tension, along the other constants make the

value of zlzzﬁg equal to 440. Then if the string is made to vibrate by striking or

plucking it, then its fundamental (lowest) tone would be the A above middle C.
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Now think about how different values of n affect the other part of u,xtn=Fxacw),
namely F(x):sin[”lix). Since sin[”lixjfunction vanishes whenever x equals a multiple

of 'F, then selecting different values of n higher than 1 has the effect of

identifying which parts of the vibrating string do not move. This has the affect
musically of producing overtones, which are musically pleasing higher tones
relative to the fundamental mode tone. For instance pickingn = 2 produces a
vibrating string that appears to have two separate vibrating sections, with the
middle of the string standing still. This mode produces a tone exactly an octave
above the fundamental mode. Choosing n = 3 produces the 3" hormal mode
that sounds like an octave and a fifth above the original fundamental mode
tone, then 4™ normal mode sounds an octave plus a fifth plus a major third,
above the fundamental tone, and so on.
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It is this series of fundamental mode tones that gives the basis for much of the
tonal scale used in Western music, which is based on the premise that the
lower the fundamental mode differences, down to octaves and fifths, the more
pleasing the relative sounds. Think about that the next time you listen to some
Dave Matthews!

Finally note that in real life, any time a guitar or violin string is caused to
vibrate, the result is typically a combination of normal modes, so that the
vibrating string produces sounds from many different overtones. The particular
combination resulting from a particular set-up, the type of string used, the way
the string is plucked or bowed, produces the characteristic tonal quality
associated with that instrument. The way in which these different modes are
combined makes it possible to produce solutions to the wave equation with
different initial shapes and initial velocities of the string. This process of
combination involves Fourier Series which will be covered at the end of Math
21b (come back to see it in action!)
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Finally, finally, note that the solutions to the wave equations also show up
when one considers acoustic waves associated with columns of air vibrating
inside pipes, such as in organ pipes, trombones, saxophones or any other wind
instruments (including, although you might not have thought of it in this way,
your own voice, which basically consists of a vibrating wind-pipe, i.e. your
throat!). Thus the same considerations in terms of fundamental tones,
overtones and the characteristic tonal quality of an instrument resulting from
solutions to the wave equation also occur for any of these instruments as well.
So, the wave equation gets around quite a bit musically!
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D’Alembert’s Solution of the Wave Equation

As was mentioned previously, there is another way to solve the wave equation,
found by Jean Le Rond D’Alembert in the 18" century. In the last section on the
solution to the wave equation using the separation of variables technique, you
probably noticed that although we made use of the boundary conditions in
finding the solutions to the PDE, we glossed over the issue of the initial
conditions, until the very end when we claimed that one could make use of
something called Fourier Series to build up combinations of solutions. If you
recall, being given specific initial conditions meant being given both the shape
of the string at time t = 0, i.e. the function u(x,0)= f (x), as well as the initial
velocity, ut(X,O)zg(x)(note that these two initial condition functions are

functions of x alone, as t is set equal to 0). In the separation of variables
solution, we ended up with an infinite set, or family, of solutions, un(x,t) that

we said could be combined in such a way as to satisfy any reasonable initial
conditions.
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In using D’Alembert’s approach to solving the same wave equation, we don’t
need to use Fourier series to build up the solution from the initial conditions.
Instead, we are able to explicitly construct solutions to the wave equation for
any (reasonable) given initial condition functions u(x,0)= f (xX)and ut(X,O)zg(X).

The technique involves changing the original PDE into one that can be solved by
a series of two simple single variable integrations by using a special
transformation of variables. Suppose thatinstead of thinking of the original

PDE
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UNIT-V
NUMERIC’S FOR ORDINARY
DIFFERENTIAL EQUATIONS AND
PARTIAL DIFFERENTIAL EQUATIONS
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Second-order partial differential equations (PDEs) may be classified as
parabolic, hyperbolic or elliptic.Parabolic and hyperbolic PDEs often model time
dependent processes involving initial data.
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Partial differential equation, in mathematics, equation relating a function of

several variables to its partial derivatives. A partial derivative of a function of
several variables expresses how fast the function changes when one of its
variables is changed, the others being held constant (compare ordinary
differential equation). The partial derivative of a function is again a function,
and, if f(x, y) denotes the original function of the variables x and y, the partial
derivative with respect to x—i.e., when only x is allowed to vary—is typically
written as fx(x, y) or 8f/dx. The operation of finding a partial derivative can be
applied to a function that is itself a partial derivative of another function to
get what is called a second-order partial derivative. For example, taking the
partial derivative of fx(x, y) with respect to y produces a new function fxy(x, y),
or 3°f/dydx. The order and degree of partial differential equations are defined
the same as for ordinary differential equations.
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In general, partial differential equations are difficult to solve, but techniques
have been developed for simpler classes of equations called linear, and for
classes known loosely as “almost” linear, in which all derivatives of an order
higher than one occur to the first power and their coefficients involve only
the independent variables.

