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MODULE– I
INTRODUCTION TO PROBABILITY
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Probability (Mathematical Definition)

 

 

 

Definition: If a trial results in n-exhaustive mutually exclusive, and 

equally likely cases and m of them are favorable to the happening 

of an event E then the probability of an event E is denoted by P(E) 

and is defined as 

P(E)   =  
casesexaustiveofnoTotal

eventtocasesfavourableofno  = n
m  
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Statistical or Empirical Probability:

  If a trial is repeated a no. of times under 

essential homogenous and identical conditions, 

then the limiting value of the ratio of the no. of 

times the event happens to the total no. of trials, 

as the number of trials become indefinitely large, 

is called the probability of happening of the 

event.( It is assumed the limit is finite and 

unique) 
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Random Variables

 A random variable X on a sample space S is a 
function X : S  R from  S onto the set of real 
numbers R, which assigns a real number X (s) 
to each sample point  ‘s’ of S. 

 Random variables (r.v.) bare denoted by the 
capital letters X,Y,Z,etc.. 

 Random variable is a single valued function. 

 Sum, difference, product of two random 
variables is also a random variable .Finite 
linear combination of r.v is also a r.v .Scalar 
multiple of a random variable is also random 
variable. 
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 A random variable, which takes at most a 
countable number of values, it is called a 
discrete r.v. In other words, a real valued 
function defined on a discrete sample space 
is called discrete r.v. 

 A random variable X is said to be continuous 
if it can take all possible values between 
certain limits .In other words, a r.v is said to 
be continuous when it’s different values 
cannot be put in 1-1 correspondence with a 
set of positive integers. 
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 A continuous r.v is a r.v that can be measured to any 
desired degree of accuracy. Ex : age , height, weight 
etc.. 

 Discrete Probability distribution: Each event in a sample 
has a certain probability of occurrence . A formula 
representing all these probabilities which a discrete r.v. 
assumes is known as the discrete probability 
distribution. 
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 The probability function or probability mass 
function (p.m.f) of a discrete random variable X is 
the function f(x) satisfying the following 
conditions. 

          i)   f(x)0  

          ii)  
x

xf )(  = 1  

         iii)  P(X =x) = f(x) 

 Cumulative distribution or simply distribution of 
a discrete r.v. X is F(x) defined by F(x) = P(X  x) = 


xt

tf )(  for  x  
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 For a continuous r.v. X, the function f(x) satisfying the 
following is known as the probability density 
function(p.d.f.) or simply density function: 

i) f(x)  0 ,- <x < 

ii) 



1)( dxxf  

iii) P(a<X<b)= 
b

a
dxxf )( = Area under f(x)  between 

ordinates x=a and x=b 
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 Cumulative distribution for a continuous r.v. 
X with p.d.f. f(x), the cumulative distribution 
F(x) is defined as  

F(x)= P(Xx)= 



dttf )(    -<x< 

It follows that F(-) = 0 ,  F()=1, 0F(x)1 

for -<x< 

f(x)= d/dx(F(x))= F1(x)0 and P(a < x < b)= 

F(b)-F(a) 
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 In case of discrete  r.v. the probability at a 
point i.e., P(x=c) is not zero for some fixed c 
however in case of continuous random 
variables the probability at appoint is always 
zero. I.e., P(x=c) = 0 for all possible values of 
c. 

 P(E) = 0 does not imply that the event E is 
null or impossible event. 
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 If X and Y are two discrete random variables 
the joint probability function of X and Y is 
given by  P(X=x,Y=y) = f(x,y) and satisfies   

(i)     f(x,y)  0      (ii)
x y

yxf ),(  = 1 
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The joint probability function for X and Y can 

be reperesented by a joint probability table.  

Table 

X          

Y 

 

      y1       y2 ……     yn Totals 

     x1    

f(x1,y1) 

f(x1,y2) …….. f(x1,yn)   f1(x1) 

=P(X=x1) 
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   x2   F(x2,y1) f(x2,y2) …….. f(x2,yn)   f1(x2) 

=P(X=x2) 

    

…….. 

……. ……… ……… ……… …….. 

    xm f(xm,y1) f(xm,y2) ……. f(xm,yn)   f1(xm) 

=P(X=xm) 

Totals f2(y1) 

=P(Y=y1) 

f2(y2) 

=P(Y=y2) 

…….. f2(yn) 

=P(Y=yn) 

      1 
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The probability ofX = xj is obtained by adding all 

entries in arrow corresponding to X = xj 

Similarly the probability of Y = yk is obtained by all 

entries in the column corresponding to Y =yk 

f1(x) and f2(y) are called marginal probability 

functions of X and Y respectively. 

The  joint distribution function of X and Y is 

defined by F(x,y)= P(Xx,Yy)= 



xu yv

vuf ),(  
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The probability ofX = xj is obtained by adding all 

entries in arrow corresponding to X = xj 

Similarly the probability of Y = yk is obtained by 

all entries in the column corresponding to Y =yk 

f1(x) and f2(y) are called marginal probability 

functions of X and Y respectively. 
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 Two discrete random variables X and Y are 
independent iff    

     P(X = x,Y = y) = P(X = x)P(Y = y)  x,y   (or) 

     f(x,y)  =  f1(x)f2(y)     x, y 

 Two continuous random variables X and Y are 
independent iff 

             P(X  x,Y  y) = P(X  x)P(Y  y)  x,y      

                                    (or) 

             f(x,y)  =  f1(x)f2(y)     x, y 
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If X and Y are two discrete r.v. with joint 

probability function f(x,y) then  

 P(Y = y|X=x) =
)(

1

),(
xf
yxf  = f(y|x) 

Similarly,  P(X = x|Y=y) =
)(

2

),(
yf
yxf  = f(x|y)  
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 Median is the point, which divides the entire 
distribution into two equal parts. In case of 
continuous distribution median is the point, 
which divides the total area into two equal 

parts. Thus, if M is the median then 


M
dxxf )(

= 


M
dxxf )( =1/2. Thus, solving any one of the 

equations for M we get the value of median. 
Median is unique 
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Mode: Mode is the value for f(x) or P(xi) at    

             attains its maximum 

                        For continuous r.v. X mode is the solution    

                        of   f1(x) = 0 and f11(x) <0   

                       provided it lies in the given interval. Mode             

                       may or may not be unique. 
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 Variance:  Variance characterizes the variability  in the 
distributions with same mean can still have different dispersion 
of data about their means  

                Variance of r.v.  X denoted by  Var(X) and is defined as  

                Var(X) = E













  2)   - (X    =       

)(2)( xf
x

x 
        for discrete 

                                                                   dxxfx )(2)(



          for continuous 
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                  where  = E(X) 

 If c is any constant then E(cX) = c E(X) 

 If X and Y are two r.v.’s then E(X+Y) = E(X)+E(Y) 

 IF X,Y are two independent r.v.’s then E(XY) = 
E(X)E(Y) 
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 If  X1,X2,-------,Xn are  random variables then E(c1X1 
+c2X2+------+cnXn) = c1E(X1)+c2E(X2)+-----+cnE(Xn) for 
any scalars c1,c2,------,cn  If all expectations exists 

 If X1,X2,-------,Xn are independent r.v’s then E

















 n

i

i

n

i

i XEX

11

)(  if all expectations exists. 

 Var (X) = E (X2) –[E (X)]2 

 If ‘c’ is any constant then var (cX) = c2var(X) 

 The quantity E[(X-a)2] is minimum when a == E(X) 

 If X and Y are independent r.v.’s then Var(X  Y) = 

Var(X)  Var(Y) 
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Find  (i) k (ii) P(x<6) (iii) P( x>6) 

Solution:since the total probability is unity, we 

have 



n

x
xp

0
1)(  

i.e., 0 + k  +2k+  2k+  3k+     k2+     7k2+k=1 
i.e., 8k2+    9k -1=0 
k=1,-1/8 

 

1:A random variable x has the following probability   
    function: 
                                       
x 0 1 3 4 5 6 7 

P(x) 
 

0 k 2k   2k 3k k2      7k2+k 
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P(x<6)= 0 + k  +2k+  2k + 3k    

                                 =1+2+2+3=8 

iii)     P( x>6)= k2    + 7k2+k 
                   =9 
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2. Let X denotes the minimum of the two 
numbers that appear when a pair of fair dice is 
thrown once. Determine (i) Discrete probability 
distribution (ii) Expectation (iii) Variance 

Solution: 

When two dice are thrown, total number of 
outcomes is 6x6=36 
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In this case, sample space S=


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
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
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
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
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
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

















6,65,64,63,62,61,6

6,55,54,53,52,51,5

6,45,44,43,42,41,4

6,35,34,33,32,31,3

6,25,24,23,22,21,2

6,15,14,13,12,11,1
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If the random variable X assigns the minimum of 
its number in S, then the sample space S=













































654321

554321

444321

333321

222221

111111

  

 

28



The minimum number could be 1,2,3,4,5,6 

For minimum 1, the favorable cases are 11 

Therefore, P(x=1)=11/36 

P(x=2)=9/36, P(x=3)=7/36, P(x=4)=5/36, 

P(x=5)=3/36, P(x=6)=1/36 
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The probability distribution is  

X 1 2 3 4 5 6 
P(x) 11/36 9/36 7/36 5/36 3/36 1/36 
 

(i)Expectation mean =
i

x
i

p  

36
16

36
35

36
54

36
73

36
92

36
111)( xE  

Or 5278.2
36
96152021811

36
1 






  
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ii) variance = 22  ix
i

p  

2
5278.236

36
125

36
316

36
59

36
74

36
91

36
11)( 







xE

 

=1.9713 
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 Determine (i) k (ii) Mean (iii) Variance 

Solution: 

(i) since the total probability is unity, we have   1



dxxf  

1
0

0
0 





dxxkxedx   

i.e., 1
0




 dxxkxe   

2

0
2

1 
































































kor
xexexk  

 

A continuous random variable has the probability density 
function  

, 0, 0
( )

0,

   
 


xkxe for x
f x

otherwise     
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(i) mean of the distribution  dxxxf



  





 0

2
0
0 dxxekxdx 

 












































































0
3

2
2

222













xexex
xex

 

=

2  
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Variance of the distribution

  222  



 dxxfx

 

 
2
422


 



 dxxfx

 

2
4

0
4

6
3

6
2

2332















 








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
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
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

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

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

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
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

 xexex
xex

xex

 

2
2


  
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Out of 800 families with 5 children each, how 

many   would you expect to have (i)3 boys (ii)5girls 

(iii)either 2 or 3 boys ? Assume equal probabilities 

for boys and girls 

Solution(i) 

P(3boys)=P(r=3)=P(3)=
16
5

3
5

52

1 C per family 

Thus for 800 families the probability of number of 

families having 3 boys= 250800
16
5 







 families 
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           P(5 girls)=P(no boys)=P(r=0)= 
32
1

0
5

52

1 C per     

           Family Thus for 800 families the probability of     

           number    

           of families having 5girls= 25800
32
1 







 families 

      P(either 2 or 3 boys =P(r=2)+P(r=3)=P(2)+P(3) 

3
5

52

1
2

5
52

1 CC  =5/8 per family 

Expected number of families with 2 or 3 boys =

500800
8
5 







 families. 
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4. In 1000 sets of trials per an event of small probability the 

frequencies f of the number of x of successes are 

X 0 1 2 3 4 5 6 7 To

tal 

P(

X) 

3

0

5 

3

6

5 

2

1

0 

8

0 

2

8 

9 2 1 10

00 

   of 10 randomly chosen tape recorders. Find (i) P(X=0) (ii)    

   P(X=1) (iii) P(X=2) (iv) P (1<X<4). 
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Bionomial Distribution

38

  A random variable X is said to follow binomial distribution if it 
assumes only non-negative values and its probability mass 
function is given by 

P(X = x)  =  P(x) =          xnxqp
x

n 







     where   x = 0,1,2,3,….n    q = 1-p 

                                         0 other wise 

where n, p are known as parameters, n- number of independent 

trials p- probability of success in each trial, q- probability of 

failure. 
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 Mode of the Binomial distribution: Mode of B.D. Depending 
upon the values of (n+1)p 

(i) If (n+1)p is not an integer then there exists a unique modal 
value for binomial distribution and it is ‘m’= integral part of 
(n+1)p 

(ii) If (n+1)p is an integer say m then the distribution is Bi-
Modal and the two modal values are m and m-1 
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Poisson distribution 

  Poisson distribution: 

 Poisson Distribution is a limiting case of the Binomial distribution under 
the following conditions: 

(i) n, the number of trials is infinitely large. 

