

OUTCOME BASED EDUCATION WITH CHOICE BASED CREDIT SYSTEM

MASTER OF TECHNOLOGY AEROSPACE ENGINEERING

ACADEMIC REGULATIONS, COURSE STRUCTURE AND SYLLABI UNDER AUTONOMOUS STATUS

M.Tech Regular Two Year Degree Program (for the batches admitted from the academic year 2016 – 17)

FAILURE TO READ AND UNDERSTAND THE REGULATIONS IS NOT AN EXCUSE

CONTENTS

	Preliminary Definitions and Nomenclatures & Foreword	i-iii
1	Choice Based Credit System	01
2	Medium of Instruction	01
3	Eligibility for Admission	02
4	Unique course identification code	02
5	Types of Courses	02
6	Semester Structure	03
7	Program Duration	03
8	Curriculum and Course structure	04
9	Evaluation Methodology	05
10	Attendance Requirements and Detention Policy	08
11	Conduct of Semester End Examinations and Evaluation	08
12	Scheme for the Award of Grade	09
13	Letter Grades and Grade Points	09
14	Computation of SGPA and CGPA	10
15	Illustration of Computation of SGPA and CGPA	10
16	Photocopy / Revaluation	11
17	Graduation Requirements	11
18	Award of Degree	11
19	Improvement Of Grade	12
20	Termination from the Program	12
21	With-holding of Results	12
22	Graduation Day	12
23	Discipline	12
24	Grievance Redressal Committee	12
25	Transitory Regulations	13
26	Revision of Regulations and Curriculum	13
27	Course Structure of AE	14
28	Syllabus	18
29	Vision and Mission of the Institute	93
30	M.Tech – Program Outcomes (Pos)	93
31	Frequently asked Questions and Answers about autonomy	94
32	Malpractices Rules	99
33	Undertaking by Student / Parent	102
"Talva	ve encides	

"Take up one idea.

Make that one idea you're life-think of it, dream of it, and live on that idea. Let the brain muscles, nerves, every part of your body be full of that idea and just leave every other idea alone.

This is the way to success"

Swami Vivekananda

PRELIMINARY DEFINITIONS AND NOMENCLATURES

Academic Council: The Academic Council is the highest academic body of the institute and is responsible for the maintenance of standards of instruction, education and examination within the institute. Academic Council is an authority as per UGC regulations and it has the right to take decisions on all academic matters including academic research.

Academic Autonomy: Means freedom to an institute in all aspects of conducting its academic programs, granted by UGC for Promoting Excellence.

Academic Year: It is the period necessary to complete an actual course of study within a year. It comprises two consecutive semesters i.e., Even and Odd semester.

AICTE: Means All India Council for Technical Education, New Delhi.

Autonomous Institute: Means an institute designated as autonomous by University Grants Commission (UGC), New Delhi in concurrence with affiliating University (Jawaharlal Nehru Technological University, Hyderabad) and State Government.

Backlog Course: A course is considered to be a backlog course if the student has obtained a failure grade (F) in that course.

Basic Sciences: The courses offered in the areas of Mathematics, Physics, Chemistry, Biology etc., are considered to be foundational in nature.

Betterment: Betterment is a way that contributes towards improvement of the students' grade in any course(s). It can be done by either (a) re-appearing or (b) re-registering for the course.

Board of Studies (BOS): BOS is an authority as defined in UGC regulations, constituted by Head of the Organization for each of the departments separately. They are responsible for curriculum design and updating in respect of all the programs offered by a department.

Certificate course: It is a course that makes a student gain hands-on experience and skill required for holistic development in a specific area/field.

Choice Based Credit System: The credit based semester system is one which provides flexibility in designing curriculum and assigning credits based on the course content and hours of teaching along with provision of choice for the student in the course selection.

Compulsory course: Course required to be undertaken for the award of the degree as per the program.

Commission: Means University Grants Commission (UGC), New Delhi.

Continuous Internal Examination: It is an examination conducted towards internal assessment.

Course: A course is a subject offered by the University for learning in a particular semester.

Course Outcomes: The essential skills that need to be acquired by every student through a course.

Credit: A credit is a unit that gives weight to the value, level or time requirements of an academic course. The number of 'Contact Hours' in a week of a particular course determines its credit value. One credit is equivalent to one lecture hour per week.

Credit point: It is the product of grade point and number of credits for a course.

Cumulative Grade Point Average (CGPA): It is a measure of cumulative performance of a student over all the completed semesters. The CGPA is the ratio of total credit points secured by a student in various courses in all semesters and the sum of the total credits of all courses in all the semesters. It is expressed up to two decimal places.

Curriculum: Curriculum incorporates the planned interaction of students with instructional content, materials, resources and processes for evaluating the attainment of Program Educational Objectives.

Degree with Specialization: A student who fulfills all the program requirements of her/his discipline and successfully completes a specified set of professional elective courses in a specialized area is eligible to receive a degree with specialization like Structural Engineering, Embedded Systems, CSE, etc.

Department: An academic entity that conducts relevant curricular and co-curricular activities, involving both teaching and non-teaching staff and other resources in the process of study for a degree.

Detention in a course: Student who does not obtain minimum prescribed attendance in a course shall be detained in that particular course.

Dropping from the Semester: A student who doesn't want to register for any semester, can apply in writing in prescribed format before commencement of that semester.

Elective Course: A course that can be chosen from a set of courses. An elective can be Professional Elective and/or Open Elective.

Evaluation: Evaluation is the process of judging the academic performance of the student in her/his courses. It is done through a combination of continuous internal assessment and semester end examinations.

Grade: It is an index of the performance of the students in a said course. Grades are indicated by alphabets.

Grade Point: It is a numerical weight allotted to each letter grade on a 10 point scale.

Institute: Means Institute of Aeronautical Engineering, Hyderabad unless indicated otherwise by the context.

Massive Open Online Course (MOOC): MOOC courses inculcate the habit of self learning. MOOC courses would be additional choices in all the elective group courses.

Pre-requisite: A course, the knowledge of which is required for registration into higher level course.

Core: The courses that are essential constituents of each engineering discipline are categorized as professional core courses for that discipline.

Professional Elective: A course that is discipline centric. An appropriate choice of minimum number of such electives as specified in the program will lead to a degree with specialization.

Program: Means, Master of Technology (M.Tech) degree program / UG degree program: B.Tech.

Program Educational Objectives: The broad career, professional and personal goals that every student will achieve through a strategic and sequential action plan.

Project work: It is a design or research based work to be taken up by a student during his/her second year to achieve a particular aim. It is a credit based course and is to be planned carefully by the student.

Re-Appearing: A student can reappear only in the semester end examination for the theory component of a course, subject to the regulations contained herein.

Registration: Process of enrolling into a set of courses in a semester of a Program.

Regulations: The regulations, common to all M.Tech programs offered by Institute are designated as "IARE-R16" and are binding on all the stakeholders.

Semester: It is a period of study consisting of 15 to 18 weeks of academic work equivalent to normally 90 working days. The odd semester starts usually in July and even semester in December.

Semester End Examinations: It is an examination conducted for all courses offered in a semester at the end of the semester.

S/he: Means "she" and "he" both.

Student Outcomes: The essential skill sets that need to be acquired by every student during her/his program of study. These skill sets are in the areas of employability, entrepreneurial, social and behavioral.

University: Means the Jawaharlal Nehru Technological University Hyderabad, Hyderabad.

Withdraw from a Course: Withdrawing from a course means that a student can drop from a course within the first two weeks of the odd or even semester (deadlines are different for summer sessions). However s/he can choose a substitute course in place of it by exercising the option within 5 working days from the date of withdrawal.

Words 'he', 'him', 'his', occur, they imply 'she', 'her', 'hers' also.

FOREWORD

The autonomy is conferred to Institute of Aeronautical Engineering (IARE), Hyderabad by University Grants Commission (UGC), New Delhi based on its performance as well as future commitment and competency to impart quality education. It is a mark of its ability to function independently in accordance with the set norms of the monitoring bodies like J N T University Hyderabad (JNTUH), Hyderabad and AICTE. It reflects the confidence of the affiliating University in the autonomous institution to uphold and maintain standards it expects to deliver on its own behalf and thus awards degrees on behalf of the institute. Thus, an autonomous institution is given the freedom to have its own **curriculum, examination system** and **monitoring mechanism**, independent of the affiliating University but under its observance.

IARE is proud to win the credence of all the above bodies monitoring the quality in education and has gladly accepted the responsibility of sustaining, if not improving upon the standards and ethics for which it has been striving for more than a decade in reaching its present standing in the arena of contemporary technical education. As a follow up, statutory bodies like Academic Council and Boards of Studies are constituted with the guidance of the Governing Body of the institute and recommendations of the JNTUH to frame the regulations, course structure and syllabi under autonomous status.

The autonomous regulations, course structure and syllabi have been prepared after prolonged and detailed interaction with several expertise solicited from academics, industry and research, in accordance with the vision and mission of the institute to order to produce a quality engineering graduate to the society.

All the faculty, parents and students are requested to go through all the rules and regulations carefully. Any clarifications needed are to be sought at appropriate time and with principal of the institute, without presumptions, to avoid unwanted subsequent inconveniences and embarrassments. The Cooperation of all the stake holders is sought for the successful implementation of the autonomous system in the larger interests of the institute and brighter prospects of engineering graduates.

PRINCIPAL

ACADEMIC REGULATIONS

M.Tech. Regular Two Year Degree Program (for the batches admitted from the academic year 2016 - 17)

For pursuing two year postgraduate Master Degree program of study in Engineering (M.Tech) offered by Institute of Aeronautical Engineering under Autonomous status and herein after referred to as IARE.

1.0 CHOICE BASED CREDIT SYSTEM

The Indian Higher Education Institutions (HEI's) are changing from the conventional course structure to Choice Based Credit System (CBCS) along with introduction to semester system at first year itself. The semester system helps in accelerating the teaching learning process and enables vertical and horizontal mobility in learning.

The credit based semester system provides flexibility in designing curriculum and assigning credits based on the course content and hours of teaching. The choice based credit system provides a 'cafeteria' type approach in which the students can take courses of their choice, learn at their own pace, undergo additional courses and acquire more than the required credits and adopt an interdisciplinary approach to learning.

Choice Based Credit System (CBCS) is a flexible system of learning and provides choice for students to select from the prescribed elective courses. A course defines learning objectives and learning outcomes and comprises of lectures / tutorials / laboratory work / field work / project work / comprehensive examination / viva / seminars / assignments / presentations / self-study etc. or a combination of some of these.

Under the CBCS, the requirement for awarding a degree is prescribed in terms of number of credits to be completed by the students.