Many physically important partial differential equations are second-order
and linear.
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The behaviour of such an equation depends heavily on the coefficientsa, b,
and c of auxx + buxy + cuyy. They are called elliptic, parabolic, or hyperbolic
equations according asb’—- 4ac< O,b’- 4ac= 0, orb’ -

respectively. Thus, the Laplace equation is elliptic, the heat equation is
parabolic, and the wave equation is hyperbolic.

4ac > O,
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Elliptic equation, any of a class of partial differential

equations describing phenomena that do not change from moment to
moment, as when a flow of heat or fluid takes place within a medium
with no accumulations. The Laplace equation, uxx + uyy = 0, is the
simplest such equation describing this condition in two dimensions. In
addition to satisfying a differential equation within the region, the
elliptic equation is also determined by its values (boundary values)
along the boundary of the region, which represent the effect from
outside the region. These conditions can be either those of a fixed
temperature distribution at points of the boundary (Dirichlet problem)
or those in which heat is being supplied or removed across the
boundary in such a way as to maintain a constant temperature
distribution throughout (Neumann problem).

187



If the highest-order terms of a second-order partial differential equation with
constant coefficients are linear and if the coefficientsa, b, c of
the uxx, uxy, uyy terms satisfy the inequality b° — 4ac < 0, then, by a change of
coordinates, the principal part (highest-order terms) can be written as the
Laplacian uxx + uyy. Because the properties of a physical system are
independent of the coordinate system used to formulate the problem, it is
expected that the properties of the solutions of these elliptic equations should
be similar to the properties of the solutions of Laplace’s equation (see harmonic
function). If the coefficients g, b, and c are not constant but depend on x and y,
then the equation is called elliptic in a given region if b° — 4ac < 0 at all points in
the region. The functions x° — y* and excos y satisfy the Laplace equation, but
the solutions to this equation are usually more complicated because of the
boundary conditions that must be satisfied as well.
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PARABOLIC EQUATION

Parabolic equation, any of a class of partial differential equations arising in
the mathematical analysis of diffusion phenomena, as in the heating of a slab.
The simplest such equationin one dimension, uxx=ut, governs the
temperature distribution at the various points along a thin rod from moment
to moment. The solutions to even this simple problem are complicated, but
they are constructed largely from a function called the fundamental solution
of the equation, given by an exponential function, exp [(-x*/4t)/t%]. To
determine the complete solution to this type of problem, the initial
temperature distribution along the rod and the manner in which the
temperature at the ends of the rod is changing must also be known. These
additional conditions are calledinitial values andboundary values,
respectively, and together are sometimes called auxiliary conditions.
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In the analogous two- and three-dimensional problems, the initial

temperature distribution throughout the region must be known, as well
as the temperature distribution along the boundary from moment to
moment. The differential equation in two dimensions is, in the simplest
case,uxx + uyy = ut,with an additional uzzterm added for the three-
dimensional case. These equations are appropriate only if the medium is
of uniform composition throughout, while, for problems of nonuniform
composition or for some other diffusion-type problems, more
complicated equations may arise. These equations are also called
parabolic in the given region if they can be written in the simpler form
described above by using a different coordinate system. An equation in
one dimension the higher-order terms of which areauxx + buxt + cuttcan
be so transformed if b” - 4ac = 0. If the coefficients a, b, c depend on the
values of x, the equation will be parabolic in a region if b’ - 4ac= 0 at
each point of the region.
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Boundary value, condition accompanying a differential equation in the

solution of physical problems. In mathematical problems arising from
physical situations, there are two considerations involved when finding
a solution: (1) the solution and its derivatives must satisfy a differential

equation, which describes how the quantity behaves within the region;
and (2) the solution and its derivatives must satisfy
other auxiliary conditions either describing the influence from outside

the region (boundary values) or giving information about the solution at
a specified time (initial values), representing a compressed history of the
system as it affects its future behaviour.
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A simple example of a boundary-value problem may be demonstrated by
the assumption that afunction satisfies the equationf(x) = 2xfor

any x between 0 and 1 and that it is known that the function has the
boundary value of 2 whenx= 1. The function f(x) =x’satisfies the
differential equation but not the boundary condition. The function f(x) = x* +
1, on the other hand, satisfies both the differential equation and the
boundary condition. The solutions of differential equations involve
unspecified constants, or functions in the case of several variables, which
are determined by the auxiliary conditions.
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The relationship between physics and mathematics is important here,

because it is not always possible for a solution of a differential equation to
satisfy arbitrarily chosen conditions; but if the problem represents an actual
physical situation, it is usually possible to prove that a solution exists, even
if it cannot be explicitly found. For partial differential equations, there are
three general classes of auxiliary conditions: (1) initial-value problems, as
when the initial position and velocity of a traveling wave are known, (2)
boundary-value problems, representing conditions on the boundary that do
not change from moment to moment, and (3) initial- and boundary-value
problems, in which the initial conditions and the successive values on the
boundary of the region must be known to find a solution. See also Sturm-
Liouville problem.
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Hyperbolic Function