(ii) P, the constant probability of success for each trial is indefinitely small. 

(iii) np= , is finite where  is a positive real number. 
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 A random variable X is said to follow a Poisson distribution if it assumes   

 only non-negative values and its p.m.f. is given by    

    P(x,)= P(X= x) =      !x

e x
:      x=  0,1,2,3,……  > 0 

0   Other wise 

  Here  is known as the parameter of the distribution. 
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 We shall use the notation X~ P() to denote that X is a Poisson 

variate with parameter  

 Mean and variance of Poisson distribution are equal to . 

 The coefficient of skewness and kurtosis of the poisson distribution 

are 1 = 1= 1/ and 2= 2-3=1/. Hence the poisson distribution 

is always a skewed distribution. Proceeding to limit as  tends to 

infinity we get 1 = 0 and 2=3 
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 Mode of Poisson Distribution: Mode of P.D. Depending upon the value of  

(i) when  is not an integer the distribution is uni- modal and integral part of 

 is the unique modal value. 

(ii) When  = k is an integer the distribution is bi-modal and the two modals  
are k-1 and k. 

(iii)   Sum of independent poisson variates is also poisson variate. 

(iii) The difference of two independent poisson variates is not a poisson    
(iv)  variate. 
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 Moment generating function of the P.D. 

     If X~ P() then MX(t) =  )1( tee  

 Recurrence formula for the probabilities of P.D. ( Fitting of P.D.)    

P(x+1) = )(
1

xp
x
  

 Recurrence relation for the probabilities of B.D. (Fitting of B.D.) 

     P(x+1) = )(.
1

xpq
p

x
xn
















  
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1. Average number of accidents on any day on a national 

highway is 1.8. Determine th  probability that the number of 

accidents is (i) at least one (ii) at most one 

 

Solution: 

                                       Mean= 8.1  

                                 We have P(X=x)=p(x)
𝑒−𝜆𝜆𝑥

𝑥!
 =

𝑒−1.81.8𝑥

𝑥!
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i) P (at least one) =P( x≥1)=1-P(x=0) 

                                 =1-0.1653 

                                 =0.8347 

                        ii)       P (at most one) =P (x≤1) 

                                 =P(x=0)+P(x=1) 

                                 = 0.4628 

 



47

 

 

      Exercise problems: 

 

2.If a Poisson distribution is such that
3

( 1) ( 3)
2

  P X P X  then find  

(i) ( 1)P X   

(ii)  ( 3)P X  (iii) (2 5) P X . 

 



NORMAL DISTRIBUTION
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  Normal  Distribution 

     A random variable X is said to have a normal distribution with 

parameters  called mean and 2 called variance if its density 
function is given by the probability law 

f(x; , ) =     2

1
exp





















 

2

2

1



x
  ,    - < x < , - <  < ,  > 0 
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 A r.v. X with mean  and variance 2 follows the normal 
distribution is denoted by  

        X~ N(, 2) 

 If X~ N(, 2) then Z = 


X
 is a standard normal variate with 

E(Z) = 0 and var(Z)=0 and we write Z~ N(0,1) 
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 The p.d.f. of standard normal variate Z is given by f(Z) = 
2/2

2

1 ze

  ,  

 - < Z<  

 The distribution function F(Z) = P(Z  z) = 



z

t dte 2/2

2

1

  

 F(-z)  = 1 – F(z) 

 P(a < z  b) = P( a  z < b)= P(a <z < b)= P(a  z  b)= F(b) – F(a) 
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 If X~ N(, 2) then Z = 


X
 then P(a  X  b) = 







 








 







 a
F

b
F  

 N.D. is another limiting form of the B.D. under the following 
conditions: 

i) n , the number of trials is infinitely large. 

ii) Neither p nor q is very small 
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i) The maximum probability occurring at the point x=  and is given by 

    [P(x)]max = 1/2 

ii)  1 = 0 and 2 = 3 

    2r+1 = 0 ( r = 0,1,2……) and 2r = 1.3.5….(2r-1)2r 

iii) Since f(x) being the probability can never be negative no portion of 
the curve lies below x- axis. 
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i) Linear combination of independent normal variate is also a normal 
variate. 

ii) X- axis is an asymptote to the curve. 

iii) The points of inflexion of the curve are given by x =      , f(x) = 
2/1

2

1 e
  

iv) Q.D. : M.D.:  S.D. :: 
3

2
: 

5

4
:  ::: 3

2
 

5

4
: 1   Or   Q.D. : M.D.:  S.D. 

::10:12:15 
 

 



Problems
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Problems: 

1. The mean weight of 800 male students at a certain college is 140kg and 

the standard deviation is 10kg assuming that the weights are normally 

distributed find how many students weigh I) Between 130 and 148kg ii) more 

than 152kg 

Solution: 

Let   be the mean and   be the standard deviation.  Then  =140kg and 

=10pounds 
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(i) When x= 138, 12.0
10

140138
z

x
z 










 

 

 

When x= 138, 28.0
10

140148
z

x
z 










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ii)    When x=152,
𝑥−𝜇

𝜎
=

152−140

10
= 1.2=z1  

       Therefore P(x>152)=P(z>z1)=0.5-A(z1) 

       =0.5-0.3849=0.1151 

       Therefore number of students whose weights are more than 152kg    

       =800x0.1151=92. 
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Exercise Problems: 

1. Two coins are tossed simultaneously. Let X denotes the number of heads then 

find  i) E(X)  ii) E(X2)  iii)E(X3)  iv) V(X) 

2. If f(x)=k x
e
  is probability density function in the interval,  x , then find i) k  

ii) Mean   iii) Variance   iv) P(0<x<4) 
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3.  If X is a normal variate with mean 30 and standard deviation 5.    

     Find the probabilities that  i) P(26  X40)     ii) P( X  45) 

 

4. The marks obtained in Statistics in a certain examination found    

     to be normally distributed. If 15% of the students greater than or    

     equal to 60 marks, 40% less than 30 marks. Find the mean and    

     standard deviation. 

 



t-distribution
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 If X  is the mean of a random sample of size n taken from a 

normal population having the mean  and the variance 2 , 

and    
1

)(

1

2

2










n

XX

S

n

i

i

 then t=
n

s

X   is a r.v. having the  

t- distribution with the parameter  = (n-1)dof 
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 The overall shape of a t-distribution is similar to that of a 

normal distribution both are bell shaped and symmetrical 
about the mean. Like the standard normal distribution t-
distribution has the mean 0, but its variance depends on the 

parameter  (nu), called the number of degrees of freedom. 
The variance of t- distribution exceeds1, but it approaches 1 as 

n. The t-distribution with -degree of freedom approaches 

the standard normal distribution as . 
The standard normal distribution provides a good 

approximation to the t-     

       distribution for samples of size 30 or more 
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Producer of ‘gutkha’ claims that the nicotine content in his ‘gutkha’ 
on the average is 83 mg. can this claim be accepted if a random 
sample of 8 ‘gutkhas’ of this type have the nicotine contents of 
2.0,1.7,2.1,1.9,2.2,2.1,2.0,1.6 mg. 

 
Solution:  Given n=8 and  =1.83 mg 

1. Null hypothesis(H0):  =1.83 
2. Alternative hypothesis(H1):    1.83 
3. Level of significance:   =0.05 

t  for n-1 degrees of freedom 05.0t  for 8-1 degrees of freedom is 
1.895 
  Test statistic:  

                                               n

S

x
t



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x   x-x   2
x-x  

2.0 0.05 0.0025 
1.7 -0.25 0.0625 

2.1 0.15 0.0225 
1.9 -0.05 0.0025 
2.2 0.25 0.0625 
2.1 0.15 0.0225 
2.0 0.05 0.0025 
1.6 -0.35 0.1225 
Total=15.6   
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x = 95.1
8

6.15
  and 2S = 





1

)( 2

n

xx
=

7

3.0

  
S=0.21 

n

S

x
t


 =

8

21.0

83.195.1 
=1.62  t 1.62 

Conclusion:   

 t < t We accept the Null hypothesis. 
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The means of two random samples of sizes 9,7 are 196.42 
and 198.82.the sum of squares of  deviations from their 
respective means are 26.94,18.73.can the samples be 
considered to have been the same population? 
 

Solution:  Given n1=9, n2=7, 1x =196.42, 2x =198.82 and     

                 
2

1)( xxi  =26.94,                  
                 2

2 )( xxi  =18.73 

                   2

)()(

21

2

2

2

12







nn

xxxx
S

ii

=3.26 

 
                    S=1.81 
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Null hypothesis(H0): 1x = 2x  

Alternative hypothesis(H1):   1x
 2x  

Level of significance:   =0.05 

t  for 221  nn  degrees of freedom 

05.0t  for 9+7-2=14 degrees of freedom is 2.15 

Test statistic:  

21

21

11

nn
S

xx
t




    =    

7

1

9

1
)81.1(

82.19842.196



 =-2.63     t 2.63 

Conclusion:  
 t > t   We reject the Null hypothesis. 
 

 



F-distribution
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 If S1
2 and S2

2 are the variances of independent random 
samples of size n1 and n2 respectively, taken from two normal 

populations having the same variance, then 
2
2

2
1

S

S
F   is a r.v. 

having the F- distribution with the parameter’s 1=n1-1 and 

2=n2-1 are called the numerator and denominator degrees of 
freedom respectively. 

 F1-(1,2)=
) ,(

1

12 F
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In one sample of 8 observations the sum of squares of 
deviations of the sample values from the sample mean was 
84.4 and another sample of 10 observations it was 102.6 .test 
whether there is any  significant difference between two 
sample variances at at 5% level of significance. 

Solution: Given n1=8, n2=10, 
2

1)( xxi  =84.4 and   
2

2 )( xxi  =102.6 
 
    

 

     
057.12

7

4.84

1

)(

1

2

12

1 






n

xx
S

i

 
 

       
4.11

9

6.102

1

)(

2

2

12

2 






n

xx
S

i
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Null hypothesis(H0): 2

1S = 2

2S  
Alternative hypothesis(H1):   2

1S 
2

2S  
Level of significance:   =0.05 

F  For )1,1( 21  nn  degrees of freedom 

05.0F  For (7,9) degrees of freedom is 3.29 
 
 
Test statistic:  

2

2

2

1

S

S
F    =

4.11

057.12 =1.057   

 
Conclusion:  F < F    We accept the Null hypothesis.  

 
 

057.1F



Chi-square test
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 If S2 is the variance of a random sample of size n taken from 

a normal population having the variance 2 , then 

         
2

1

2

2

2
2

)(
)1(














n

i

i XX
Sn  is a r.v. having the chi-square       

    distribution with the parameter  = n-1 

 The chi-square distribution is not symmetrical  
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The following table gives the classification of 100 workers according to gender and nature 
of work. Test whether the nature of work is independent of the gender of the worker.  