The CBCS permits students to:

- 1. Choose electives from a wide range of elective courses offered by the departments of the Institute.
- 2. Undergo additional courses of interest.
- 3. Adopt an inter-disciplinary approach in learning.
- 4. Make the best use of expertise of the available faculty.

2.0 MEDIUM OF INSTRUCTION

The medium of instruction shall be English for all courses, examinations, seminar presentations and project work. The curriculum will comprise courses of study as given in course curriculum in accordance with the prescribed syllabi.

3.0 ELIGIBILITY FOR ADMISSION

The admissions for category A and B seats shall be as per the guidelines of Telangana State Council for Higher Education (TSCHE) in consonance with government reservation policy.

a) Under Category A: 70% of the seats are filled based on GATE/PGECET ranks.

b) Under Category B: 30% seats are filled on merit basis as per guidelines of TSCHE.

4.0 UNIQUE COURSE IDENTIFICATION CODE

Every specialization of the M.Tech programme will be placed in one of the seven groups as listed in the Table 1.

S. No	Specialization	Offering Department	Code
1	Structural Engineering	Civil Engineering	ST
2	Power Electronics and Electrical Drives	Electrical and Electronics Engineering	PE
3	CAD / CAM	Mechanical Engineering	CC
4	Embedded Systems	Electronics and Communication Engineering	ES
5	Computer Science and Engineering	Computer Science and Engineering	CS
6	Software Engineering	Information Technology	SE
7	Aerospace Engineering	Aeronautical Engineering	AE

Table 1: Group of Cours

5.0 TYPES OF COURSES

Courses in a programme may be of two kinds: Core and Elective.

5.1 Core Course:

There may be a core course in every semester. This is the course which is to be compulsorily studied by a student as a core requirement to complete the requirement of a programme in said discipline of study.

5.2 Elective Course:

Electives provide breadth of experience in respective branch and applications areas. Elective course is a course which can be chosen from a pool of courses. It may be:

- Supportive to the discipline of study
- Providing an expanded scope
- Enabling an exposure to some other discipline/domain
- Nurturing student's proficiency/skill.

An elective may be discipline centric (Professional Elective) focusing on those courses which add generic proficiency to the students or may be chosen from supportive/general discipline called as "Open Elective".

There shall be four professional elective groups out of which students can choose not more than two courses from each group. Overall, students can opt for four professional elective courses which suit their project work in consultation with the faculty advisor/mentor. In addition, one course from each of the two open electives has to be selected. A student may also opt for more elective courses in his/her area of interest.

6.0 SEMESTER STRUCTURE

The institute shall follow semester pattern. An academic year shall consist of a first semester and a second semester and the summer term. Each semester shall be of 23 weeks (Table 2) duration and this period includes time for course work, examination preparation and conduct of examinations. Each main semester shall have a minimum of 90 working days; out of which number of contact days for teaching / practical shall be 75 and 15 days shall be for examination preparation. The duration for each semester shall be a minimum of 17 weeks of instruction. The Academic Calendar is declared at the beginning of the academic year as given in Table 2.

	I Spell Instruction Period 9 weeks			
	I Mid Examinations	1 week		
FIRST SEMESTER	II Spell Instruction Period	8 weeks	21 weeks	
(23 weeks)	II Mid Examinations	1 week		
	Preparation and Practical Examinations	2 weeks		
	Semester End Examinations		2 weeks	
Semest	er Break and Supplementary Exams		2 weeks	
	I Spell Instruction Period	9 weeks		
	I Mid Examinations	1 week	21 weeks	
SECOND SEMESTER	II Spell Instruction Period	8 weeks		
(23 weeks)	II Mid Examinations	1 Week		
	Preparation & Practical Examinations	2 weeks		
	Semester End Examinations	2 weeks		
Summer Vacation				
THIRD SEMESTER	THIRD SEMESTER Project Work Phase - I		18 weeks	
FOURTH SEMESTER Project Work Phase - II			18 weeks	

Table 2: Academic Calendar

7.0 PROGRAM DURATION

A student shall be declared eligible for the award of M.Tech degree, if s/he pursues a course of study and completes it successfully in not less than two academic years and not more than four academic years. A student, who fails to fulfill all the academic requirements for the award of the degree within four academic years from the year of his/her admission, shall forfeit his/her seat in M.Tech course.

a) A student will be eligible for the award of M.Tech degree on securing a minimum of 5.0/10.0 CGPA.

b) In the event of non-completion of project work and/or non-submission of the project report by the end of the fourth semester, the candidate shall re-register by paying the semester fee for the project. In such a case, the candidate will not be permitted to submit the report earlier than three months and not later than six months from the date of registration.

8.0 CURRICULUM AND COURSE STRUCTURE

The curriculum shall comprise Core Courses, Elective Courses, Laboratory Course, Comprehensive Examination, Internship and Project Work. The list of elective courses may include subjects from allied disciplines also.

Each Theory and Laboratory course carries credits based on the number of hours/week as follows:

- Lecture Hours (Theory): 1 credit per lecture hour per week.
- Laboratory Hours (Practical): 1 credit for 2 practical hours, 2 credits for 3 or 4 practical hours per week.
- **Project Work:** 1 credit for 4 hours of project work per week.

8.1 Credit distribution for courses offered is shown in Table 3.

Table 3: Credit distribution

S. No	Course	Hours	Credits
1	Core Courses	3	3
2	Elective Courses	3	3
3	MOOC Courses	-	2
4	Laboratory Courses	3	2
5	Seminar and Technical Writing	3	2
6	Comprehensive Examination	-	2
7	Project Work	128	30

8.2 Course wise break-up for the total credits:

Total Theory Courses (12)Core Courses (06) + Professional Electives (04) +Open Electives (02)	06 @ 3 credits + 06 @ 3 credits	36	
Total Laboratory Courses (03)	03 @ 2 credits	06	
MOOC Courses (02)	02 @ 2 credits	04	
Seminar and Technical Writing (01)	1 @ 2 credits	02	
Comprehensive Examination (01)	1 @ 2 credits	02	
Project Work	1 @ 30 credits	30	
TOTAL CREDITS			

9.0 EVALUATION METHODOLOGY

9.1 Theory Course:

Each theory course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIE during the semester, marks are awarded by taking average of two sessional examinations.

9.1.1 Semester End Examination (SEE):

The SEE shall be conducted for 70 marks of 3 hours duration. The syllabus for the theory courses shall be divided into FIVE units and each unit carries equal weightage in terms of marks distribution. The question paper pattern shall be as defined below. Two full questions with 'either' 'or' choice will be drawn from each unit. Each question carries 14 marks. There could be a maximum of three sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept	
30 %	To test the analytical skill of the concept	
20 %	To test the application skill of the concept	

9.1.2 Continuous Internal Assessment (CIA):

For each theory course the CIA shall be conducted by the faculty/teacher handling the course as given in Table 4. CIA is conducted for a total of 30 marks, with 25 marks for Continuous Internal Examination (CIE) and 05 marks for Technical Seminar and Term Paper.

Table 4: Assessment pattern for Theory Courses

COMPONENT	T		
Type of	CIE Exam	Technical Seminar and	TOTAL MARKS
Assessment	(Sessional)	Term Paper	
Max. CIA	25	5	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 9th and 17th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration, consisting of 5 one mark compulsory questions in part-A and 4 questions in part-B. The student has to answer any 4 questions out of five questions, each carrying 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Technical Seminar and Term Paper:

Two seminar presentations are conducted during I year I semester and II semester. For seminar, a student under the supervision of a concerned faculty member, shall identify a topic in each course and prepare the term paper with overview of topic. The evaluation of Technical seminar and term paper is for maximum of 5 marks. Marks are awarded by taking average of marks scored in two Seminar Evaluations.

9.2 Laboratory Course:

- 9.2.1 Each lab will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment. The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being a internal examiner and another is external examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.
- 9.2.2 All the drawing related courses are evaluated in line with lab courses. The distribution shall be 30 marks for internal evaluation (20 marks for day–to–day work, and 10 marks for internal tests) and 70 marks for semester end lab examination. There shall be ONE internal test for 10 marks each in a semester.

9.3 MOOC Courses:

Meeting with the global requirements, to inculcate the habit of self learning and in compliance with UGC guidelines, MOOC (Massive Open Online Course) courses have been introduced as electives.

- 9.3.1 The proposed MOOC Courses would be additional choices in all the elective groups subject to the availability during the respective semesters and respective departments will declare the list of the courses at the beginning of the semester. Course content for the selected MOOC Courses shall be drawn from respective MOOCs links or shall be supplied by the department. Course will be mentored by faculty members and Assessment and evaluation of the courses shall be done by the department.
- 9.3.2 There shall be one Mid Sessional Examination (Quiz exam for 30 marks) after 8 weeks of the commencement of the course and semester end evaluation (Descriptive exam for 70 marks) shall be done along with other regular courses.
- 9.3.3 Two credits will be awarded upon successful completion of each MOOC Course.
- 9.3.4 Students interested in doing MOOC Courses shall register the course title at their department office at the start of the semester against the courses that are announced by the department.

9.4 Project work

Normally, the project work should be carried out at Host Institute (Institute of Aeronautical Engineering). However, it can also be carried out in any of the recognized Educational Institutions, National Laboratories, Research Institutions, Industrial Organizations, Service Organizations or Government Organizations with the prior permission from the guide and concerned Head of the Department. A student shall submit the outcome of the project work in the form of a dissertation.

9.4.1 The student shall submit the project work synopsis at the end of III semester for Phase-I of project evaluation. The Phase-I of project work shall be evaluated by Project Review Committee (PRC) at the end of the third semester for a maximum of 100 marks. Head of the Department (HOD) shall constitute a PRC comprising of senior faculty of the specialization, Guide and Head of the Department.

- 9.4.2 The first phase of project work is to be carried out in IV semester for Phase –II of Project work. The student will be allowed to appear for final viva voce examination at the end of IV semester only if s/he has submitted s/he project work in the form of paper for presentation / publication in a conference/journal and produce the proof of acceptance of the paper from the organizers/publishers.
- 9.4.3 The student shall submit the project work in the form of dissertation at least four weeks ahead of the completion of the program. Head of the Department shall constitute an Internal Evaluation Committee (IEC) comprising of the Chairman BOS (PG), HOD and Guide. As per convenes of all meeting for open pre-submission seminar evaluation of the student. If the open pre-submission seminar by a student is not satisfactory, another seminar shall be scheduled within two weeks.