Hyperbolic functions, also called hyperbolic trigonometric functions, the
hyperbolic sine of z (written sinh z); the hyperbolic cosine of z (cosh z); the
hyperbolic tangent of z (tanh z); and the hyperbolic cosecant, secant, and
cotangent of z. These functions are most conveniently defined in terms of
the exponential function, with sinh z="/,(ez- e z) and cosh z="/,(ez + e z)
and with the other hyperbolic trigonometric functions defined in a
manner analogous to ordinary trigonometry.
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Just as the ordinary sine and cosine functions trace (or parameterize) a
circle, so the sinh and cosh parameterize ahyperbola—hence

the hyperbolic appellation. Hyperbolic functions also satisfy identities
analogous to those of the ordinary trigonometric functions and have
important physical applications. For example, the hyperbolic cosine
function may be used to describe the shape of the curve formed by a high-
voltage line suspended between two towers (see catenary). Hyperbolic
functions may also be used to define a measure of distance in certain kinds
of non-Euclidean geometry.
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Classifications of Partial Differential Equations:
The most general form of linear second-order partial differential equations,

when restricted to two independent variables and constant coefficients, is auxx
+ buxy + cuyy + dux + euy + fu = g(x, y), (1.25) where g is a known forcing
function; a, b, c, ..., are given constants, and subscripts denote partial
differentiation. In the homogeneous case, i.e., g = O, this form is reminiscent of
the general quadratic form from high school analytic geometry: ax2 + bxy + cy2
+dx+ey+f=0.(1.26) Equation (1.26) is said to be an ellipse, a parabola or a
hyperbola according as the discriminant b 2 — 4ac is less than, equal to, or
greater than zero. This same classification—elliptic, parabolic, or hyperbolic—is
employed for the PDE (1.25), independent of the nature of g(x, y). In fact, it is
clear that the classification of linear PDEs depends only on the coefficients of
the highest-order derivatives. This grouping of terms, auxx + buxy + cuyy, is
called the principal part of the differential operator in (1.25), i.e., the collection
of highest-order derivative terms with respect to each independent variable;
and this notion can be extended in a natural way to more complicated
operators.

196



We next note that corresponding to each of the three types of equations

there is a unique canonical form to which (1.25) can always be reduced.
We shall not present the details of the transformations needed to achieve
these reductions, as they can be found in many standard texts on
elementary PDEs (e.g., Berg and MacGregor [5]). On the other hand, it is
important to be aware of the possibility of simplifying (1.25), since this
may also simplify the numerical analysis required to construct a solution
algorithm. Elliptic. It can be shown when b 2 — 4ac < 0O, the elliptic case,
that (1.25) collapses to the form uxx + uyy + Au = g(x, y), (1.27) with A =0,
+1. When A = 0 we obtain Poisson’s equation, or Laplace’s equation in the
case g = O0; otherwise, the result is usually termed the Helmholtz
equation. Parabolic. For the parabolic case, b 2 — 4ac = 0, we have ux —
uyy = g(x, y), (1.28) which is the heat equation, or the diffusion equation.
We remark that b 2 — 4ac = 0 can also imply a “degenerate” form which is
only an ordinary differential equation (ODE). We will not treat this case in
the present lectures. Hyperbolic. For the hyperbolic case, b 2 — 4ac > 0O,
Eqg. (1.25) can always be transformed to uxx — uyy + Bu = g(x, y), (1.29)
where B=0or 1. If B =0, we have the wave equation, and when B =1 we
obtain the linear Klein—Gordon equation.
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Finally, we note that determination of equation type in dimensions greater
than two requires a different approach. The details are rather technical but
basically involve the fact that elliptic and hyperbolic operators have definitions
that are independent of dimension, and usual parabolic operators can then be
identified as a combination of an elliptic “spatial” operator and a first-order

evolution operator.
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Gridding methods:

As implied above, there are two main types of gridding techniques in wide use,
corresponding to structured and unstructured gridding—with many different
variations available, especially for the former of these. Here, we will briefly
outline some of the general features of these approaches, and leave details.
Structured Grids. Use of structure grids involves labeling of grid points in such a
way that if the indices of any one point are known, then the indices of all points
within the grid can be easily determined. For many years this was the preferred
(in fact, essentially only) approach utilized. It leads to very efficient, readily
parallelized numerical algorithms and straightforward post processing. But
generation of structured grids for complicated problem domains, as arise in many
engineering applications, is very time consuming in terms of human time—and
thus, very expensive.
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Unstructured Grids. Human time required for grid generation has been
dramatically reduced with use of unstructured grids, but this represents their
only advantage. Such grids produce solutions that arefar less accurate, and the
required solution algorithms are less efficient, than is true for a structured grid
applied to the same problem. This arises from the fact that the grid points
comprising an unstructured grid can be ordered in many different ways, and
knowing indexing for any one point provides no information regarding the
indexing of any other points—often, even of nearest neighbors. In particular,
indexing of points is handled via “pointers” which are vectors of indices. Each
point possesses a unique pointer, but there is no implied canonical ordering of
these pointers. This leads to numerous difficulties in essentially all aspects of the
solution process.
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