 
 
 
 

 

 

Solution:         Given that 

                 Expected frequencies = 
row  total ×column  total

grand  total
 

200

10090 =45 
200

10090 =45 90 

200

10090 =55 
200

10090 =55 110 

100 100 200 

 

 Sta
ble  

Uns
tabl
e  

Tot
al  

Male  40 20 60 
Female 10 30 40 
Total  50 50 100 



71

 

 
Calculation of 

2 : 
 
 
Observed 
Frequency(Oi) 

Expected 
Frequency(Ei) 

)E-(O ii

2 

i

2

ii

E

)E-(O  

60 45 225 5 
30 45 225 5 
40 55 225 4.09 
70 55 225 4.09 
   18.18 
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2 =



i

ii

E

EO 2)(
=18.18 

1.  Null hypothesis(H0): ii EO   

2.  Alternative hypothesis(H1):   ii EO   

3.  Level of significance:   =0.05 

      
2

  For (r-1)(c-1) degrees of freedom 

      
2

05.0  For (2-1)(2-1)=1 degrees of freedom is 3.84 
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2 =


i

ii

E

EO 2)( =18.18 

1.  Null hypothesis(H0): ii EO   
2. Alternative hypothesis(H1):   ii EO   
3. Level of significance:   =0.05 

2
  For (r-1)(c-1) degrees of freedom 

2

05.0  For (2-1)(2-1)=1 degrees of freedom is 3.84 

4. Test statistic:  2 =


i

ii

E

EO 2)( =18.18,   

 
Conclusion:  2 > 2

  

We reject  the Null hypothesis. 
 

 

057.12 
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MODULE– II
TESTING OF STATISTICAL HYPOTHESIS
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 Null Hypothesis (N.H) denoted by H0  is statistical hypothesis, which is to 
be actually tested for acceptance or rejection. NH is the hypothesis, 
which is tested for possible rejection under the assumption that it is true. 

 Any Hypothesis which is complimentary to the N.H is called an 
Alternative Hypothesis denoted by H1 

 Simple Hypothesis is a statistical Hypothesis which completely specifies 
an exact parameter. N.H is always simple hypothesis stated as a equality 

specifying an exact value of the parameter. E.g. N.H = H0 :  = 0   N.H. = 

H0 : 1- 2=  

 Composite Hypothesis is stated in terms of several possible values. 

 Alternative Hypothesis(A.H) is a composite hypothesis involving 

statements expressed as inequalities such as < , > or  

i) A.H : H1:  > 0  (Right tailed)      ii) A.H : H1:  < 0  (Left tailed)  

iii) A.H : H1:   0  (Two tailed alternative) 

 



ERRORS IN SAMPLING
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 Errors in sampling: 
      Type I error: Reject H0  when it is true 

      Type II error: Accept H0 when it is wrong (i.e) accept if when H1 is true. 

        Accept H0 Reject H0 

H0 is True Correct 

Decision 

Type 1 

error 

H0  is False Type 2 error Correct 

Decision 

 If P{ Reject H0 when it is true}= P{ Reject H0 | H0}= and  

    P{ Accept H0 when it is false}= P{ Accept H0 | H1} =  then , are called the 

sizes of Type I error and Type II error respectively. In practice, type I error 

amounts to rejecting a lot when it is good and type II error may be regarded as 

accepting the lot when it is bad. 
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  and  are referred to as producers risk and consumers risk 
respectively. 

 A region (corresponding to a statistic t) in the sample space S 
that amounts to rejection of H0 is called critical region of 
rejection. 

 Level of significance is the size of the type I error ( or 
maximum producer’s risk) 

 The levels of significance usually employed in testing of 
hypothesis are 5% and 1% and is always fixed in advance 
before collecting the test information. 

 A test of any statistical hypothesis where AH is one tailed( 
right tailed or left tailed) is called a one–tailed test. If AH is 

two-tailed such as: H0:  = 0, against the AH. H1 :   0 (  > 

0 and  < 0) is called Two-Tailed Test. 
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 The value of test statistics which separates the critical ( or 
rejection) region and the acceptance region is called Critical value 
or Significant value. It depends upon (i) The level of significance 
used and (ii) The Alternative Hypothesis, whether it is two-tailed 
or single tailed  
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Critical Value 

       (Z) 

Level of significance    () 

       1%                          5%                   10%            

Two-Tailed 

test 

 -Z/2  = -2.58            -Z/2  = -1.96         -Z/2 

= -1.645 

   Z/2 =  2.58             Z/2   = 1.96           Z/2 

=   1.645 

Right-Tailed 

test 

Z    =  2.33               Z    = 1.645          Z      = 

1.28  

Left-Tailed 

Test 

-Z  =  -2.33             - Z   = -1.645        -Z     

= -1.28  
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 When the size of the sample is increased, the probability of 

committing both types of error I and II (i.e)  and  are small, the 
test procedure is good one giving good chance of making the 
correct decision. 

 P-value is the lowest level ( of significance) at which observed value 
of the test statistic is significant. 

  A test of Hypothesis (T. O.H) consists of  
1. Null Hypothesis (NH) : H0 
2. Alternative Hypothesis (AH) : H1 

3. Level of significance:  

4. Critical Region pre determined by  
5. Calculation of test statistic based on the sample data. 
6. Decision to reject NH or to accept it. 
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CONFIDENCE INTERVALS

 

 

Maximum error E of a population mean  by using large sample mean  is  
E  = 

n
Z


 2/  

The most widely used values for 1-  are  0.95 and 0.99 and the 

corresponding values of Z/2 are Z0.025 = 1.96 and Z0.005 = 2.575 
Sample size n = 

2

2/ 








E
Z


  

 



CONFIDENCE INTERVAL
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  Confidence interval for  ( for large samples n  30 )  known    
    

x -
n

Z


 2/  <     < x +
n

Z


 2/       

  If the sampling is without replacement from a population of finite size   

    N then the confidence interval for  with known is  
 

            x -
n

Z


 2/ 1



N

nN
 <     < x +

n
Z


 2/

1



N

nN  
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1.   Large sample confidence interval for  -  unknown is  

   x -
n

S
Z 2/  <     < x +

n

S
Z 2/            

       Large sample confidence interval for 1 - 2 ( where 1 and 2 are     
       unknowns) 

      (
21 xx  )  Z /2 












2

2

2

1

2

1

n

S

n

S    

       The end points of the confidence interval are called Confidence     
       Limits. 

 



LARGE SAMPLE TESTS
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           Test statistic for T.O.H. in several cases are 
 
 

     Statistic for test concerning mean   known  
  Z = 

n

X

/

0



  

      Statistic for large sample test concerning mean with  unknown 
   Z = 

nS

X

/

0  
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   Statistic for test concerning difference between the means  
 

Z =  















2

2

2

1

2

1

21

nn

XX



    under NH   H0 : 1 - 2 =  against the AH,  H1: 1 - 2 >  

or H1: 1 - 2 <  or H1: 1 - 2   

 

   Statistic for large samples concerning the difference between two means    

   (1 and 2 are unknown) 

     Z = 
 















2

2

2

1

2

1

21

n

S

n

S

XX 
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    Statistics for large sample test concerning one proportion  

        Z  = 
)1( 00 pnp

npX o




under the N.H: H0: p = po against H1: p  p0 or p > p0 or 

        p <P0 

 

     Statistic for test concerning the difference between two proportions  

     Z= 
))(ˆ1(ˆ

21

11

2

2

1

1

nn
pp

n

X

n

X





 with p̂ =
21

21

nn

XX




under the NH : H0: p1=p2  against the AH 

H1:p1 < p2 or p1 > p2 or p1  p2  
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 Large sample confidence interval for difference of two proportions  (p 1- p2) 
is 

       
2

2

2

2

2

1

1

1

1

1

2/

2

2

1

1

11

n

n

x

n

x

n

n

x

n

x

Z
n

x

n

x





























   

 Maximum error of estimate E = Z/2
n

pp )1(  with observed value x/n 

substituted for p  we obtain an estimate of E 

 Sample size         n =   p(1-p)
2

2/









E

Z  when p is known 

                                  n= 
4

1
2

2/









E

Z    when p is unknown 

 One sided confidence interval is of the form p < (1/2n)
2 with (2n+1) 

degrees of freedom. 
 
 

 

 



LARGE SAMPLE TESTS PROBLEMS
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1. A sample of 400 items is taken from a population whose standard deviation 

is 10.The mean of sample is 40.Test whether the sample has come from a 

population with mean 38 also calculate 95% confidence interval for the 

population. 

Solution:          Given n=400, 40x  and  =38 and =10 

1. Null hypothesis(H0):  =38 

2. Alternative hypothesis(H1):    38 

3. Level of significance:   =0.05 and Z =1.96 

4. Test statistic:  
n

x
Z




  

n

x
Z




 =

400

10

3840  =4 

Z 4 
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Confidence interval = 









n
Zx

n
Zx


 ,

 

 

   = 









400

10
96.140,

400

10
96.140
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Samples of students were drawn from two universities and from their weights in kilograms 

mean and S.D are calculated and shown below make a large sample test to the significance of 

difference between means. 

 

 

 MEAN S.D SAMPLE SIZE 

University-A 55 10 400 

University-B 57 15 100 
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Solution:   Given n1=400, n2=100, 1x =55, 2x =57  
                    S1=10 and S2=15 
 

1.  Null hypothesis(H0): 1x = 2x  

2. Alternative hypothesis(H1):   1x  2x  

3. Level of significance:   =0.05 and Z =1.96 

4. Test statistic:  

2

2

2

1

2

1

21

n

S

n

S

xx
Z




    =   

100

225

400

100

5755



 =-1.26 

Z 1.26 

5. Conclusion:  

 Z < Z  

We accept the Null hypothesis. 

 



LARGE SAMPLE TESTS PROBLEMS
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1.  A sample of 400 items is taken from a population whose standard 
deviation is 10.The mean of sample is 40.Test whether the sample has 
come from a population with mean 38 also calculate 95% confidence 
interval for the population. 
Solution:          Given n=400, 40x  and =38 and =10 
1. Null hypothesis(H0):  =38 
2. Alternative hypothesis(H1):    38 
3. Level of significance:   =0.05 and Z =1.96 
4. Test statistic:  

n

x
Z




  

n

x
Z




 =

400

10

3840  =4   Z 4 

5. Conclusion:  
 Z > Z  
We reject the Null hypothesis. 
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Confidence interval = 









n
Zx

n
Zx


 ,  

   = 









400

10
96.140,

400

10
96.140  

   =  98.40,02.39  

 



94

1. Samples of students were drawn from two universities and from their 

weights in kilograms mean and S.D are calculated and shown below make a 

large sample test to the significance of difference between means. 