S.No	Project Phases	Mode	Evaluation Committee	Marks
1		Continuous evaluation at the end of III Semester	Guide	30
2	Phase - I	Evaluation at the end of III Semester	Project Review Committee (PRC) comprising of senior faculty of the specialization, guide and HOD.	70
Total(Phase – I)				100
3		An open pre- submission seminar by the student	The Internal Evaluation Committee (IEC) comprising of the Chairman, BOS (PG), HOD and guide wherein the HOD convenes its meeting.	30
4	Phase - II	End Semester Examination (An open seminar followed by viva- voce)	The External Evaluation Committee (EEC) comprising of External Examiner, HOD and guide wherein the HOD shall be the chairman of the committee.	70
Total(Phase-II)				100

The evaluation of the project work and the marks allotted are as under:

- 9.4.4 As soon as a student submits his project work, Principal shall appoint the External Examiner among the panel of examiners recommended by the Chairman, BOS (PG).
- 9.4.5 The Principal shall schedule the End Semester Examination in project work soon after the completion of the study of program and a student can appear for the same provided s/he has earned successfully all the requisite credits. The student shall produce the dissertation duly certified by the guide and HOD during the Examination.
- 9.4.6 The project reports of M. Tech students who have not completed their course work successfully will be evaluated in that semester itself and the result sent confidentially to the Controller of Examinations. The results of the project work evaluation will be declared by the Controller of Examinations only after the successful completion of the courses by those students.

9.5 Comprehensive Examination

The comprehensive examination is aimed at assessing the student's understanding of various Foundation, Skill and Core courses studied by the end of II semester and is intended to test the student's grasp of the chosen field of study. The comprehensive examination is an online test evaluated for 100 marks.

10.0 ATTENDANCE REQUIREMENTS AND DETENTION POLICY

- 10.1 It is desirable for a candidate to put on 100% attendance in each course. In every course (theory/laboratory), student has to maintain a minimum of 80% attendance including the days of attendance in sports, games, NCC and NSS activities to be eligible for appearing in Semester End Examination of the course.
- 10.2 For cases of medical issues, deficiency of attendance in each course to the extent of 15% may be condoned by the Institute Academic Committee (CAC) on the recommendation of Head of the Department if his/her attendance is between 80% to 70% in every course, subjected to submission of medical certificate and other needful documents to the concerned department.
- 10.3 The basis for the calculation of the attendance shall be the period prescribed by the institute by its calendar of events. For late admission, attendance is reckoned from the date of admission to the program.
- 10.3 However, in case of a student having less than 70% attendance in any course, s/he shall be detained in the course and in no case such process will be relaxed.
- 10.4 Students whose shortage of attendance is not condoned in any subject are not eligible to write their semester end examination of that courses and their registration shall stand cancelled.
- 10.5 A prescribed fee shall be payable towards Condonation of shortage of attendance.
- 10.6 A candidate shall put in a minimum required attendance at least in three (3) theory courses for getting promoted to next higher class / semester. Otherwise, s/he shall be declared detained and has to repeat semester.
- 10.7 A student shall not be promoted to the next semester unless he satisfies the attendance requirement of the present semester, as applicable. They may seek readmission into that semester when offered next. If any candidate fulfills the attendance requirement in the present semester, s/he shall not be eligible for readmission into the same class.

11.0 CONDUCT OF SEMESTER END EXAMINATIONS AND EVALUATION

- 11.1 Semester end examination shall be conducted by the Controller of Examinations (COE) by inviting Question Papers from the External Examiners.
- 11.2 Question papers may be moderated for the coverage of syllabus, pattern of questions by Semester End Examination Committee chaired by Head of the Department one day before the commencement of semester end examinations.
- 11.3 Internal Examiner shall prepare a detailed scheme of valuation.
- 11.4 The answer papers of semester end examination should be evaluated by the internal examiner immediately after the completion of exam and the award sheet should be submitted to COE in a sealed cover before the same papers are kept for second evaluation by external examiner.

- 11.5 In case of difference is more than 15% of marks, the answer paper shall be re-evaluated by a third examiner appointed by the Examination Committee and marks awarded by him shall be taken as final.
- 11.6 HOD shall invite 3-9 external examiners to evaluate all the end semester answer scripts on a prescribed date(s). Practical laboratory exams are conducted involving external examiners.
- 11.7 Examination Control Committee shall consolidate the marks awarded by internal and external examiners to award grades.

12.0 SCHEME FOR THE AWARD OF GRADE

- 12.1 A student shall be deemed to have satisfied the minimum academic requirements and earn the credits for each theory course, if s/he secures:
 - i. Not less than 40% marks for each theory course in the semester end examination, and
 - ii. A minimum of 50% marks for each theory course considering both CIA and SEE
- 12.2 A student shall be deemed to have satisfied the minimum academic requirements and earn the credits for each Laboratory / Seminar and Technical Writing / Project, if s/he secures
 - i. Not less than 40% marks for each Laboratory / Seminar and Technical Writing / Project course in the semester end examination,
 - ii. A minimum of 50% marks for each Laboratory / Seminar and Technical Writing / Project course considering both internal and semester end examination.
- 12.3 If a candidate fails to secure a pass in a particular course, it is mandatory that s/he shall register and reappear for the examination in that course during the next semester when examination is conducted in that course. It is mandatory that s/he should continue to register and reappear for the examination till s/he secures a pass.

13.0 LETTER GRADES AND GRADE POINTS

13.1 Performances of students in each course are expressed in terms of marks as well as in Letter Grades based on absolute grading system. The UGC recommends a 10 point grading system with the following letter grades as given below:

Range of Marks	Grade Point	Letter Grade
90 - 100	10	S (Superior)
80 - 89	9	A+ (Excellent)
70 – 79	8	A (Very Good)
60 - 69	7	B+ (Good)
55 - 59	6	B (Average)
50 - 54	5	P (Pass)
Below 50	0	F (Fail)
Absent	0	Ab (Absent)
Authorized Break of Study	0	ABS

13.2 A student obtaining Grade F shall be declared as failed and will be required to reappear in the examination.

13.3 At the end of each semester, the institute issues grade sheet indicating the SGPA and CGPA of the student. However, grade sheet will not be issued to the student if s/he has any outstanding dues.

14.0 COMPUTATION OF SGPA AND CGPA

The UGC recommends to compute the Semester Grade Point Average (SGPA) and Cumulative Grade Point Average (CGPA). The credit points earned by a student are used for calculating the Semester Grade Point Average (SGPA) and the Cumulative Grade Point Average (CGPA), both of which are important performance indices of the student. SGPA is equal to the sum of all the total points earned by the student in a given semester divided by the number of credits registered by the student in that semester. CGPA gives the sum of all the total points earned in all the previous semesters and the current semester divided by the number of credits registered in all these semesters. Thus,

$$SGPA = \sum_{i=1}^{n} (C_i G_i) / \sum_{i=1}^{n} C_i$$

Where, C_i is the number of credits of the i^{th} course and G_i is the grade point scored by the student in the i^{th} course and *n* represent the number of courses in which a students is registered in the concerned semester.

$$CGPA = \sum_{j=1}^{m} (C_{j} S_{j}) / \sum_{j=1}^{m} C_{j}$$

Where, S_j is the SGPA of the j^{th} semester and C_j is the total number of credits upto the semester and *m* represent the number of semesters completed in which a student registered upto the semester.

The SGPA and CGPA shall be rounded off to 2 decimal points and reported in the transcripts.

15.0 ILLUSTRATION OF COMPUTATION OF SGPA AND CGPA

15.1 Illustration for SGPA

Course Name	Course Credits	Grade letter	Grade point	Credit Point (Credit x Grade)
Course 1	3	А	8	3 x 8 = 24
Course 2	4	B+	7	4 x 7 = 28
Course 3	3	В	6	3 x 6 = 18
Course 4	3	0	10	3 x 10 = 30
Course 5	3	С	5	3 x 5 = 15
Course 6	4	В	6	4 x 6 = 24
	20			139

$$Thus, SGPA = 139 / 20 = 6.95$$

15.2 Illustration for CGPA

Semester 1	Semester 2	Semester 3	Semester 4
Credit: 20	Credit: 22	Credit: 25	Credit: 26
SGPA: 6.9	SGPA: 7.8	SGPA: 5.6	SGPA: 6.0

Thus,
$$CGPA = \frac{20x6.9 + 22x7.8 + 25x5.6 + 26x6.0}{93} = 6.51$$

16.0 PHOTOCOPY / REVALUATION

A student, who seeks the revaluation of the answer script, is directed to apply for the photocopy of his/her semester examination answer paper(s) in the theory course(s) within 2 working days from the declaration of results in the prescribed format to the Controller of Examinations through the Head of the Department. On receiving the photocopy, the student can consult with a competent member of faculty and seek the opinion for revaluation. Based on the recommendations, the student can register for the revaluation with prescribed fee. The Controller of Examinations shall arrange for the revaluation and declare the results. Revaluation is not permitted to the courses other than theory courses.

17.0 GRADUATION REQUIREMENTS

The following academic requirements shall be met for the award of M. Tech degree.

- 17.1 Student shall register and acquire minimum attendance in all courses and secure 80 credits.
- 17.2 A student who fails to earn 80 credits within four consecutive academic years from the year of his/her admission with a minimum CGPA of 5.0, shall forfeit his/her degree and his/her admission stands cancelled.

18.0 AWARD OF DEGREE

Classification of degree will be as follows:

CGPA ≥ 7.5	$CGPA \ge 6.5$ and < 7.5	$CGPA \ge 5.5$ and < 6.5	$CGPA \ge 5.0$ and < 5.5	CGPA < 5.0
First Class with Distinction	First Class	Second Class	Pass Class	Fail

- a) In case a student takes more than one attempt in clearing a course, the final marks secured shall be indicated by * mark in the grade sheet.
- b) All the candidates who register for the semester end examination will be issued of grade sheet by the Institute. Apart from the semester wise grade sheet, the institute will issue the provisional certificate subject to the fulfillment of all the academic requirements.

19.0 IMPROVEMENT OF GRADE:

A candidate, after becoming eligible for the award of the degree, may reappear for the final examination in any of the theory courses as and when conducted for the purpose of improving the aggregate and the grade. But this reappearance shall be within a period of two academic years after becoming eligible for the award of the degree.

However, this facility shall not be availed of by a candidate who has taken the Original Degree Certificate. Candidates shall not be permitted to reappear either for CIE in any course or for Semester End Examination (SEE) in laboratory courses (including Project Viva-voce) for the purpose of improvement.

20.0 TERMINATION FROM THE PROGRAM

The admission of a student to the program may be terminated and the student may be asked to leave the institute in the following circumstances:

- a) The student fails to satisfy the requirements of the program within the maximum period stipulated for that program.
- b) The student fails to satisfy the norms of discipline specified by the institute from time to time.