 MEAN S.D SAMPLE SIZE 

University-A 55 10 400 

University-B 57 15 100 
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Solution:   Given n1=400, n2=100, 1x =55, 2x =57  
                S1=10 and S2=15 
 

1.  Null hypothesis(H0): 1x = 2x  
2. Alternative hypothesis(H1):   1x  2x  
3. Level of significance:   =0.05 and Z =1.96 
4. Test statistic:  

2

2

2

1

2

1

21

n

S

n

S

xx
Z




    =   

100

225

400

100

5755



 =-1.26 

 
Z 1.26 

5. Conclusion:  
 Z < Z  
We accept the Null hypothesis. 

 



LARGE SAMPLE TESTS PROBLEMS
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1. In a sample of 1000 people in Karnataka 540 are rice eaters and the 
rest are wheat eaters. Can we assume that both rice and wheat are 
equally popular in this state at 1% level of significance? 
Solution:        Given n=400, x =540 

p = 
n

x =
1000

540 = 0.54 

P = 
2

1 = 0.5 , Q= 0.5 

1. Null hypothesis(H0): P =0.5 
2. Alternative hypothesis(H1):   P 0.5 
3. Level of significance:   =1%  and Z =2.58 
4. Test statistic:  

n

PQ

pP
Z


  

n

PQ

pP
Z


 =

1000

5.05.0

5.054.0



 = 2.532  Z 2.532  Z < Z  We accept  the Null hypothesis. 
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4.Random sample of 400 men and 600 women were asked whether they 

would like to have flyover near their residence .200 men and 325 women 

were in favour of proposal. Test the hypothesis that the proportion of 

men and women in favour of proposal are same at 5% level. 
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Solution:        Given n1=400, n2=600 , 2001 x  and 3252 x   
  

 5.0
400

200
1 p

 
 

 541.0
600

325
2 p  

 

  

               
525.0

600400

600

325
600

400

200
400

21

2211 










nn

pnpn
p
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1. Null hypothesis(H0): 1p = 2p  

2. Alternative hypothesis(H1):   1p  2p  

3. Level of significance:   =0.05 and Z =1.96 

4. Test statistic:  













21

21

11

nn
pq

pp
Z    =   28.1

600

1

400

1
425.0525.0

541.05.0













 

 
Z 1.28  

5. Conclusion:  

 Z < Z  

We accept the Null hypothesis. 
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ANALYSIS OF VARIANCE 

ANOVA:   

It is abbreviated form for ANALYSIS OF VARIANCE which is a method for 

comparing several population means at the same time. It is performed using F-

distribution 

Assumptions of ANALYSIS OF VARIANCE: 

1. The data must be normally distributed. 

2. The samples must draw from the population randomly and independently. 

3. The variances of population from which samples have been drawn are 

equal. 

Types of Classification: 

There are two types of model for analysis of variance 

1. One-Way Classification 

2. Two-Way Classification. 

 

ANALYSIS OF VARIANCE
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PROCEDURE FOR ANOVA 

Step 1 :  State the null and alternative hypothesis. 

H0: 321   (The means for three groups are equal). 

H1 : At least one pair is unequal. 

Step 2:  Select the test criterion to be used. 

We have to decide which test criterion or distribution should be used.  As our 

assumption involves means for three normally distributed populations.  We 

should use the F-distribution to test the hypothesis. 

 

 

 

 

  

ONE –WAY CLASSIFICATION:
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Step 3. Determine the rejection and non-rejection regions 

 We decide to use 0.05 level of significance.  As on one-way ANOVA test is 

always right-tail, the area in the right tail of the F-distribution curve is 0.05, 

which is the rejection region.  Now, we need to know the degrees of freedom 

for the numerator and the denominator.    Degrees of freedom for the 

numerator=k-1, where k is the number of groups.  Degree of freedom for 

denominator =n-k where n is total number of observations 

Step  4. Calculate the value of the test statistics by applying ANOVA. i.e., F 

Calculated 

Step 5: conclusion 

          I)  If F Calculated<F Critical , then H0 is accepted 

        ii) if F calculated<F critical , then H0 is rejected 
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The analysis of variance table for two-way classification is taken as follows; 

Source of 

variation 

Sum  of 

squares SS 

Degree of 

freedom df 

Mean squares 

Ms 

Between columns SSC (c-1) MSC=SSC/(c-

1) 

Within rows SSR (r-10 MSR=SSR/(r-

1) 

Residual(ERROR) SSE (c-1)(r-1) MSE=SSE/(c-

1)(r-1) 

total SST Cr-1  

The abbreviations used in the table are: 

SSC= sum of squares between column s. 

SSR= sum of square between rows. 

SST=total sum of squares; 

SSE= sum of squares of error,  it is obtained by subtracting SSR and SSC from 

SST. 

 

TWO –WAY CLASSIFCATION:
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(c-1)=number of degrees of freedom between columns. 

(r-1)=number of degrees of freedom between rows. 

(c-1)(r-1)=number of degree of freedom for residual. 

MSC=mean of sum of squares between columns 

MSR= mean of sum of squares between rows. 

MSE= mean of sum of squares between residuals. 

It may be noted that total number of degrees of freedom are =(c-1)+(r-1)+(c-

1)(r-1)=cr-1=N-1 
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1. There are three different methods of teaching English that are used on three 

groups of students.  Test  by using analysis of variance whether this method s of 

teaching had an effect on the performance of students.  Random sample of size 4 

are taken from each group and the marks obtained by the sample students in 

each group are given below 

Marks obtained the students 

Group  A Group  B Group  C 
16 15 15 
17 15 14 
13 13 13 
18 17 14 

Total   64 Total  60 Total    56 
 

Solution: 

It  is assumed that the marks obtained by the students are distributed normally with 

means 1 , 2 , 3  for the three groups A, B and C. respectively. Further, is is assumed that 

the standard deviation of the distribution of  marks  for groups A,B and C are equal and 

constant.  This assumption implies that the mean marks of the groups may differ on 

account of using different methods of teaching, but they do not affect the dispersion 

of marks. 

PROBLEMS:
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Step 1 :  State the null and alternative hypothesis. 

H0: 321   (The means for three groups are equal). 

H1 : At least one pair is unequal. 

Step 2:  Select the test criterion to be used. 

We have to decide which test criterion or distribution should be used.  As our 

assumption involves means for three normally distributed populations.  We 

should use the F-distribution to test the hypothesis. 

 

PROCEDURE FOR ANOVA
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Step  3. Determine the rejection and non-rejection regions 

 We decide to use 0.05 level of significance.  As on one-way ANOVA test is 

always right-tail, the area in the right tail of the F-distribution curve is 0.05, 

which is the rejection region.  Now, we need to know the degrees of freedom 

for the numerator and the denominator.    Degrees of freedom for the 

numerator=k-1=3-1=2, where k is the number of groups.  Degree of freedom 

for denominator =n-k=12-3=9, where n is total number of observations.   

Step  4. Calculate the value of the test statistics by applying ANOVA. i.e., F 

Calculated 

Worksheet for calculating Variances 
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     Group  A                              Group    B                                               Group   C 

X1j (x1j- xi) (x1j- xi)
2 X2j (x2j- xi) (x2j- xi)

2 X3j (x3j- xi) (x3j- xi)
2 

16 0 0 15 0 0 15 1 1 
17 1 1 15 0 0 14 0 0 
13 -3 9 13 -2 4 13 -1 1 
18 2 4 17 2 4 14 0 0 
Total 
64 

  Total 
60 

  Tot
al 
56 

  

Mean 
16 

  Mean 
15    

  Me
an 
14 

  

The sample variances for the groups are   

S1
2 =     5.314

4

11 1

1

2

11

1




n

j

j xx
n

 

S2
2 =     28

4

11 2

1

2

22

2




n

j

j xx
n

 

S3
2 =     5.014

4

11 31

1

2

33

3




n

j

j xx
n
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We can now estimate the variance by the pooled variance method as follows; 

 
3

2

2







n

xx iij
  

The denominator is n1+n2+n3=3 

Applying the value in the formulas,  

 
3

2

2







n

xx iij
 =      

13

]151415151516[4
222



  

                                             =4(This is the variance  between the samples) 

Now, F is to be calculated . F=ratio of two variances 

= 498.1
67.2

4
2

2


sampleswithinestimateof

samplesbetweenestimateof



  
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The foregoing calculations can be summarized in the form of an ANOVA 

TABLE. 

Source of 
variation 

Sum of 
squares SS 

Degrees 
of 
freedom 
df 

Mean of 
equares  

Variance 
ratio  F 

Between 
sampling 

SSB k-1 MSB=SSB/(k-
1) 

 

Within 
sampling 

SSW n-k MSW=SSW/(n-
k) 

F=MSB/MSW 

total SST n-1   
 

Source of 
variation 

Sum of 
squares SS 

Degrees 
of 
freedom 
df 

Mean of 
equares  

Variance 
ratio  F 

Between 
sampling 

6 3-1 8/2=4  

Within 
sampling 

24 12-3 24/8=2.67 4/2.67=1.498 
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Step:  conclusion:   The critical value of  F for 2 and 9 degrees of freedom at 5 

percent level of significance is 4.26.  As the calculated value of F=1.0498 is less 

than critical values of F. 

i.e.,F calculated<F critical. The null hypothesis is accepted. 

7. A company has appointed four salesman, A,B,C and D. observed their sales 

in three seasons-summer, winter, monsoon. The figures (in Rs lakh) are given 

in the following table. 
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SALESMEN 

seasons A B C D Seasons 
totals 

summer 36 36 21 35 128 
winter 28 29 31 32 120 
monsoon 26 28 29 29 112 
Sales 
man 
totals 

90 93 81 96 360 

Using 5 percent level of significance, perform an analysis of variance on the 

above data and interpret the result. 
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Solution: 

Step 1 :  State the null and alternative hypothesis. 

H0: there is no difference in the mean sales performance of A, B, C and D in the 

three seasons. 

H1 : there is difference in the mean sales performance of A ,B, C and D in the 

three season. 

Step 2:  Select the test criterion to be used. 

 



114

 

 

We have to decide which test criterion or distribution should be used.  As our 

assumption involves means for three normally distributed populations.  We 

should use the F-distribution to test the hypothesis. 

Step 3. Determine the rejection and non-rejection regions 

 

We decide to use 0.05 level of significance.  The degrees of freedom for rows 

are (r-1) =2 and for columns are (c-1)=3  and for residual (r-1)(c-1)=2x3=6.  

Thus, we have to compare the calculated value of F with the critical value of F 

for a) 2 and 6 df at 5% l. o. s  b)3 and 6 df at 5% .l. o. s. 

Step 4; 

Coded Data for ANOVA 
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SALESMEN 

seasons A B C D Seasons 
totals 

summer 6 6 -9 5 8 
winter -2 -1 1 2 0 
monsoon -4 -2 -1 -1 -8 
Sales 
man 
totals 

0 3 -9 6 0 

 

Correction factor C=T2/N=(0)2/12=0 

Sum os squares between salesmen 

=02/3+32/3+(-92/3)+62/3=0+3+27+12=42 
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Sum of squares between seasons=82/4+02/4+(-82/4)=16+0+16=32 

Total sum of squares 

=(6)2+(-2)2+(-4)2+(6)2+(-1)2+(-2)2+(-9)2+(1)2+(-1)2+(5)2+(2)2+(-1)2 

=210 

Analysis of variance table 

Source of 
variation 

Sum  of 
squares SS 

Degree of 
freedom 
df 

Mean 
squares 
Ms 

Between 
columns 

42 4-1=3 14.00 

Within rows 32 3-1=2 16.00 
Residual(ERROR) 136 3x2=6 22.67 
total 210 12-1=11  
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We now test the hypothesis (i) that there is no difference in the sales 

performance among the four salesmen and (ii) there is no difference in the 

mean sales in the three seasons. For this, we have to first compare the 

salesman variance estimate with the residual estimate.  This is shown below: 

FA =14/22.67=0.62 

In the same manner, we have to compare the season variance estimate with 

the residual variances estimate.  This is shown below; 

FB=16/22.67=0.71 
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Step  5: 

It may noted that the critical value of F for 3 and 6 degree of freedom at 5 

percent level of significance  is 4.76.  Since the calculated value of FA is 0.62 is 

less than critical value of F.  Therefore there is no significance difference 

among salesmen. 

Also the critical value of F for 2 and 6 degree of freedom at 5 percent level of 

significance is 4.76. Since the calculated values of FB=16/22.67=0.71 is less 

than critical value of F.  Therefore there is no significance difference among 

seasons 

The overall conclusion is that the salesmen and seasons are alike in respect of 

sales. 
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Exercise problems: 

1. A company has derived three training methods to train its workers.  It 

is keen to know which of these three training methods would lead to 

greatest productivity after training.  Given below are productivity 

measures for individual workers trained by each method. 

Method 
1 

30 40 45 38 48 55 52 

Method 
2 

55 46 37 43 52 42 40 

Method 
3 

42 38 49 40 55 36 41 

 

Find out whether the three training methods lead to different levels of 

productivity at the 0.05 level of significance. 
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1. Consider the following ANOVA TABLE, based on information obtained 

for three randomly selected samples from three independent population, 

which are normally distributed with equal variances. 

Source 
of 
variance 

Sum of 
squares 
SS 

Degree 
of 
freedom  
df  

Mean 
squares 
MS 

Value of 
test 
statistics 

Between 
samples 

60 ? 20 F= 

Within 
samples 

? 14 ?  

 

(A) Complete the ANOVA table by filling in missing values. 

(B) test the null hypothesis that the means of the three population are all 

equal, using 0.01 level of significance. 
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3. The following represent the number of units of production per day turned 

out by four different workers using five different types of machines 

                                                                 Machine 

type 

Worker A B C D E TOTAL 

1 4 5 3 7 6 25 

2 5 7 7 4 5 28 

3 7 6 7 8 8 36 

4 3 5 4 8 2 22 

TOTAL 19 23 21 27 21 111 

 

On the basis of this information, can it be concluded that (i) The mean 

productivity is the same for different machines.  (ii) The workers don’t differ 

with regard to productivity. 
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MODULE– III
ORDINARY DIFFERENTIAL EQUATIONS
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1. The important methods of solving ordinary differential equations of 

first order numerically are as follows 

1) Taylors series method 

2) Euler’s method 

3) Modified Euler’s method of successive approximations 

4) Runge- kutta method 

To describe various numerical methods for the solution of ordinary differential 

eqn’s,we consider the general 1st order differential eqn 

dy/dx=f(x,y)-------(1) 

with the initial condition y(x0)=y0 
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The methods will yield the solution in one of the two forms:  

i) A series for y in terms of powers of x,from which the value of y can be 

obtained by direct substitution. 

ii ) A set of tabulated values of y corresponding to different values of x 

The methods of Taylor and picard belong to class(i) 

The methods of Euler, Runge - kutta method, Adams, Milne etc, belong to class 

(ii) 
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TAYLOR’S SERIES METHOD 

To find the numerical solution of the differential equation  

 (1) 

With the initial condition (2) 

can be expanded about the point  in a Taylor’s series in powers of   as 

(3) 

In equ3,  is known from I.C equ2. The remaining coefficients 

etc are obtained by successively differentiating equ1 and evaluating at . 

Substituting these values in equ3, at any point can be calculated from equ3. 

Provided  is small. 

When , then Taylor’s series equ3 can be written as 

(4) 

 

( , )
dy

f x y
dx



0 0( )y x y

( )y x 0x 0( )x x

2

0 0 0
0 0 0 0

( ) ( ) ( )
( ) ( ) ( ) ( ) ............ ( )

1 2! !

n
nx x x x x x

y x y x y x y x y x
n

  
     

0( )y x
0 0 0( ), ( ),......... ( )ny x y x y x 

0x

( )y x

0h x x 

0 0x 

2

( ) (0) . (0) (0) ...... (0) ........
2! !

n
nx x

y x y x y y y
n

      
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1. Using Taylor’s expansion evaluate the integral of , at a)  

b) compare the numerical solution obtained with exact solution . 

Sol: Given equation can be written as  

 Differentiating repeatedly w.r.t to ‘x’ and evaluating at  

 

  

 

2 3 , (0) 0xy y e y    0.2x 

2 3 , (0) 0xy e y y  

0x 

0

0

0

0

( ) 2 3 , (0) 2 (0) 3 2(0) 3(1) 3

( ) 2 3 , (0) 2 (0) 3 2(3) 3 9

( ) 2. ( ) 3 , (0) 2 (0) 3 2(9) 3 21

( ) 2. ( ) 3 , (0) 2(21) 3 45

( ) 2. 3 , (0) 2(45) 3

x

x

x

iv x iv

v iv x v

y x y e y y e

y x y e y y e

y x y x e y y e

y x y x e y e

y x y e y

       

         

         

    

    0 90 3 93e   
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In general,  or  

The Taylor’s series expansion of  about  is 

  

Substituting the values of  

  

  equ1 

Now put  in equ1 

 

( 1) ( )( ) 2. ( ) 3n n xy x y x e   ( 1) ( ) 0(0) 2. (0) 3n ny y e  

( )y x 0 0x 

2 3 4 5

( ) (0) (0) (0) (0) (0) (0) ....
2! 3! 4! 5!

x x x x
y x y xy y y y y          

(0), (0), (0), (0),..........y y y y  

2 3 4 59 21 45 93
( ) 0 3 ........

2 6 24 120
y x x x x x x      

2 3 4 59 7 15 31
( ) 3 ........

2 2 8 40
y x x x x x x     

0.1x 
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Now put  in equ1 

  

  

 

2 3 4 59 7 15 31
(0.1) 3(0.1) (0.1) (0.1) (0.1) (0.1)

2 2 8 40
y      0.34869

0.2x 

2 3 4 59 7 15 31
(0.2) 3(0.2) (0.2) (0.2) (0.2) (0.2)

2 2 8 40
y      0.811244

2 3 4 59 7 15 31
(0.3) 3(0.3) (0.3) (0.3) (0.3) (0.3)

2 2 8 40
y      1.41657075
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Analytical Solution: 

 The exact solution of the equ  with  can be found as follows 

 Which is a linear in y. 

Here   

I.F =  

General solution is  

where   

The particular solution is  or  

 

2 3 xdy
y e

dx
  (0) 0y 

2 3 xdy
y e

dx
 

2, 3 xP Q e  

2
24

pdx dx

e e
e


  

2 2. 3 . 3x x x xy e e e dx c e c      

23 x xy e ce    0, 0x y  0 3 c   3c 

23 3x xy e e  2( ) 3 3x xy x e e 



130

 

 

Put in the above particular solution, 

 

 

Similarly put  

   

put  

   

 

0.1x 

0.2 0.13. 3 0.34869y e e  

0.2x 

0.4 0.23 3 0.811265y e e  

0.3x 

0.6 0.33 3 1.416577y e e  
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EULER’S METHOD 

It is the simplest one-step method and it is less accurate. Hence it has a limited 

application. 

Consider the differential equation   = f(x,y)          (1) 

     With  y(x0) = y0(2) 

Consider the first two terms of the Taylor’s expansion of y(x) at x = x0 

               y(x) = y(x0) + (x – x0) y1(x0)                 (3) 

from equation (1) y1(x0) = f(x0,y(x0)) = f(x0,y0) 

 

dy

dx
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Substituting in equation (3) 

 y(x) = y(x0) + (x – x0) f(x0,y0) 

At x = x1, y(x1) = y(x0) + (x1 – x0) f(x0,y0) 

 y1 = y0 + h f(x0,y0)    where h = x1 – x0 

Similarly at x = x2 ,  y2 = y1 + h f(x1,y1), 

Proceeding as above, yn+1 = yn + h f(xn,yn) 

This is known as Euler’s Method 

 




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Modified Euler’s method 

 

It is given by  

Working rule : 

i)Modified Euler’s method 

 

ii) When can be calculated from Euler’s method 

 

     
 1

1 1 1
/ 2 , ,1 , 1,2....., 0,1.....

ii

k k k k k k
y y h f x y f x i ki



  
     
 

     
 1

1 1 1
/ 2 , ,1 , 1,2....., 0,1.....

ii

k k k k k k
y y h f x y f x i ki



  
     
 

1i  0

1ky 
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iii) K=0, 1……… gives number of iteration.  

gives number of times, a particular iteration k is repeated 

Suppose consider dy/dx=f(x, y) -------- (1) with y(x0) =y0----------- (2) 

To find y(x1) =y1 at x=x1=x0+h 

Now take k=0 in modified Euler’s method 

We get ……………………… (3) 

 

1,2...i 

      1 1

1 0 0 0 1 1/ 2 , ,
i

y y h f x y f x y
   

 
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Taking i=1, 2, 3...k+1 in eqn (3), we get 

 (By Euler’s method) 

 

 

------------------------ 

 

 

   0

1 0 0 0/ 2 ,y y h f x y    

      1 0

1 0 0 0 1 1/ 2 , ,y y h f x y f x y   
 

      2 1

1 0 0 0 1 1/ 2 , ,y y h f x y f x y   
 

      1

1 0 0 0 1 1/ 2 , ,
k k

y y h f x y f x y
    

 
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If two successive values of are sufficiently close to one another, we will 

take the common value as  

We use the above procedure again 

1)  using modified Euler’s method find the approximate value of when  

given that  

sol:  Given  

Here  

Take h = 0.1 which is sufficiently small 

Here  

The formula for modified Euler’s method is given by 

   

 

 

   1

1 1,
k k

y y


   2 2 1y y x y x h  

x 0.3x 

 / 0 1dy dx x y and y  

 / 0 1dy dx x y and y  

  0 0, , 0, 1f x y x y x and y   

0 1 0 2 1 3 20, 0.1, 0.2, 0.3x x x h x x h x x h         

        1

1 1 1/ 2 , 1
i i

k k k k k ky y h f x y f x y


  
     
 
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Step1: To find y1= y(x1) = y (0.1) 

                  Taking k = 0 in eqn(1) 

 

 when     i = 1  in eqn (2) 

 

        First apply Euler’s method to calculate  = y1 

 

 

        1

1 0 0 0 1 1/ 2 , 2
i i

ky y h f x y f x y



     
 

      0

1 0 0 0 1 1/ 2 , ,
i

y y h f x y f x y   
 

(0)

1
y

    0

1 0 0 0,y y h f x y 
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                = 1+(0.1)f(0.1) 

                = 1+(0.1) 

                = 1.10 

 

 

             = 1+0.1/2[f(0,1) + f(0.1,1.10) 

              = 1+0.1/2[(0+1)+(0.1+1.10)] 

              = 1.11 

 

 0 0 1 10, 1, 0.1, 0 1.10now x y x y     

       1 0

1 0 0 0 1 10.1/ 2 , ,y y f x y f x y   
 
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When i=2 in eqn (2) 

 

             = 1+0.1/2[f(0.1)+f(0.1,1.11)] 

             = 1 + 0.1/2[(0+1)+(0.1+1.11)] 

             = 1.1105 

 

= 1+0.1/2[f(0,1)+f(0.1 , 1.1105)] 

             = 1+0.1/2[(0+1)+(0.1+1.1105)] 

             = 1.1105 

Since  

 y1 = 1.1105 

 

      2 1

1 0 0 0 1 1/ 2 , ,y y h f x y f x y   
 

      3 2

1 0 0 0 1 1/ 2 , ,y y h f x y f x y   
 

   2 3

1 1y y


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Step:2    To find y2 = y(x2) = y(0.2) 

Taking k = 1 in eqn (1) , we get  

 

                               i = 1,2,3,4,….. 

For i = 1 

 

        1

2 1 1 1 2 2/ 2 , , 3
i i

y y h f x y f x y
    

 
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is to be calculate from   Euler’s method  

 

              = 1.1105 + (0.1) f(0.1 , 1.1105) 

              = 1.1105+(0.1)[0.1+1.1105] 

               = 1.2316 

  =  

              = 1.1105 +0.1/2[0.1+1.1105+0.2+1.2316] 

              = 1.2426 

 

      1 0

2 1 1 1 2 2/ 2 , ,y y h f x y f x y   
 

 0

2y

   0

2 1 1 1,y y h f x y 


(1)

2
y    1.1105 0.1/ 2 0.1,1.1105 0.2,1.2316f f   
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                = 1.1105 + 0.1/2[f(0.1 , 1.1105) , f(0.2 . 1.2426)] 

                 = 1.1105 + 0.1/2[1.2105 + 1.4426] 

                 = 1.1105 + 0.1(1.3266) 

                 = 1.2432 

 

                = 1.1105+0.1/2[f(0.1,1.1105)+f(0.2 , 1.2432)] 

                = 1.1105+0.1/2[1.2105+1.4432)] 

                = 1.1105 + 0.1(1.3268) 

                = 1.2432 

          Since  

           Hence y2 = 1.2432 

 

      2 1

2 1 1 1 2 2/ 2 ,y y h f x y f x y   
 

      3 2

2 1 1 1 2 2/ 2 ,y y h f x y f x y   
 

   3 3

2 2y y
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Step:3 

To find y3 = y(x3) = y y(0.3) 

            Taking k =2 in eqn (1) we get  

 

    For  i = 1 , 

 

 is to be evaluated from Euler’s method . 