21.0 WITH-HOLDING OF RESULTS

If the candidate has not paid any dues to the institute / if any case of indiscipline / malpractice is pending against him/her, the results of the candidate will be withheld. The issue of the degree is liable to be withheld in such cases.

22.0 GRADUATION DAY

The institute shall have its own annual Graduation Day for the award of Degrees to students completing the prescribed academic requirements in each case, in consultation with the University and by following the provisions in the Statute.

The institute shall institute prizes and medals to meritorious students annually on Graduation Day. This will greatly encourage the students to strive for excellence in their academic work.

23.0 DISCIPLINE

Every student is required to observe discipline and decorum both inside and outside the institute and not to indulge in any activity which will tend to bring down the honor of the institute. If a student indulges in malpractice in any of the theory / practical examination, continuous assessment examinations he/she shall be liable for punitive action as prescribed by the Institute from time to time.

24.0 GRIEVANCE REDRESSAL COMMITTEE

The institute shall form a Grievance Redressal Committee for each course in each department with the Course Teacher and the HOD as the members. This Committee shall solve all grievances related to the course under consideration.

25.0 TRANSITORY REGULATIONS

- 25.1 A student who has been detained in any semester of previous regulations for not satisfying the attendance requirements shall be permitted to join in the corresponding semester of this regulation.
- 25.2 Semester End Examination in each course under the regulations that precede immediately these regulations shall be conducted three times after the conduct of last regular examination under those regulations. Thereafter, the failed students, if any, shall take examination in the equivalent papers of these regulations as suggested by the Chairman, BOS concerned.

26.0 REVISION OF REGULATIONS AND CURRICULUM

The Institute from time to time may revise, amend or change the regulations, scheme of examinations and syllabi if found necessary and on approval by the Academic Council and the Governing Body shall come into force and shall be binding on the students, faculty, staff, all authorities of the Institute and others concerned.

FAILURE TO READ AND UNDERSTAND THE REGULATIONS IS NOT AN EXCUSE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

AEROSPACE ENGINEERING

COURSE STRUCTURE

I SEMESTER

Course Code	Course Name	Subject Area	Category		erio per veel		redits	Exa	cheme amina ax. Ma	ation
		S.		L	Т	Р	Ŭ	CIA	SEE	Total
THEORY	Ι									
BAE001	Advanced Mathematics in Aerospace Engineering	PC	Core	3	-	-	3	30	70	100
BAE002	Aerodynamics of Flight Vehicles	PC	Core	3	-	-	3	30	70	100
BAE003	Flight Vehicle Structures	PC	Core	3	-	-	3	30	70	100
	Professional Elective - I	PE	Elective	3	-	-	3	30	70	100
	Professional Elective - II	PE	Elective	3	-	-	3	30	70	100
	Open Elective – I	OE	Elective	3	-	-	3	30	70	100
BAE301	MOOC - I (Massive Open Online Course)	PE	Elective	-	-	3	2	30	70	100
PRACTIC	CAL									
BAE101	Application of Matlab in Aerospace Engineering Laboratory	PC	Core	-	-	3	2	30	70	100
	TOTAL			18	00	06	22	240	560	800

II SEMESTER

Course Code	Course Name	Subject Area	Category		erio per veel		Credits	Exa	cheme amina ax. Ma	ation
		Σ.		L	Т	P	C	CIA	SEE	Total
THEORY	Ι					<u> </u>				
BAE004	Flight Dynamics and Control	PC	Core	3	-	-	3	30	70	100
BAE005	Aerospace Propulsion	PC	Core	3	-	-	3	30	70	100
BAE006	Airport Planning and Operation	PC	Core	3	-	-	3	30	70	100
	Professional Elective -III	PE	Elective	3	-	-	3	30	70	100
	Professional Elective -IV	PE	Elective	3	-	-	3	30	70	100
	Open Elective -II	OE	Elective	3	-	-	3	30	70	100
PRACTIC	CAL									
BAE102	CFD/CSA Solutions using ANSYS/NASTRAN Laboratory	PC	Core	-	-	3	2	30	70	100
BAE103	Application Development Mini Project Laboratory	-	Elective	-	-	3	2	30	70	100
	TOTAL			18	00	06	22	240	560	800

III SEMESTER

Course Code	Course Name	Subject Area	Category		erio per veel		redits	Exa	hem mina x. M	ation
		S 7		L	Т	Р	(T	CIA	SEE	Total
THEORY	ζ									
BAE401	Seminar and Technical Writing	PC	Core	-	-	3	2	30	70	100
BAE302	MOOC - II (Massive Open Online Course)	PE	Elective	-	-	3	2	30	70	100
PRACTI	CAL									
BAE501	Comprehensive Examination	-	Core	-	-	-	2	30	70	100
BAE601	Project Work(Phase -I)	-	Core	-	-	-	10	100	-	100
	TOTAL			00	00	06	16	190	210	400

IV SEMESTER

Course Code	Course Name	Subject Area	Category		erio r we		Credits	Exa		e of ation arks
		S 1		L	Т	Р		CIA	SEE	Total
BAE602	Project Work(Phase -II)		Core	-	-	-	20	30	70	100
	TOTAL			00	00	00	20	30	70	100

PROFESSIONAL ELECTIVES

Course Code	Course Name
BAE201	Fatigue and Facture Mechanics
BAE202	Design and analysis of Composite Structures
BAE203	Aeroelasticity
BAE204	Unmanned Air Vehicles

GROUP – 1: AEROSPACE STRUCTURAL ENGINEERING

GROUP - 2: AERODYNAMICS / FLUID FLOWS

Course Code	Course Name
BAE205	Ground Vehicle Aerodynamics
BAE206	Wind Engineering
BAE207	Experimental Aerodynamics
BAE208	Missile Aerodynamics

GROUP – 3: AEROSPACE PROPULSION SYSTEMS

Course Code	Course Name
BAE209	Theory of Combustion
BAE210	Turbo machinery and Dynamics
BAE211	Hypersonic And High-Temperature Gas Dynamics
BAE212	Rocket and Missile

GROUP – 4: FLIGHT DYNAMICS AND CONTROL

Course Code	Course Name
BAE213	Missile Guidance And Control
BAE214	Flight Simulation
BAE215	Flight Testing
BAE216	Atmospheric Re-entry Vehicle Mechanics

OPEN ELECTIVES-I

Course Code	Course Title
BST702	Disaster Management
BPE701	Renewable Energy Systems
BCC701	Automotive Design
BES001	Embedded C
BCS701	Advanced JAVA Programming and Web Services
BAE701	Introduction to Aerospace Engineering*
	s that subject not offered to the students of
Aeronautical Er	ngineering Department.

OPEN ELECTIVES-II

Course Code	Course Title
BST702	Geo Spatial Techniques
BPE702	Solar Photo Voltaic Energy Conversion
BCC702	Computer Graphics
BES702	Microcontrollers for Embedded System Design
BCS702	Linux Programming
BCS703	Research Methodology
BAE702	Industrial Aerodynamics and Wind Energy*
Note: * indicate	s that subject not offered to the students of
Aeronautical Er	ngineering Department.

SYLLABI

ADVANCED MATHEMATICS IN AEROSPACE ENGINEERING

Cours	se Code	Category	Hot	ırs / W	'eek	Credits	Max	imum M	Iarks
BA.	E001	Corro	L	Т	Р	C	CIA	SEE	Total
DA.	FOOT	Core	3	-	-	3	30	70	100
Contact	Classes: 45	Tutorial Clas	ses: Nil	Pra	actical C	lasses: Nil	Tot	al Classo	es: 45
I. Matrix probler II. Differe III. Numer	e should enal method more ms. ent transform rical technique rical technique	ble the students e effectively for the techniques for the es for the solution e for the solution	the solution the solution n of matrix	differe x equati	ntial equ ions.	ation.			nics
UNIT-I	MATDIN	ANALYSIS AN							
Matrices, Gauss elin	vectors addition addi	ion, scalar mult ear independence	iplication, e, rank of	matrix a matri	x multipl rix, vecto	or space, dete	erminants	, Crame	quation r's rule
Matrices, Gauss elin Inverse of and Eigen matrices, E	vectors additi nination; Line a matrix, Gau vectors, appl Gigen bases, di	ion, scalar mult	iplication, e, rank of nation; Ma en value p uadratic fo	matrix a matri atrix: E problem	x multipl rix, vecto Eigen valu	or space, dete ue Problem; l	erminants Determini	ns of E , Crame ng Eiger	quation r's rule n values hogona
Matrices, Gauss elin Inverse of and Eigen matrices, E UNIT-II Laplace tra function, so integral equ	vectors addition nination; Line a matrix, Gau vectors, appl Eigen bases, di LAPLACE unsform, linea econd shifting uations, differ	ion, scalar mult ear independence uss-Jordan elimi lications of Eige iagonalization, q	iplication, e, rank of nation; Ma en value p uadratic fo IS g theorem, impulse, D regration o	matrix a matri atrix: E problem prms. transfc Dirac's o f transf	x multipl rix, vecto ligen valu s, symm orms of d delta fund forms, ord	or space, deta ae Problem; l etric, skew-s erivatives and etion, partial f linary differe	erminants Determini ymmetric	ns of E , Crame ng Eiger and ort Classe , unit ste convolut tions wit	quation r's rule n values hogona s: 10 s: 10 p ion, th
Matrices, Gauss elin Inverse of and Eigen matrices, E UNIT-II Laplace tra function, so integral equ	vectors additi nination; Line a matrix, Gau vectors, appl Eigen bases, di LAPLACE unsform, linea econd shifting uations, differ efficients, sys	ion, scalar mult ear independence uss-Jordan elimi lications of Eige iagonalization, q TRANSFORM rity, first shifting theorem, short rentiation and int	iplication, e, rank of nation; Ma en value p uadratic fo IS g theorem, impulse, D regration o y differenti	matrix a matri atrix: E problem prms. transfc Dirac's of f transf al equa	x multipl rix, vecto Gigen values, symmetric prms of de delta func- forms, or ations, ge	or space, deta ue Problem; l etric, skew-s erivatives and ction, partial f linary differe neral formula	erminants Determini ymmetric	ns of E , Crame ng Eiger and ort Classe , unit ste convolut tions wit	quation r's rule hogona hogona s: 10 s: 10 p ion, th sforms.
Matrices, Gauss elin Inverse of and Eigen matrices, E UNIT-II Laplace tra function, se integral equivariable co UNIT-III Fourier se approximation	vectors addition a matrix, Gau vectors, appl Eigen bases, di LAPLACE unsform, linea econd shifting uations, differ refficients, system FOURIER ries, arbitrary tion by trigon tegral, Fourie	ion, scalar mult ear independence uss-Jordan elimi lications of Eige iagonalization, q TRANSFORM rity, first shifting theorem, short rentiation and int stems of ordinary	iplication, e, rank of nation; Ma en value p uadratic fo IS g theorem, impulse, D egration o d differenti FOURIEF and odd f nials.	matrix a matri atrix: E problem prms. transfc Dirac's o f transf al equa R TRA	x multipl rix, vecto ligen valu ns, symm orms of d delta fund forms, ord ations, ge	or space, deta ae Problem; l etric, skew-s erivatives and ction, partial f linary differe neral formula	erminants Determini ymmetric l integrals fractions, ntial equa s for Lap	ns of E , Crame ng Eiger and ort Classe , unit ste convolut tions wit lace trans Classe ced osci	quation r's rule hogona s: 10 p ion, th sforms. s: 10 llations

Matrix Eigen value problems-introduction, inclusion of matrix Eigen values, power method for Eigen values, tridiagonalization and QR factorization.