 

        1 1

3 2 2 2 3 3/ 2 , , 4
i

y y h f x y f x y
    

 

      1 0

3 2 2 2 3 3/ 2 , ,y y h f x y f x y   
 

 0

3y



144

 

 

 

              = 1.2432 +(0.1) f(0.2 , 1.2432)        

              = 1.2432+(0.1)(1.4432) 

              = 1.3875 

  = 1.2432+0.1/2[f(0.2 , 1.2432)+f(0.3, 1.3875)] 

             = 1.2432  + 0.1/2[1.4432+1.6875] 

              = 1.2432+0.1(1.5654) 

               = 1.3997 

 

   0

3 2 2 2,y y h f x y 

  1

3y
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         = 1.2432+0.1/2[1.4432+(0.3+1.3997)] 

         = 1.2432+ (0.1) (1.575) 

         = 1.4003 

 

         = 1.2432+0.1/2[f(0.2 , 1.2432)+f(0.3 , 1.4003)] 

         = 1.2432 + 0.1(1.5718) 

          = 1.4004 

 

      2 1

3 2 2 2 3 3/ 2 , ,y y h f x y f x y   
 

      3 2

3 2 2 2 3 3/ 2 , ,y y h f x y f x y   
 
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         = 1.2432 + 0.1/2[1.4432+1.7004] 

         = 1.2432+(0.1)(1.5718) 

          =  1.4004 

        Since  

        Hence    The value of y at x = 0.3 is 1.4004 

 

      4 3

3 2 2 2 3 3/ 2 , ,y y h f x y f x y   
 

   3 4

3 3y y

3 1.4004y  
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Runge – Kutta Methods 

I. Second order R-K Formula 

yi+1 = yi+1/2 (K1+K2), 

Where K1 = h (xi, yi) 

 K2 = h (xi+h, yi+k1) 

For i= 0,1,2------- 
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II. Third order R-K Formula 

yi+1 = yi+1/6 (K1+4K2+ K3), 

Where K1 = h (xi, yi) 

 K2 = h (xi+h/2, y0+k1/2) 

 K3 = h (xi+h, yi+2k2-k1) 

For i= 0,1,2------- 
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III. Fourth order R-K Formula 

yi+1 = yi+1/6 (K1+2K2+ 2K3+K4), 

Where K1 = h (xi, yi) 

 K2 = h (xi+h/2, yi+k1/2) 

 K3 = h (xi+h/2, yi+k2/2) 

 K4 = h (xi+h, yi+k3) 

For i= 0,1,2------- 
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1. Using Runge-Kutta method of second order, find from  =  , y(2)=2 ,  

h = 0.25 . 

Sol:  Given      =    , y(2) = 2 . 

Here f(x, y) =  , x0 = 0 , y0=2 and h = 0.25 

 x1 = x0+h = 2+0.25 = 2.25 , x2 = x1+h =2.25+0.25 = 2.5 

 By R-K method of second order, 

 

 

 2.5y
dy

dx

x y

x



dy

dx

x y

x



x y

x





     1 1 2 1 11/ 2 , , , 0,1.... 1i i i iy y k k k hf x h y k i        
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Step -1:- 

To find y(x1)i.e y(2.25) by second order R - K method taking i=0 in eqn(i) 

We have  

Where k1= hf (x0,y0 ), k2= hf (x0+h,y0+k1) 

f (x0,y0 )=f(2,2)=2+2/2=2 

k1=hf (x0,y0 )=0.25(2)=0.5 

k2= hf (x0+h,y0+k1)=(0.25)f(2.25,2.5) 

   =(0.25)(2.25+2.5/2.25)=0.528 

y1=y(2.25)=2+1/2(0.5+0.528) 

=2.514 

 

 1 0 1 2

1

2
y y k k  


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Step2: 

To find y(x2) i.e., y(2.5) 

i=1 in (1) 

x1=2.25,y1=2.514,and h=0.25 

y2=y1+1/2(k1+k2) 

where  k1=h f((x1,y1 )=(0.25)f(2.25,2.514) 

=(0.25)[2.25+2.514/2.25]=0.5293 

 

=(0.25)[2.5+2.514+0.5293/2.5] 

    =0.55433 

 (2.5)=2.514+1/2(0.5293+0.55433) 

     =3.0558 

y =3.0558 when x = 2.5 

 

        2 0 0 1, 0.1 0.1,1 0.1 0.1 0.9 0.09k h f x h y k f        

2y y


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9.using Runge-kutta method of order 4,compute y(1.1) for the eqn 

y1=3x+y2,y(1)=1.2 h = 0.05 

Ans:1.7278 

10. using Runge-kutta method of order 4,compute y(2.5) for the eqn dy/dx = 

x+y/x, y(2)=2 [hint h = 0.25(2 steps)] 

Ans:3.058 

 
 



MODULE– IV
PARTIAL DIFFERENTIAL EQUATIONS 

AND CONCEPTS IN SOLUTION TO 

BOUNDARY VALUE PROBLEMS

154
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Introduction 
The concept of a differential equation to include equations that involve partial 

derivatives, not just ordinary ones.  Solutions to such equations will involve 

functions not just of one variable, but of several variables.  Such equations arise 

naturally, for example, when one is working with situations that involve 

positions in space that vary over time.  To model such a situation, one needs to 

use functions that have several variables to keep track of the spatial dimensions 

and an additional variable for time. 
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Examples of some important PDEs: 
(1) 

2

2
2

2

2

x

u
c

t

u








    One-dimensional wave equation 

 
(2) 

2

2
2

x

u
c

t

u








    One-dimensional heat equation 

 
(3) 0

2

2

2

2











y

u

x

u   Two-dimensional Laplace equation 

 
(4) ),(

2

2

2

2

yxf
y

u

x

u









   Two-dimensional Poisson equation 
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Partial differential equations: An equation involving partial derivatives of one 
dependent variable with respective more than one independent variables. 
 
Notations which we use in this unit: 
 

𝑝 =
𝜕𝑧

𝜕𝑥
  ,𝑞 =

𝜕𝑧

𝜕𝑦
, 𝑟 =

𝜕2𝑧

𝜕𝑥 2, =
𝜕2𝑧

𝜕𝑥  𝜕𝑦
 , t= 

𝜕2𝑧

 𝜕𝑦 2 , 

 
Formation of partial differential equation: 
 
A partial differential equation of given curve can be formed in two ways 
           1. By eliminating arbitrary constants 
           2. By eliminating arbitrary functions 
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Problems 
Form a partial differential equation by 
eliminating a,b,c from 

𝒙𝟐

𝒂𝟐
+

𝒚𝟐

𝒃𝟐
+

𝒛𝟐

𝒄𝟐
= 𝟏 

 

Given 
𝑥2

𝑎2 +
𝑦2

𝑏2 +
𝑧2

𝑐2 = 1 

            Differentiating partially w.r.to x and y, we have 
1

𝑎2
 2𝑥 +

1

𝑐2 (2𝑧)
𝜕𝑧

𝜕𝑥
=o  

1

𝑎2
 𝑥 +

1

𝑐2 (𝑧) 𝑝  =o  _______(1)  

 



159

 

 

And   
1

𝑏2
 2𝑥   +  

1

𝑐2 (2𝑧)
𝜕𝑧  

𝜕𝑥
=o 

 
1

𝑏2
 𝑦 +

1

𝑐2 (𝑧) q = o _______(2)  

              Diff (1) partially w.r.to x, we have 
1

𝑎2 +
𝑝

𝑐2

𝜕𝑧

𝜕𝑥
+

𝑧

𝑐2

𝜕𝑝

𝜕𝑥
=o  ______(3) 

 
1

𝑎2 +
𝑝2

𝑐2  +
𝑧

𝑐2 𝑟 =O   

              Multiply this equation by x and then subtracting (1) from it 
1

𝑐2
 𝑥𝑧𝑟 + 𝑥𝑝2 − 𝑝𝑧 = 0 
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Form a partial differential equation by eliminating the constants from 

(𝒙 − 𝒂)𝟐 + (𝒚 − 𝒃)𝟐 = 𝒛𝟐𝒄𝒐𝒕𝟐α, where α is a parameter 

Given (𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 = 𝑧2𝑐𝑜𝑡2α ___________(1) 
                   Differentiating partially w.r.to x and y, we have 
2 (𝑥 − 𝑎)+0 = 2 z p𝑐𝑜𝑡2𝛼 
                                    (𝑥 − 𝑎) = Zp𝑐𝑜𝑡2𝛼 
And 0+2(y-b) = 2zq𝑐𝑜𝑡2𝛼 
                                         (Y-b) = zq𝑐𝑜𝑡2𝛼 
                          Substituting the values of (x-a) and (y-b) in (1),we get 

(𝑧𝑝𝑐𝑜𝑡2𝛼)2 + (𝑧𝑞𝑐𝑜𝑡2𝛼)2 = 𝑧2𝑐𝑜𝑡2𝛼 
 𝑝2 + 𝑞2 (𝑐𝑜𝑡2𝛼)2 = 𝑐𝑜𝑡2𝛼 

𝑝2 + 𝑞2 = 𝑡𝑎𝑛2𝛼 
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Linear partial differential equations of first order : 
Lagrange’s linear equation:  An equation of the form Pp + Qq = R is called 
Lagrange’s linear  equation. 

To solve Lagrange’s linear equation consider auxiliary equation 
𝑑𝑥

𝑃
 = 

𝑑𝑦

𝑄
 = 

𝑑𝑧

𝑅
 

 
Non-linear partial differential equations of first order : 
 
Complete Integral : A solution in which the number of arbitrary constants is 
equal to the number of independent variables is called complete integral or 
complete solution of the given equation. 
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Particular Integral: A solution obtained by giving particular values to the 
arbitrary constants in the complete integral is called a particular integral. 
 
Singular Integral: let f(x,y,z,p,q) = 0 be a partial differential equation whose 
complete integral is    
To solve non-linear pde we use Charpit’s Method : 
 
There are six types of non-linear partial differential equations of first order as 
given below. 
1. f (p,q) = 0 
     2. f (z,p,q) = 0 
     3. f1 (x,p) = f2 (y,q) 
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     4. z = px +qy + f(p,q) 
    5. f(xm p, ynq) = 0 and f(my p, ynq,z) = 0 
6. f (pzm, qzm) = 0 and f1(x,pzm) = f2(y,qzm) 
Charpit’s Method: 

We present here a general method for solving non-linear partial differential 
equations. This is known as Charpit's method. 

LetF(x,y,u, p.q)=0be a general nonlinear partial differential equation of first-
order. Since u depends on x and y, we have  

du=uxdx+uydy = pdx+qdy where p=ux=
x

u



 , q = uy=
y

u





 
If we can find another relation between x,y,u,p,q such that 

f(x,y,u,p,q)=0then we can solve for p and q and substitute them in equation This 
will give the solution provided  is integrable.  
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To determine f, differentiate w.r.t. x and y so that  
0




























x

q

q

F

x

p

p

F
p

u

F

x

F       

0





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Adding these two equations and using  
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and rearranging the terms, we get  
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We get the auxiliary system of equations  
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An Integral of these equations, involving p or q or both, can be taken as the 
required equation.  
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Problems 

solve   𝒙𝟐 − 𝒚𝟐 − 𝒚𝒛 𝒑 +  𝒙𝟐 − 𝒚𝟐 −

𝒛𝒙 𝒒 = 𝒛(𝒙 − 𝒚) 
Here  
               P= x2 − y2 − yz , Q =
 x2 − y2 − zx , R = z(x − y) 
              The  subsidiary  equations  are  

dx

 x2−y2−yz 
=

dy

 x2−y2−zx 
=

dz

z(x−y)
 

                Using  1,-1,0 and  x,-y,0  as  
multipliers  ,  we  have 

            .      
dz

z x−y 
=

dx−dy

z x−y 
=

x dx−ydy

 x2−y2)(x−y 
 

               From the  first  two rations  0f    
,we  have 
dz= dx-dy 
               integrating  , z=x-y-c1    or  x-
y-z = c1 
                now  taking  first  and  last  
ratios  in (2)  ,we  get 
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For this next PDE, we create a mathematical model of how heat spreads, or 

diffuses through an object, such as a metal rod, or a body of water.  To do this 

we take advantage of our knowledge of vector calculus and the divergence 

theorem to set up a PDE that models such a situation.  Knowledge of this 

particular PDE can be used to model situations involving many sorts of diffusion 

processes, not just heat.  For instance the PDE that we will derive can be used 

to model the spread of a drug in an organism, of the diffusion of pollutants in a 

water supply. 

 

Heat Equation
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Solving the Heat Equation in the one-dimensional case 

 

We simplify our heat diffusion modeling by considering the specific case of heat 

flowing in a long thin bar or wire, where the cross-section is very small, and 

constant, and insulated in such a way that the heat flow is just along the length 

of the bar or wire.  In this slightly contrived situation, we can model the heat 

flow by keeping track of the temperature at any point along the bar using just 

one spatial dimension, measuring the position along the bar.   

 

This means that the function, u, that keeps track of the temperature, just 

depends on x, the position along the bar, and t, time, and so the heat equation 

from the previous section becomes the so-called one-dimensional heat 

equation: 

 

(1) 
2

2
2

x

u
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t

u




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

  

 



MODULE– IV
MAJOR EQUATION TYPES 

ENCOUNTERED IN ENGINEERING 

AND PHYSICAL SCIENCES

169



170

 

 

For the rest of this introduction to PDEs we will explore PDEs representing some 
of the basic types of linear second order PDEs: heat conduction and wave 
propagation.  These represent two entirely different physical processes: the 
process of diffusion, and the process of oscillation, respectively.  The field of 
PDEs is extremely large, and there is still a considerable amount of 
undiscovered territory in it, but these two basic types of PDEs represent the 
ones that are in some sense, the best understood and most developed of all of 
the PDEs.  Although there is no one way to solve all PDEs explicitly, the main 
technique that we will use to solve these various PDEs represents one of the 
most important techniques used in the field of PDEs, namely separation of 
variables (which we saw in a different form while studying ODEs).  The essential 
manner of using separation of variables is to try to break up a differential 
equation involving several partial derivatives into a series of simpler, ordinary 
differential equations.   
 

Wave Equation
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Let’s go back to the original idea – start by breaking up the vibrating string into 
little segments, examine each such segment using Newton’s maF  equation, and 
finally figure out what happens as we let the length of the little string segment 
dwindle to zero, i.e. examine the result as x goes to 0.  Do you see any limit 
definitions of derivatives kicking around in equation (7)?  As x goes to 0, the 
left-hand side of the equation is in fact just equal to 

2

2

x

u

x

u

x 


















 , so the whole thing 

boils down to: 
 

(8) 
2

2

2

2

t

u

Tx

u








   

 
which is often written as  
 

(9) 
2

2
2

2

2
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u
c

t

u








  

 
by bringing in a new constant 



T
c 2  (typically written with 2c , to show that it’s a 

positive constant). 
 
This equation, which governs the motion of the vibrating string over time, is 
called the one-dimensional wave equation.  It is clearly a second order PDE, 
and it’s linear and homogeneous.  
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Solution of the Wave Equation by Separation of Variables 
 
There are several approaches to solving the wave equation.  The first one we 
will work with, using a technique called separation of variables, again, 
demonstrates one of the most widely used solution techniques for PDEs.  The 
idea behind it is to split up the original PDE into a series of simpler ODEs, each 
of which we should be able to solve readily using tricks already learned.  The 
second technique, which we will see in the next section, uses a transformation 
trick that also reduces the complexity of the original PDE, but in a very different 
manner.  This second solution is due to Jean Le Rond D’Alembert (an 18th 
century French mathematician), and is called D’Alembert’s solution, as a result. 
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First, note that for a specific wave equation situation, in addition to the actual 
PDE, we will also have boundary conditions arising from the fact that the 
endpoints of the string are attached solidly, at the left end of the string, when x 
= 0 and at the other end of the string, which we suppose has overall length l.   
Let’s start the process of solving the PDE by first figuring out what these 
boundary conditions imply for the solution function, ),( txu .   
 
Answer: for all values of t, the time variable, it must be the case that the vertical 
displacement at the endpoints is 0, since they don’t move up and down at all, 
so that  
 
 (1) 0),0( tu and 0),( tlu   for all values of t 
are the boundary conditions for our wave equation.  These will be key when we 
later on need to sort through possible solution functions for functions that 
satisfy our particular vibrating string set-up.   
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You might also note that we probably need to specify what the shape of the 
string is right when time t = 0, and you’re right - to come up with a particular 
solution function, we would need to know )0,(xu .  In fact we would also need to 
know the initial velocity of the string, which is just )0,(xut .  These two 
requirements are called the initial conditions for the wave equation, and are 
also necessary to specify a particular vibrating string solution.  For instance, as 
the simplest example of initial conditions, if no one is plucking the string, and 
it’s perfectly flat to start with, then the initial conditions would just be 0)0,( xu  (a 
perfectly flat string) with initial velocity, 0)0,( xut .  Here, then, the solution 
function is pretty unenlightening – it’s just 0),( txu , i.e. no movement of the string 
through time.   
 
To start the separation of variables technique we make the key assumption that 
whatever the solution function is, that it can be written as the product of two 
independent functions, each one of which depends on just one of the two 
variables, x or t.  Thus, imagine that the solution function, ),( txu  can be written as  
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(2) )()(),( tGxFtxu   
 
whereF, and G, are single variable functions of x and t respectively.  
Differentiating this equation for ),( txu twice with respect to each variable yields  
 
 (3) )()(

2

2

tGxF
x

u




 and )()(
2

2

tGxF
t

u




  

 
Thus when we substitute these two equations back into the original wave 
equation, which is 
 

(4) 
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then we get 
 

(5) )()()()( 2

2

2
2

2

2

tGxFc
x

u
ctGxF

t

u





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

  

 
Here’s where our separation of variables assumption pays off, because now if 
we separate the equation above so that the terms involving F and its second 
derivative are on one side, and likewise the terms involving G and its derivative 
are on the other, then we get 
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Here’s where our separation of variables assumption pays off, because now if 
we separate the equation above so that the terms involving F and its second 
derivative are on one side, and likewise the terms involving G and its derivative 
are on the other, then we get 
 
 (6) 

)(

)(

)(

)(
2 xF

xF

tGc

tG 


  

 
Now we have an equality where the left-hand side just depends on the variable 
t, and the right-hand side just depends on x.  Here comes the critical 
observation - how can two functions, one just depending on t, and one just on 
x, be equal for all possible values of t and x?  The answer is that they must each 
be constant, for otherwise the equality could not possibly hold for all possible 
combinations of t and x.  Aha!  Thus we have  
 
 (7) k

xF

xF

tGc

tG







)(

)(

)(

)(
2

 

 
wherek is a constant.  First let’s examine the possible cases for k.   
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Case One:  k = 0 
 
Suppose k equals 0.  Then the equations in (7) can be rewritten as   
 
 (8) 0)(0)( 2  tGctG and 0)(0)(  xFxF  
 
yielding with very little effort two solution functions for F and G: 
 
 (9) battG )( and rpxxF )(  
 
wherea,b, p and r, are constants (note how easy it is to solve such simple ODEs 
versus trying to deal with two variables at once, hence the power of the 
separation of variables approach). 
 
Putting these back together to form )()(),( tGxFtxu  , then the next thing we need to 
do is to note what the boundary conditions from equation (1) force upon us, 
namely that  
 
 (10) 0)()0(),0(  tGFtu and 0)()(),(  tGlFtlu   for all values of t 
 



178

 

 

Unless 0)( tG  (which would then mean that 0),( txu , giving us the very dull solution 
equivalent to a flat, unplucked string) then this implies that  
 

(11) 0)()0(  lFF .   
 

But how can a linear function have two roots?  Only by being identically equal 
to 0, thus it must be the case that 0)( xF .  Sigh, then we still get that 0),( txu , and 
we end up with the dull solution again, the only possible solution if we start 
with k = 0. 
 
So, let’s see what happens if… 
 
 



179

 

 

Case Two:  k > 0 
 
So now if k is positive, then from equation (7) we again start with 
 
 (12) )()( 2 tGkctG   
and  

(13) )()( xkFxF   
 
Try to solve these two ordinary differential equations.  You are looking for 
functions whose second derivatives give back the original function, multiplied 
by a positive constant.  Possible candidate solutions to consider include the 
exponential and sine and cosine functions.  Of course, the sine and cosine 
functions don’t work here, as their second derivatives are negative the original 
function, so we are left with the exponential functions.   
 
Let’s take a look at (13) more closely first, as we already know that the 
boundary conditions imply conditions specifically for )(xF , i.e. the conditions in 
(11).  Solutions for )(xF  include anything of the form 
 

(14) xAexF )(  
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where k2  and A is a constant.  Since could be positive or negative, and since 
solutions to (13) can be added together to form more solutions (note (13) is an 
example of a second order linear homogeneous ODE, so that the superposition 
principle holds), then the general solution for (13) is 
 

(14) xx BeAexF  )(  
 
where now A and  B are constants and k .  Knowing that 0)()0(  lFF , then 
unfortunately the only possible values of A  and  B  that work are 0 BA , i.e. that 

0)( xF .  Thus, once again we end up with 0)(0)()(),(  tGtGxFtxu , i.e. the dull solution 
once more.  Now we place all of our hope on the third and final possibility for k, 
namely… 
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Case Three:  k < 0 
 
So now we go back to equations (12) and (13) again, but now working with k as 
a negative constant. So, again we have 
 
 (12) )()( 2 tGkctG   
and  

(13) )()( xkFxF   
 
Exponential functions won’t satisfy these two ODEs, but now the sine and 
cosine functions will.  The general solution function for (13) is now 
 

(15) )sin()cos()( xBxAxF    
 

where again A and B are constants and now we have k2 .  Again, we consider 
the boundary conditions that specified that 0)()0(  lFF .  Substituting in 0 for x in 
(15) leads to 
 

(16) 0)0sin()0cos()0(  ABAF  
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so that )sin()( xBxF  .  Next, consider 0)sin()(  lBlF  .  We can assume that B isn’t equal 
to 0, otherwise 0)( xF  which would mean that 0)(0)()(),(  tGtGxFtxu , again, the trivial 
unplucked string solution.  With 0B , then it must be the case that 0)sin( l  in 
order to have 0)sin( lB  .  The only way that this can happen is for l to be a 
multiple of  .  This means that  
 
 (17)  nl  or

l

n
    (where n is an integer) 

 
This means that there is an infinite set of solutions to consider (letting the 
constant B be equal to 1 for now), one for each possible integer n.  
 