UNIT-V NUMERICS FOR ORDINARY DIFFERENTIAL EQUATIONS AND Classes: 08 PARTIAL DIFFERENTIAL EQUATIONS

Methods for first order ordinary differential equations, multistep methods, methods for systems and higher order ordinary differential equations, methods for elliptic partial differential equations, Neumann and mixed problems, irregular boundary, methods for parabolic and hyperbolic partial differential equations.

Text Books :

Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley & Sons, 10th Edition, 2011.
 Peter V. O'Neil, "Advanced Engineering Mathematics", Cengage Learning, 7th Edition, 2012.
 Michael. D. Greenberg, "Advanced Engineering Mathematics", Prentice Hall, 2nd Edition, 1998.

Reference Books:

1. Erwin Kreyszig, "Instructor's Manual for Advanced Engineering Mathematics", John Wiley & Sons, 9th Edition, 2006.

2.B. S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, 43rd Edition, 2014.

Web References:

- 1.http://folk.ntnu.no/magnud/ressurser/kreyszig.pdf
- 2. https://archive.org/details/SolutionManualOfAdvancedEngineeringMathematicsByErwinKreyszig9thEd ition
- 3.https://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ah UKEwjizbzBo_fNAhXCMo8KHbuvDpUQFggmMAA&url=http%3A%2F%2Fwww.fkm.utm.my%2F ~mazlan%2F%3Fdownload%3DAdMath%2520PO.pdf&usg=AFQjCNGfsmqe2V3SO-lJGK_-PyLcRaRsfg&bvm=bv.127178174,d.c2I

E-Text Books:

1.http://www-elec.inaoep.mx/~jmram/Kreyzig-ECS-DIF1.pdf

2.http://www.max.sourmilk.net/Files/Advanced%20Engineering%20Mathematics%20-

%20Michael%20D.%20Greenberg,%202nd%20Ed.pdf

AERODYNAMICS OF FLIGHT VEHICLES

Cours	se Code	Category	Н	ours / V	Veek	Credits	Maximum Marks			
BAE002			L			C	CIA	SEE		
		Core	3	-	-	3	30	70	100	
Contact	Classes: 45	Tutorial Classes:	Nil	Prac	tical Cla	asses: Nil	:: Nil Total Classes:			
I. AnalyzeII. UnderstIII. ExplainIV. Distingt	should enable the vortex flow and the basic c the concepts o uish instabilitie	e the students to: ws and flow circulati ompressible flow the f laminar boundary la s in transition flow. cameters for high lift	ories fo ayer in	or airfoi compre	ls.		vings.			
UNIT-I		AMIC CHARACTE INITE WINGS	RISTI	CS OF	AIRFO	OILS AND F	LOW	Clas	ses: 08	
planar wing Flow fields theory, ellip	, properties of around finite tical lift distrib	bound vortex, Kutta symmetrical airfoil, p wings, downwash a pution, arbitrary circu additional lift, wingl	properti and ind lation d	es of ca luced d	umbered rag, fun	airfoil, flap damental eo	ped airfo quations	il; Finit of finit	e wing: e wing	
UNIT-II		WINGS AND WING	G-BOI	OY COI	MBINA	TIONS IN		Clas	ses: 10	
Linearized of coefficient subsonic flo supersonic	compressible f for small pert w: Prandtl-Gla flow; Wings a	mach waves, normal low: Flow equation f urbations; Airfoils in uert transformation, and bodies in comp esign rules for wing-f	for sma in com critical pressible	ll pertu pressibl mach n e flows	rbations e flows number, : Prand	, steady sup : Boundary airfoils in tr	ersonic f conditio ansonic f	flows, p ons, air low, air	oressure foils in foils in	
UNIT-III	LAMINAR	BOUNDARY LAYE	ER IN O	COMPI	RESSIB	LE FLOW		Clas	ses: 10	
	on and entrop	boundary layer equa y gradient in the bo							•	
		on for Prandtl number temperature profiles a							versus	

UNIT-IV	FLOW INSTABILITIES AND TRANSITION FROM LAMINAR TO TURBULENT FLOW, AND TURBULENT FLOWS	Classes: 09
and laminar experimenta Description developed to reduction,	s, Reynolds experiment, Tollmien-Schlichting instability and transition, natural flow control, stability of vortex sheets, stratified flows, transition phenomenon illy detecting transition, flow around spheres and circular cylinders; Turb of turbulent field, statistical properties, conservation equations, laminar sub flows in tubes and channels, constant-pressure turbulent boundary layer, tu effects of pressure gradient, Stratford criterion for turbulent separation lity on skin friction, Reynolds analogy: Heat transfer and temperature recover ear flows.	, methods for pulent flows: o layer, fully urbulent drag , effects of
UNIT-V	AIRFOIL DESIGN, MULTIPLE SURFACES, VORTEX LIFT, SECONDARY FLOWS, VISCOUS EFFECTS	Classes: 08
	gn for high C_{lmax} , multiple lifting surfaces, circulation control, streamwise vortici ex lift: Strakes, flow about three dimensional bodies, unsteady lift.	ty, secondary
Text Books	:	
1. Arnold N Design",	4. Kuethe, Chuen- Yen Chow, "Foundations of Aerodynamics, Bases of Aerodyn John Wiley and Sons, Inc, 5 th Edition, 1997.	amic
Reference I	Books:	
2. J. J. Bert	derson, "Fundamentals of Aerodynamics", McGraw-Hill, 5 th Edition, 2001. in, R. M Cummings, "Aerodynamics for Engineers", Pearson, 5 th Edition, 2009. G. Panaras, "Aerodynamic Principles of Flight Vehicles", AIAA Inc, 1 st Edition, "	2012.
Web Refere	ences:	
2. https://w	itpress.mit.edu/books/flight-vehicle-aerodynamics ww.edx.org/course/flight-vehicle-aerodynamics-mitx-16-110x-0 ww.mooc-list.com/course/16110x-flight-vehicle-aerodynamics-edx?static=true	
E-Text Boo	ks:	
2. http://ww	vw.freeengineeringbooks.com/AeroSpace/Aerodynamics-Books.php vw.booksamillion.com/p/Flight-Vehicle-Aerodynamics/Mark-Drela/Q685536838 ww.overdrive.com/media/1553992/flight-vehicle-aerodynamics	3

FLIGHT VEHICLE STRUCTURES

I Semester:							[
Course Code		Category	Hours / Week		Credits	Maximum Marks			
BAE003		Core	L 3	T -	P -	C 3	CIA 30	SEE 70	Total 100
Contact	Classes: 45	Tutorial Classes	: Nil	Pra	ctical Cl	asses: Nil			
I. Identify II. Analyz torsion III. Analyz IV. Develo	should enable y design feature e the behaviou , and shear; e the stability of	e the students to: es of aerospace strue r of thin-walled bea of structural elemen ite element models	ms sub ts and o	ojected determi	to comb	ined loads, in al buckling l	ncluding oads; an	bending d	.,
UNIT-I	STRUCTUR	AL COMPONEN	TS AN	D LO A	ADS OF	AIRCRAF	Г	Cla	asses: 09
components Airframe lo	, Connections;	mponents, Function Airworthiness: Fac nertia loads, Symmo s, Gust loads.	ctors of	f Safety	y- flight	envelope, L	oad facto	or deteri	nination,
UNIT-II	SHEAR FLO WALL SEC	OW AND SHEAR (TIONS	CENT	ER IN	OPEN .	AND CLOS	ED THI	N Cla	asses: 09
Closed Sect	ions: Bradt-Ba le structures, S	ter and elastic axis, tho formula, Single shear flow in single	and m	ulti-ce	ll closed	box structur	es, Semi	monoc	oque and
UNIT-III	THIN PLAT PLATES	E THEORY AND	STRU	CTUR	AL INS	STABILITY	IN THI	N Cla	asses: 09
subject to di Bending of	istributed trans thin plates hav	Pure bending of thi verse load, Combin ing a small initial cu	ed ben urvature	ding ar e, Ener	nd in-pla gy metho	ne loading o od for bendin	of a thin in ng of thir	rectangu 1 plates.	lar plate,
	instability, Ins	elastic buckling of r tability of stiffened	panels	, Failur	e stress :	in plates and	stiffened		
UNIT-IV	BENDING, S AND II	SHEAR AND TOR	RSION	OF TI	HIN-WA	ALLED BEA	AMS-I	Cla	asses: 09
Bending and to bending,	·	Valled Beams: Sym	metrica	al bend	ing. Uns	symmetrical	bending.	Deflect	tions due

of Beams: General stress, strain and displacement relationships for open and single cell closed section thin-walled beams, Shear of open and closed section beams; Torsion of Beams: Torsion of closed and open section beams; Combined Open and Closed Section Beams: Bending, Shear, Torsion.

UNIT-V	STRESS ANALYSIS OF AIRCRAFT COMPONENTS, SMART
UNII-V	MATERIALS AND ADAPTIVE STRUCTURES

Classes: 09

Wing spars, Fuselages, Wings, Fuselage frames and wing ribs, Laminated composite structures, Smart Materials Technologies and Control Applications: Control requirements, Smart Materials-Piezoelectric elements, Electrostrictive elements, Magentostrictive transducers, Electrorheological fluids, Shape memory alloys, Fiber optic sensors, Applications of smart materials, Adaptive Structures: Adaptive aerospace structures-Structural Health Monitoring (SHM), Shape control and active flow, Damping of vibration and noise, Smart skins, Systems.

Text Books:

1. T. H. G. Megson, Butterworth-Heinemann, "Aircraft Structures for Engineering Students", Elsevier Ltd, 4th Edition, 2007.

Reference Books:

- 1. C. T. Sun, "Mechanics of Aircraft Structures", John Wiley & Sons, 2nd Edition, 2006.
- 2. Robert M. Rivello, "Theory and Analysis of Flight Structures", McGraw-Hill, 1969.
- 3. Earnest E. Sechler, Lois G. Dunn, "Airplane Structural Analysis and Design", Dover Publications, 1963.
- 4. J. T. Oden and E. A. Ripperger, "Mechanics of Elastic Structures", McGraw-Hill, 1981.
- 5. H. T. Banks, R. C. Smith, Y. Wang, "Smart Material Structures: Modeling, Estimation and Control", John Wiley & Sons, 1996.
- 6. David Wagg, Ian Bond, Paul Weaver and Michael Friswell (editors), "Adaptive Structures: Engineering Applications", John Wiley & Sons, 2007.

Web References:

- 1. http://www.aero.iisc.ernet.in/courses/flight-vehicle-structures-30
- 2. https://www.scribd.com/doc/28727198/Analysis-and-Design-of-Flight-Vehicle-Structures-by-E-F-Bruhn
- 3. https://www.scribd.com/document/25688785/Bruhn-Analysis-and-Design-of-Flight-Vehicles-Structures

E-Text Books:

- 1. http://www.grancorporation.com/Bruhn_Errata_2nd_Edition_Draft2.
- 2. http://www.abebooks.com/9780961523404/Analysis-Design-Flight-Vehicle-Structures-0961523409/plp
- $3. \ https://www.esdu.com/cgi-bin/ps.pl?sess=unlicensed_1160716085526ycr\&t=col\&p=col_bruhn$

APPLICATION OF MATLAB IN AEROSPACE ENGINEERING LABORATORY

Course Code		Category Hours		ours / We	urs / Week		Maximum Marks			
BAE101			L	Т	Р	Credits C	CIA	SEE	Total	
B	AEIUI	Core	-	-	3	2	30	70	100	
Contact	Contact Classes: Nil		: Nil	Prac	tical Cl	asses: 45	Τα	otal Class	ses: 45	
I. Learn system II. Unders III. Develo	VES: e should enable basic MATLAB a problems. stand the basics of op codes for solv l system analysis	software and us of plotting in M ing structural re	se them t ATLAB	both in t	wo dime	ensional and	d three d	imension	nal.	
	_	LIS	ST OF E	XPERIM	IENTS					
Week-1	MATLAB/SI	MULINK FUN	IDAME	NTALS	FOR AI	EROSPAC	E APPI	JCATIO	ONS	
root locus, aerospace aerospace	tour diagrams, f , Nichols chart, toolbox; M cell blockset, Buildin te-space model;	low diagrams, Nyquist chart, ls, structures an ng simulink lin	movies, linear q nd M-file ear mode	MATLA uadratic es, MEX els: trans	B tool regulate files; fer func	or, state sp Standard si tion model	tinuous ace desi mulink ling in s	transfer gn, digit libraries, imulink,	function al desig simulir zero po	
root locus, aerospace aerospace model, stat input singl State flow	tour diagrams, f , Nichols chart, toolbox; M cell blockset, Buildin	low diagrams, Nyquist chart, ls, structures an ng simulink lin simulink LTI v tool, building N pening, executi	movies, linear q nd M-file ear mode viewer an fulti-inpu	MATLA uadratic es, MEX els: trans id usage ut, multi	B tool regulate files; fer func of it, ec output r	boxes: con or, state sp Standard si tion model juivalent si nodels, buil	tinuous ace desi mulink ling in s mulink I ding sin	transfer gn, digit libraries, imulink, LTI mode nulink S-	function al desig simulir zero po els, sing function	
root locus, aerospace aerospace model, stat input singl State flow	tour diagrams, f , Nichols chart, toolbox; M cell blockset, Buildin te-space model; e output design introduction: O	Tow diagrams, Nyquist chart, ls, structures an ng simulink lin simulink LTI v tool, building N pening, executi ow truth table.	movies, linear q nd M-file ear mode viewer an fulti-inpu	MATLA uadratic es, MEX els: trans id usage ut, multi	B tool regulate files; fer func of it, ec output r	boxes: con or, state sp Standard si tion model juivalent si nodels, buil	tinuous ace desi mulink ling in s mulink I ding sin	transfer gn, digit libraries, imulink, LTI mode nulink S-	function al desig simulir zero po els, sing function	
root locus, aerospace model, stat input singl State flow flow mode Week-2	tour diagrams, f , Nichols chart, toolbox; M cell blockset, Buildin te-space model; e output design introduction: O l, using a state fl	Nyquist chart, Nyquist chart, ls, structures an ng simulink lin simulink LTI v tool, building N pening, executi ow truth table.	movies, linear q nd M-file ear mode viewer an fulti-inpu ing, and	MATLA uadratic es, MEX els: trans id usage it, multi saving st	B tool regulate files; fer func of it, ec output r tate flow	boxes: con or, state sp Standard si tion model juivalent si nodels, buil v models, o	tinuous ace desi mulink ling in s mulink I ding sin	transfer gn, digit libraries, imulink, LTI mode nulink S-	function al desig simulir zero po els, sing function	
root locus, aerospace model, stat input singl State flow flow mode Week-2	tour diagrams, f , Nichols chart, toolbox; M cell blockset, Buildin te-space model; e output design introduction: O l, using a state fl THIN WALL	Nyquist chart, Nyquist chart, ls, structures an ng simulink lin simulink LTI v tool, building M pening, executi ow truth table.	movies, linear q nd M-file ear mode viewer an fulti-inpu ing, and	MATLA uadratic es, MEX els: trans id usage it, multi saving st	B tool regulate files; fer func of it, ec output r tate flow	boxes: con or, state sp Standard si tion model juivalent si nodels, buil v models, o	tinuous ace desi mulink ling in s mulink I ding sin	transfer gn, digit libraries, imulink, LTI mode nulink S-	function al desig simulir zero po els, sing function	
root locus, aerospace model, stat input singl State flow flow mode Week-2 Software d Week-3	tour diagrams, f , Nichols chart, toolbox; M cell blockset, Buildin te-space model; e output design introduction: O l, using a state fl THIN WALL levelopment for t	Nyquist chart, Nyquist chart, ls, structures an ng simulink lin simulink LTI v tool, building N pening, executi ow truth table. ED BEAMS thin walled bean DING	movies, linear q nd M-file ear mode riewer an fulti-inpu ing, and ms using	MATLA uadratic es, MEX els: trans ad usage at, multi saving st finite ele	B tool regulato files; fer func of it, ec output r tate flow	boxes: con or, state sp Standard si tion model juivalent si nodels, buil w models, o ethod.	tinuous ace desi mulink ling in s mulink I ding sin	transfer gn, digit libraries, imulink, LTI mode nulink S-	function al desig simulir zero po els, sing function	
root locus, aerospace model, stat input singl State flow flow mode Week-2 Software d Week-3	tour diagrams, f , Nichols chart, toolbox; M cell blockset, Buildin te-space model; e output design t introduction: O l, using a state fl THIN WALL levelopment for the PLATE BEN	Tow diagrams, Nyquist chart, Is, structures an ng simulink lin simulink LTI v tool, building N pening, executi ow truth table. ED BEAMS thin walled bean DING Plate bending us	movies, linear q nd M-file ear mode riewer an fulti-inpu ing, and ms using	MATLA uadratic es, MEX els: trans ad usage at, multi saving st finite ele	B tool regulato files; fer func of it, ec output r tate flow	boxes: con or, state sp Standard si tion model juivalent si nodels, buil w models, o ethod.	tinuous ace desi mulink ling in s mulink I ding sin	transfer gn, digit libraries, imulink, LTI mode nulink S-	function al desig simulir zero po els, sing function	
root locus, aerospace model, stat input singl State flow flow mode Week-2 Software d Week-3 Software d Week-4	tour diagrams, f , Nichols chart, toolbox; M cell blockset, Buildin te-space model; e output design t introduction: O l, using a state fl THIN WALL levelopment for the PLATE BEN	Tow diagrams, Nyquist chart, ls, structures and g simulink line simulink LTI v tool, building M pening, executi ow truth table. ED BEAMS thin walled bear DING Plate bending us	movies, linear q nd M-file ear mode riewer an fulti-inpu ing, and ms using sing finit	MATLA uadratic es, MEX els: trans id usage it, multi saving st finite ele e elemen	B tool regulato fer func of it, ec output r tate flow	boxes: con or, state sp Standard si tion model juivalent si nodels, buil v models, o ethod.	tinuous ace desi mulink ling in s mulink I ding sin	transfer gn, digit libraries, imulink, LTI mode nulink S-	function al desig simulir zero po els, sing function	
root locus, aerospace model, stat input singl State flow flow mode Week-2 Software d Week-3 Software d Week-4	tour diagrams, f , Nichols chart, toolbox; M cell blockset, Buildin te-space model; e output design introduction: O l, using a state fl THIN WALL levelopment for the PLATE BENT levelopment for 1 BEAMS ANA	Iow diagrams, Nyquist chart, Is, structures an ng simulink lin simulink LTI v tool, building M pening, executi ow truth table. ED BEAMS thin walled bean DING Plate bending us LYSIS Beams analysis	movies, linear q nd M-file ear mode riewer an fulti-inpu ing, and ms using sing finit	MATLA uadratic es, MEX els: trans id usage it, multi saving st finite ele e elemen	B tool regulato fer func of it, ec output r tate flow	boxes: con or, state sp Standard si tion model juivalent si nodels, buil v models, o ethod.	tinuous ace desi mulink ling in s mulink I ding sin	transfer gn, digit libraries, imulink, LTI mode nulink S-	function al desig simulir zero po els, sing function	
root locus, aerospace model, stat input single State flow flow mode Week-2 Software d Week-3 Software d Week-4 Software d Week-5	tour diagrams, f , Nichols chart, toolbox; M cell blockset, Buildin te-space model; e output design introduction: O I, using a state fl THIN WALL levelopment for the BEAMS ANA levelopment for T	Tow diagrams, Nyquist chart, Is, structures an ng simulink lin simulink LTI v tool, building N pening, executi ow truth table. LED BEAMS thin walled bean DING Plate bending us LYSIS Beams analysis NALYSIS	movies, linear q nd M-file ear mode riewer an fulti-inpu ing, and ms using sing finit using fin	MATLA uadratic es, MEX els: trans ad usage it, multi saving st finite ele e elemen iite elemen	AB tool regulato files; fer func of it, ec output r tate flow ement m t metho	boxes: con or, state sp Standard si tion model juivalent si nodels, buil w models, d ethod. d.	tinuous ace desi mulink ling in s mulink I ding sin	transfer gn, digit libraries, imulink, LTI mode nulink S-	function al desig simulir zero po els, sing function	
root locus, aerospace model, stat input singl State flow flow mode Week-2 Software d Week-3 Software d Week-4 Software d Week-5 Software d Week-5	tour diagrams, f , Nichols chart, toolbox; M cell blockset, Buildin te-space model; e output design introduction: O l, using a state fl THIN WALL levelopment for the BEAMS ANA levelopment for T BEAMS ANA levelopment for T TRUSSES AN levelopment for T	Iow diagrams, Nyquist chart, Is, structures an ag simulink lin simulink LTI v tool, building M pening, executi ow truth table. LED BEAMS thin walled bean DING Plate bending us LYSIS Beams analysis NALYSIS Trusses analysis LS ANALYSIS	movies, linear q nd M-file ear mode viewer an fulti-inpu ing, and ms using sing finit using finit	MATLA uadratic es, MEX els: trans ad usage at, multi saving su finite ele e elemen nite elemen	AB tool regulato files; fer func of it, ec output r tate flow ement m t method ent method	boxes: con or, state sp Standard si tion model juivalent si nodels, buil v models, buil v models, o ethod.	tinuous ace desi mulink ling in s mulink I ding sin	transfer gn, digit libraries, imulink, LTI mode nulink S-	function al desig simulir zero po els, sing function	
root locus, aerospace model, stat input singl State flow flow mode Week-2 Software d Week-3 Software d Week-4 Software d Week-5 Software d Week-5	tour diagrams, f , Nichols chart, toolbox; M cell blockset, Buildin te-space model; e output design introduction: O l, using a state fl THIN WALL levelopment for the BEAMS ANA levelopment for the TRUSSES AN levelopment for the TRUSSES AN	Iow diagrams, Nyquist chart, Is, structures an ag simulink lin simulink LTI v tool, building M pening, executi ow truth table. LED BEAMS thin walled bean DING Plate bending us LYSIS Beams analysis NALYSIS Trusses analysis LS ANALYSIS	movies, linear q nd M-file ear mode viewer an fulti-inpu ing, and ms using sing finit using finit	MATLA uadratic es, MEX els: trans ad usage at, multi saving su finite ele e elemen nite elemen	AB tool regulato files; fer func of it, ec output r tate flow ement m t method ent method	boxes: con or, state sp Standard si tion model juivalent si nodels, buil v models, buil v models, o ethod.	tinuous ace desi mulink ling in s mulink I ding sin	transfer gn, digit libraries, imulink, LTI mode nulink S-	function al desig simulir zero po els, sing function	
root locus, aerospace model, stat input singl State flow flow mode Week-2 Software d Week-3 Software d Week-4 Software d Week-5 Software d Week-6 Software d Week-7	tour diagrams, f , Nichols chart, toolbox; M cell blockset, Buildin te-space model; e output design t introduction: O I, using a state fl THIN WALL levelopment for t BEAMS ANA levelopment for t TRUSSES AN levelopment for t THIN SHELL levelopment for t	Iow diagrams, Nyquist chart, ls, structures and rg simulink line simulink LTI ve tool, building We pening, execution ow truth table. LED BEAMS thin walled bear DING Plate bending use LYSIS Beams analysis NALYSIS Trusses analysis LS ANALYSIS Thin shells anal DN OF STRUC	movies, linear q nd M-file ear mode riewer an fulti-inpuing, and ms using sing finit using finit using finit s using fi s using fi TURES	MATLA uadratic es, MEX els: trans id usage it, multi saving st finite ele e elemen nite elemen nite elemen <u>g finite e</u>	AB tool regulato fer func of it, ec output r tate flow ement m t metho ent metho ent metho lement n NSTRU	boxes: con or, state sp Standard si tion model juivalent si nodels, buil w models, buil w models, o ethod. d. d. d. hod. <u>method.</u>	tinuous ace desi mulink ling in s mulink I ding sin construct	transfer gn, digit libraries, imulink, LTI mode nulink S- ting a sin	function al desig , simulir zero po els, sing function mple sta	