(18) 







 x

l

n
xF


sin)(  

 
Well, we would be done at this point, except that the solution function 

)()(),( tGxFtxu  and we’ve neglected to figure out what the other function, )(tG , equals.  
So, we return to the ODE in (12): 
 
 (12) )()( 2 tGkctG   
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where, again, we are working with k, a negative number.  From the solution for 
)(xF  we have determined that the only possible values that end up leading to 

non-trivial solutions are with 
2

2










l

n
k


 forn some integer.  Again, we get an infinite set of solutions for (12) 

that can be written in the form  
 

(19) )sin()cos()( tDtCtG nn    
 
whereC and D are constants and 

l

cn
ckcn


  , where n is the same integer that 

showed up in the solution for )(xF  in (18) (we’re labeling   with a subscript “n” to 
identify which value of n is used). 
 



184

 

 

Now we really are done, for all we have to do is to drop our solutions for )(xF and
)(tG into )()(),( tGxFtxu  , and the result is 

 
 (20)    








 x

l

n
tDtCtGxFtxu nnn


 sin)sin()cos()()(),(  

 
where the integer n that was used is identified by the subscript in ),( txun  and n , 
and C and D are arbitrary constants. 
 
At this point you should be in the habit of immediately checking solutions to 
differential equations.  Is (20) really a solution for the original wave equation 
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and does it actually satisfy the boundary conditions 0),0( tu  and 0),( tlu for all values 
of t 
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The solution given in the last section really does satisfy the one-dimensional 
wave equation.  To think about what the solutions look like, you could graph a 
particular solution function for varying values of time, t, and then examine how 
the string vibrates over time for solution functions with different values of n 
and constants C and D.  However, as the functions involved are fairly simple, it’s 
possible to make sense of the solution ),( txun functions with just a little more 
effort.   
For instance, over time, we can see that the  )sin()cos()( tDtCtG nn    part of the 
function is periodic with period equal to 

n

2 .  This means that it has a frequency 

equal to 




2

n  cycles per unit time.  In music one cycle per second is referred to as 

one hertz.  Middle C on a piano is typically 263 hertz (i.e. when someone 
presses the middle C key, a piano string is struck that vibrates predominantly at 
263 cycles per second), and the A above middle C is 440 hertz.  The solution 
function when n is chosen to equal 1 is called the fundamental mode (for a 
particular length string under a specific tension).  The other normal modes are 
represented by different values of n.  For instance one gets the 2nd and 3rd 
normal modes when n is selected to equal 2 and 3, respectively.  The 
fundamental mode, when n equals 1 represents the simplest possible 
oscillation pattern of the string, when the whole string swings back and forth in 
one wide swing.  In this fundamental mode the widest vibration displacement 
occurs in the center of the string (see the figures below).   
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Thus suppose a string of length l, and string mass per unit length  , is tightened 
so that the values of T, the string tension, along the other constants make the 
value of 




l

T

2
1  equal to 440.  Then if the string is made to vibrate by striking or 

plucking it, then its fundamental (lowest) tone would be the A above middle C.   
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Now think about how different values of n affect the other part of )()(),( tGxFtxun  , 
namely 








 x

l

n
xF


sin)( .  Since 








x

l

n
sin function vanishes whenever x equals a multiple 

of 
n

l , then selecting different values of n higher than 1 has the effect of 

identifying which parts of the vibrating string do not move.  This has the affect 
musically of producing overtones, which are musically pleasing higher tones 
relative to the fundamental mode tone.  For instance picking n = 2 produces a 
vibrating string that appears to have two separate vibrating sections, with the 
middle of the string standing still.  This mode produces a tone exactly an octave 
above the fundamental mode.  Choosing n = 3 produces the 3rd normal mode 
that sounds like an octave and a fifth above the original fundamental mode 
tone, then 4th normal mode sounds an octave plus a fifth plus a major third, 
above the fundamental tone, and so on.   
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It is this series of fundamental mode tones that gives the basis for much of the 
tonal scale used in Western music, which is based on the premise that the 
lower the fundamental mode differences, down to octaves and fifths, the more 
pleasing the relative sounds.  Think about that the next time you listen to some 
Dave Matthews! 
 
Finally note that in real life, any time a guitar or violin string is caused to 
vibrate, the result is typically a combination of normal modes, so that the 
vibrating string produces sounds from many different overtones.  The particular 
combination resulting from a particular set-up, the type of string used, the way 
the string is plucked or bowed, produces the characteristic tonal quality 
associated with that instrument.  The way in which these different modes are 
combined makes it possible to produce solutions to the wave equation with 
different initial shapes and initial velocities of the string.  This process of 
combination involves Fourier Series which will be covered at the end of Math 
21b (come back to see it in action!)  
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Finally, finally, note that the solutions to the wave equations also show up 
when one considers acoustic waves associated with columns of air vibrating 
inside pipes, such as in organ pipes, trombones, saxophones or any other wind 
instruments (including, although you might not have thought of it in this way, 
your own voice, which basically consists of a vibrating wind-pipe, i.e. your 
throat!).  Thus the same considerations in terms of fundamental tones, 
overtones and the characteristic tonal quality of an instrument resulting from 
solutions to the wave equation also occur for any of these instruments as well.  
So, the wave equation gets around quite a bit musically! 
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D’Alembert’s Solution of the Wave Equation  
As was mentioned previously, there is another way to solve the wave equation, 
found by Jean Le Rond D’Alembert in the 18th century.  In the last section on the 
solution to the wave equation using the separation of variables technique, you 
probably noticed that although we made use of the boundary conditions in 
finding the solutions to the PDE, we glossed over the issue of the initial 
conditions, until the very end when we claimed that one could make use of 
something called Fourier Series to build up combinations of solutions.  If you 
recall, being given specific initial conditions meant being given both the shape 
of the string at time t = 0, i.e. the function )()0,( xfxu  , as well as the initial velocity, 

)()0,( xgxut  (note that these two initial condition functions are functions of x alone, 
as t is set equal to 0).  In the separation of variables solution, we ended up with 
an infinite set, or family, of solutions, ),( txun  that we said could be combined in 
such a way as to satisfy any reasonable initial conditions. 
 



191

 

 

In using D’Alembert’s approach to solving the same wave equation, we don’t 
need to use Fourier series to build up the solution from the initial conditions.  
Instead, we are able to explicitly construct solutions to the wave equation for 
any (reasonable) given initial condition functions )()0,( xfxu  and )()0,( xgxut  . 
The technique involves changing the original PDE into one that can be solved by 
a series of two simple single variable integrations by using a special 
transformation of variables.  Suppose  that instead of thinking of the original 
PDE 
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in terms of the variables x, and t, we rewrite it to reflect two new variables  
 (2) ctxv  and ctxz   
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This then means that u, originally a function of x, and t, now becomes a 
function of v and z, instead.  How does this work?  Note that we can solve for x 
and t in (2), so that  
 (3)  zvx 

2

1 and  zv
c

t 
2

1  

Now using the chain rule for multivariable functions, you know that  
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z .  Working up to second derivatives, another, more involved 

application of the chain rule yields that 
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Another almost identical computation using the chain rule results in the fact 
that 
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Now we revisit the original wave equation 
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Dividing by c2and canceling the terms involving 
2

2

v

u



  and 
2
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u



 reduces this series of 

equations to  
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which means that  
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So what, you might well ask, after all, we still have a second order PDE, and 
there are still several variables involved.  But wait, think about what (11) 
implies.  Picture (11) as it gives you information about the partial derivative of a 
partial derivative: 
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In this form, this implies that 
v

u



 considered as a function of z and v is a constant 

in terms of the variable z, so that 
v

u



 can only depend on v, i.e. 
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Now, integrating this equation with respect to v yields that 
 

(14)  dvvMzvu  )(),(  

 
This, as an indefinite integral, results in a constant of integration, which in this 
case is just constant from the standpoint of the variable v.  Thus, it can be any 
arbitrary function of z alone, so that actually 
 

(15)  )()()()(),( zNvPzNdvvMzvu    
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where )(vP is a function of v alone, and )(zN is a function of z alone, as the notation 
indicates. 
 
Substituting back the original change of variable equations for v and z in (2) 
yields that  
 

(16)  )()(),( ctxNctxPtxu   
 
whereP and N are arbitrary single variable functions.  This is called D’Alembert’s 
solution to the wave equation.  Except for the somewhat annoying but easy 
enough chain rule computations, this was a pretty straightforward solution 
technique.  The reason it worked so well in this case was the fact that the 
change of variables used in (2) were carefully selected so as to turn the original 
PDE into one in which the variables basically had no interaction, so that the 
original second order PDE could be solved by a series of two single variable 
integrations, which was easy to do. 
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Check out that D’Alembert’s solution really works.  According to this solution, 
you can pick any functions for P and N such as 2)( vvP  and 2)(  vvN .  Then  
 

(17)  22)()(),( 2222  tcctxxctxctxtxu  
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and so this is in fact a solution of the original wave equation.   
 
This same transformation trick can be used to solve a fairly wide range of PDEs.  
For instance one can solve the equation 
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by using the transformation of variables  
 
 (22) xv  and yxz   
 
(Try it out!  You should get that )()(),( yxNxPyxu  with arbitrary functions P and N ) 
 
Note that in our solution (16) to the wave equation, nothing has been specified 
about the initial and boundary conditions yet, and we said we would take care 
of this time around.  So now we take a look at what these conditions imply for 
our choices for the two functions P and N. 
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If we were given an initial function )()0,( xfxu   along with initial velocity function 
)()0,( xgxut  then we can match up these conditions with our solution by simply 

substituting in 0t  into (16) and follow along.  We start first with a simplified set-
up, where we assume that we are given the initial displacement function 

)()0,( xfxu  , and that the initial velocity function )(xg  is equal to 0 (i.e. as if someone 
stretched the string and simply released it without imparting any extra velocity 
over the string tension alone).   
 
Now the first initial condition implies that  
 

(23)  )()()()0()0()0,( xfxNxPcxNcxPxu   
 
We next figure out what choosing the second initial condition implies.  By 
working with an initial condition that 0)()0,(  xgxut , we see that by using the chain 
rule again on the functions P and N 
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(remember that P and N are just single variable functions, so the derivative 
indicated is just a simple single variable derivative with respect to their input).  
Thus in the case where 0)()0,(  xgxut , then 
 

(25)  0)()(  ctxNcctxPc  
 
Dividing out the constant factor c and substituting in 0t  
 

(26)  )()( xNxP   
 
and so )()( xNkxP  for some constant k.  Combining this with the fact that 

)()()( xfxNxP  , means that )()(2 xfkxP  , so that   2)()( kxfxP   and likewise   2)()( kxfxN  .  
Combining these leads to the solution  
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To make sure that the boundary conditions are met, we need  
  

(28) 0),0( tu and 0),( tlu   for all values of t 
 
The first boundary condition implies that  
 

(29)    0)()(
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),0(  ctfctftu  

or 
 

(30)  )()( ctfctf   
 
so that to meet this condition, then the initial condition function  f must be 
selected to be an odd function.  The second boundary condition that 0),( tlu

implies  
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(31)    0)()(
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so that )()( ctlfctlf  .  Next, since we’ve seen that f  has to be an odd function, then 

)()( ctlfctlf  . Putting this all together this means that  
 

(32)  )()( ctlfctlf  for all values of t 
 

which means that f must have period 2l, since the inputs vary by that amount.  
Remember that this just means the function repeats itself every time 2l is added 
to the input, the same way that the sine and cosine functions have period 2  . 
 
What happens if the initial velocity isn’t equal to 0?  Thus suppose 0)()0,(  xgxut .  
Tracing through the same types of arguments as the above leads to the solution 
function 
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