Week-8	SOLUTION OF BURGERS EQUATION
Software de of fluid flov	evelopment for simulation in solution of burgers equation using explicit McCormack method
Week-9	BLASIUS SOLUTION FOR LAMINAR BOUNDARY LAYER OVER A FLAT PLATE
Software de fluid flows.	evelopment for simulation in Blasius solution for laminar boundary layer over a flat plate of
Week-10	RIEMANN SOLVER FOR SHOCK TUBE PROBLEM
Software de	evelopment for simulation in Riemann solver for shock tube problem of fluid flows.
Week-11	SIMULATION OF AIRCRAFT MOTION
	experiment in dynamics and control using MATLAB and simulink to Simulate aircraft motion gitudinal dynamics, lateral dynamics.
Week-12	SIMULATION OF AIRCRAFT MOTION WITH ILLUSTRATION OF F-16 MODEL
Six-degrees simulink.	s-of-freedom simulation of aircraft motion with illustration of F-16 model using MATLAB and
Week-13	SIMULATION OF RE-ENTRY VEHICLE DYNAMICS
Simulation	of re-entry vehicle dynamics for ballistic re-entry and maneuvering re-entry.
Week-14	SIMULATION OF NON-LINEAR CONTROL SYSTEM
Simulation	of non-linear control system for controlling roll dynamics of a fighter aircraft.
Week-15	SIMULATION OF SATELLITE ATTITUDE DYNAMICS
a. Torque	of the following relating to satellite attitude dynamics: free rotation of axisymmetric and asymmetric spacecraft. maneuvers of spin- stabilized spacecraft.
Reference	Books:
 2007. Steven ⁷ Edition, Ashish ⁷ 	Colgren, "Basic MATLAB, Simulink, and State Flow", AIAA Education Series, 1 st Edition, T. Karris, "Introduction to simulink with engineering application", Orchard Publication, 3 rd 2006. Tewari, "Atmospheric and space flight dynamics", Birkhauser Publication, 1 st Edition, 2007 ari, "Modern control design with MATLAB and simulink", Wiley, 1 st Edition, 2002.
Web Refer	rences:
	ww.springer.com/us/book/9780817644376 www.scribd.com/doc/53680598/Modern-Control-Design-With-MATLAB-and-SIMULINK

FLIGHT DYNAMICS AND CONTROL

Course Code		Category	Category Hours / Week				Maximum Mark		
BAE004		Core	L	T P		С	CIA	SEE	Tota
		Core	3	-	-	3	30	70	100
Contact (t Classes: 45 Tutorial Classes: Nil Practical Classes: Nil To			Tota	al Classes: 45				
I. Revie II. Deve III. Conv IV. Identi	e should ena ew basics of lop governin ert nonlinear ify different	able the students to stability and contro- g equation of moti equation to a set of types of instabilities ormance of flight co	ol performations for aircons for airconformation of the second se	eraft. uation u er in long	sing sma gitudinal				
UNIT-I	INTROD	UCTION						Classe	es: 09
aerodynam	nics of airfoil	ernoulli's principle ls and wings, slend amics of complete	er body aei	odynam	ics, win	g-body interf	erence, en		ction, e
aerodynam aerodynam	nics of airfoil nics, aerodyn	ls and wings, slend	er body aer aircraft, ae	odynam rodynar	iics, win nic force	g-body interf	erence, en		2
aerodynam aerodynam UNIT-II Introductic and endura lateral stab linear dyna plane, mor	MECHAN MECHAN on, speeds of ance estimation bility and sta amics; Equation ments of iner luced aerod	ls and wings, slend amics of complete	er body aer aircraft, ae BRIUM F t, basic airc of equilibri erimental d croduction, ons and the	Craft per um fligh aircraft dynami	formance nic force formance nt, longit ation of dynamic cs of rig	e, conditions tudinal static aircraft stabil es, aircraft mo did bodies, air	for minir stability, r ity margin otion in a rcraft equa	Classe num drag maneuve ns; Aircr two dime ations of	es: 09 g, range rability aft non ensiona motion
aerodynam aerodynam UNIT-II Introductic and endura lateral stab linear dyna plane, mor motion-inc equations o	MECHAN MECHAN on, speeds of ance estimation oility and sta amics; Equate nents of iner luced aerod of motion.	Is and wings, slend amics of complete NICS OF EQUILI f equilibrium flight ion, trim, stability bility criteria, expe- tions of motion, inf tia, Euler's equation ynamic forces an PERTURBATION	er body aer aircraft, ae BRIUM F t, basic airc of equilibri erimental d troduction, ons and the d moment	CLIGHT Craft per um fligl etermina aircraft dynami s, non-1	formance formance nt, longit ation of dynamic ces of rig linear d	g-body interfess and momer e, conditions tudinal static aircraft stabil es, aircraft mo gid bodies, air ynamics of ED, DECOU	for minir stability, r ity margin otion in a craft equa aircraft n	Classe num drag maneuve ns; Aircr two dime ations of notion, t	es: 09 g, rang rability aft non ensiona motior trimmed es: 09
aerodynam aerodynam UNIT-II Introductic and endura lateral stab linear dyna plane, mor motion-inc equations o UNIT-III Small pert concept, d motion in	MECHAN MECHAN on, speeds of ance estimation bility and sta amics; Equate ments of iner luced aerod of motion.	Is and wings, slend hamics of complete NICS OF EQUILI f equilibrium flight ion, trim, stability bility criteria, expe- tions of motion, int tia, Euler's equation ynamic forces an PERTURBATION	er body aer aircraft, ae BRIUM F t, basic airc of equilibri erimental d troduction, ons and the d moment NS AND T Nearizing th ity axis, de	The secoupled	formance formance ation of dynamic cs of rig linear d EARIS	g-body interfess and moment es and moment e, conditions tudinal static aircraft stabil es, aircraft modified bodies, air ynamics of ED, DECOU porces and motion	for minir stability, n ity margin otion in a craft equa aircraft n PLED ments: Sta n, decoup	Classe num drag maneuve ns; Aircr two dime ations of notion, t Classe ability de led equa	es: 09 g, rang rability aft nor ensiona motior trimme es: 09 erivativ tions of

UNIT-IV LONGITUDINAL AND LATERAL LINEAR STABILITY AND CONTROL Classes: 09

Dynamic and static stability, modal description of aircraft dynamics and the stability, aircraft lift and drag estimation, estimating the longitudinal aerodynamic derivatives, estimating the lateral aerodynamic derivatives, aircraft dynamic response, numerical simulation and non-linear phenomenon longitudinal and lateral modal equations, methods of computing aircraft dynamic response, system block diagram representation, atmospheric disturbance, deterministic disturbances, principles of random atmospheric disturbance modeling, application to atmospheric turbulence modeling, aircraft non-linear dynamic response phenomenon.

UNIT-V AIRCRAFT FLIGHT CONTROL

Classes: 09

Automatic flight control systems: An introduction, functions of a flight control system, integrated flight control system design.

Text Books:

1. Vepa, R., "Flight Dynamics, Simulation and Control: For Rigid and Flexible Aircraft", CRC Press, Taylor and Francis Group, 2015.

Reference Books:

- 1. Wayne Durham, "Aircraft Flight Dynamics and Control"
- 2. Robert F. Stengel "Flight Dynamics".

Web References:

- 1. http://www.engin.umich.edu/aero/research/areas/controls
- 2. http://nptel.ac.in/courses/101106043/
- 3. http://www.princeton.edu/~stengel/MAE331Lectures.html

E-Text Books:

- 1. http://as.wiley.com/WileyCDA/WileyTitle/productCd-1118646819.html
- 2. http://press.princeton.edu/titles/7909.html
- 3. http://www.slideshare.net/turnt/aircraft-flight-dynamics-and-control-33771964

AEROSPA	CE PROPULSION	

Course Code	Category	Ho	Hours / Week		Credits	Max	Maximum Mark	
DA E005	Corre	L	Т	Р	С	CIA	SEE	Total
BAE005	Core	3	-	-	3	30	70	100
Contact Classes: 4	5 Tutorial Classes	lasses: Nil Practi		actical (Classes: Nil	To	Total Classes: 45	
. Understand the I. Understand ana II. Analyze and des	nable the students to: basic working principles ysis and design principle ign different components ign different components	s of IC s of gas	engine turbine	s. e.		-		
UNIT-I AIR-BI	REATHING ENGINES						Class	es: 09
INIT-II AIRCR	ner, turbofan engine, tur AFT ENGINE INLETS USTORS AND AFTER	5, EXH	AUST		LES,		Class	es: 09
Subsonic inlets: Fu parameters; Supers characteristics; Exha nozzle, variable noz Afterburners: Geom	nction, design variable onic inlets: Compress ust nozzles: primary no zle, and performance ma etries, flame stability, i rmance maps, fuel types	s, oper ion pro zzle, fa aps, thr gnition	ating ocess, in nozz ust rev and e	types, de, conv ersers a ngine s	construction verging nozzl nd thrust vec	, losse e, conve toring,	s, perf erging-c Combus	formanc livergin stors an
UNIT-III AXIAL	FLOW COMPRESSO	RS AN	D TUR	BINES			Class	es: 09
erodynamic forces	sors: Geometry, definition on compressor blades, ro ons or triangles, single st	tor and	stator	frames	of reference, o	compres	sor perf	ormanc
	es: Geometry, configura	ation, c	ompari	son wi	th axial flow	compr	essors,	velocit

		Classes: 09
UNIT-IV	SOLID-PROPELLANT ROCKET MOTORS	

Background description: Classification of rocket propulsion systems; Performance of an ideal rocket, rocket thrust equation, total and specific impulse, effective exhaust velocity, rocket efficiencies, characteristic velocity, thrust coefficient; Description of solid propellant rocket motor, solid propellant grain configurations, homogeneous propellant, heterogeneous or composite propellant, different grain cross sections, propellant burning rate, combustion of solid propellants, physical and chemical processes, ignition process, combustion instability; Hybrid propellant rockets: Hybrid rocket operation and hybrid rocket characteristics.

UNIT-V LIQUID PROPELLANT ROCKET ENGINES: PROPELLANT TYPES

Classes: 09

Bipropellant, monopropellant, cold gas propellant, cryogenic propellant, storable propellants, gelled propellant; Propellant Storage, different propellant tank arrangements, propellant feed system-pressure feed, turbopump feed; Thrust chambers, injectors, combustion chamber, nozzle, starting and ignition, variable thrust; Combustion of liquid propellants: Combustion process, combustion instability, thrust vector control.

Text Books:

- 1. Ronald D. Flack, "Fundamentals of Jet Propulsion with Applications", Cambridge University Press, Edition, 2011.
- George P. Sutton, Oscar Biblarz, "Rocket Propulsion Elements", Wiley India Pvt. Ltd, 7thEdition, 2010.

Reference Books:

- 1. Jack D. Mattingly, "Elements of Propulsion: Gas Turbines and Rockets", AIAA Education Series, Edition, 2006.
- 2. Saeed Farokhi, "Aircraft Propulsion", Wiley, 2ndEdition, 2014.
- 3. David R. Greatrix, "Powered Flight: The Engineering of Aerospace Propulsion", Springer, Edition, 2012

Web References:

- 1. http://www.aero.iisc.ernet.in/page/propulsion
- 2. https://afreserve.com/aerospace-propulsion
- 3. http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-50-introduction-to-propulsion-systems-spring-2012/Syllabus/

E-Text Books:

- 1. http://as.wiley.com/WileyCDA/WileyTitle/productCd-1118307984.html
- 2. http://www.freeengineeringbooks.com/AeroSpace/Propulsion-Books.php
- 3. http://www.springer.com/us/book/9781447124849?token=prtst0416p

II Semester: AE Credits Hours / Week **Course Code** Category **Maximum Marks** L Т Р С CIA SEE Total **BAE006** Core 3 _ 3 30 70 100 **Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45 OBJECTIVES:** The course should enable the students to: Understand complexity and functioning of airport operation systems. I. Understand many operational issues involved in handling passengers, freight and aircraft at airports. II. UNIT-I THE AIRPORT AS AN OPERATIONAL SYSTEM Classes: 08 The airport as a system; National airport systems; The function of the Airport; Centralized and decentralized passenger terminal systems; The complexity of the airport operation; Management and operational structures; Airport influences on aircraft performance characteristics: Aircraft departure performance; Approach and landing performance; Safety considerations; Automatic landing; Operations in inclement weather; Specific implications of the Airbus A380; Operational Readiness: Aerodrome certification; Operating constraints; Operational areas; Airfield INspections; Maintaining readiness. UNIT-II **GROUND HANDLING AND BAGGAGE HANDLING** Classes: 10 Ground handling: Passenger handling; Ramp handling; Aircraft ramp servicing; Ramp layout; Departure control; Division of ground handling responsibilities; Control of ground handling efficiency; Baggage handling: Context, history and trends; Baggage handling processes; Equipment, systems and technologies, process and system design drivers; Organization; Management and performance metrics. UNIT-III PASSENGER TERMINAL AND CARGO OPERATIONS Classes: 10 Passenger terminal operations: Functions of the passenger terminal; Terminal functions; Philosophies of terminal management; Direct passenger services; Airline related passenger services; Airline related operational functions; Government requirements; Non-passenger related airport authority functions; processing very important persons; Passenger information systems; Space components and adjacencies. Aids to circulation; Hubbind considerations; Cargo operations: The cargo market; Expediting the movement; Flow through the terminal; Unit load devices; Handling within the terminal; Cargo apron operation; Facilitation; Examples of modern cargo terminal design and operation; Cargo operations by the integrated carriers. **UNIT-IV** AIRPORT TECHNICAL SERVICES AND ACCESS Classes: 09 Airport technical services: The scope of technical services; Safety management system; Air traffic control; Tele communications; Meteorology; Aeronautical information; Airport access: Access as part of the airport system; access users and modal choice; access interaction with passenger; access modes; In town and other off; airport terminals; Factors affecting access; mode choice.

AIRPORT PLANNING AND OPERATION

UNIT-V OPERATIONAL ADMINISTRATION AND PERFORMANCE Classes: 08

Operational administration and performance: Strategic context; Tactical approach to administration of airport operations; Managing operational performance; Key success factors for high; performance; airport operations control centers: The concept of airport operations; airport operations control system; the airport operations consideration; airport performance monitoring; design and equipment considerations; organizational and human resources considerations; leading AOCCSs; best practices in airport operations.

Text Books :

- 1. Norman J. Ashford, H. P. Martin Stanton, Clifton A. Moore, Pierre Coutu, "Airport Operations", McGraw Hill, 3rd Edition, 2013.
- 2. R. Horonjeff, F. X. McKelvey, W. J. Sproule, S. B. Young, "Planning and Design of Airports", McGraw Hill, 5th Edition, 2010.

Reference Books:

- 1. A. Kazda, R. E. Caves, "Airport Design and Operation", Elsevier, 2nd Edition, 2007.
- 2. A. T. Wells, S. B. Young, "Airport Planning and Management", McGraw Hill, 6th Edition, 2011.

Web References:

- 1. http://memberfiles.freewebs.com/94/47/55224794/documents/airport%20planning%20and%20manage ment.pdf
- 2. https://books.google.co.in/books?id=RYR6cu4YSBcC&dq=Planning%20and%20Design%20of%20Ai rports&source=gbs_similarbooks

- 1. https://accessengineeringlibrary.com/browse/airport-planning-and-management-sixth-edition
- 2. http://www.only4engineer.com/2014/10/planning-and-design-of-airports-by.html

CFD/CSA SIMULATIONS USING ANSYS/NASTRAN LABORATORY

Cour	se Code	Category	Hou	rs / We	eek	Credits	Maximum Marks				
DÅ	E102		L	Т	Р	С	CIA	SEE	Total		
BA	E102	Core	-	-	3	2	30	70	100		
Contact	Classes: Nil	Tutorial Cla	sses: Nil	Pra	ctical C	Classes: 36	Т	otal Clas	ses: 36		
I. Identif structu II. Descri III. Solve j	e should enab y the strength ural mechanics be steps necess practical proble	sary to solve a pa	NASTRA	blem.			n of flu	iid mech	anics and		
	T	LI	ST OF EX	PERIN	IENTS						
Week-1	AEROSPA	CE STRUCTUR	RAL ANAI	YSIS U	USING	ANSYS-I					
Structural	analysis of air	craft wing									
Week-2	AEROSPA	CE STRUCTUR	RAL ANAI	YSIS U	USING	ANSYS-II					
Structural	analysis of airc	craft wing (comp	osite mater	ial)							
Week-3	AEROSPA	CE STRUCTUR	RAL ANAI	YSIS U	USING	ANSYS-III	[
Analysis of	f fuselage										
Week-4	AEROSPA	CE STRUCTUR	RAL ANAI	YSIS U	USING	ANSYS-IV					
Rocket mo	tor case analys	sis									
Week-5	AEROSPAC	CE STRUCTUR	RAL ANAI	YSIS U	USING	ANSYS-V					
Structural	and thermal an	alysis of rocket 1	nozzles								
Week-6	AEROSPA	CE STRUCTUR	RAL ANAI	YSIS U	USING	ANSYS-VI					
Fractural n	nechanics of cr	cack propagation									
Week-7	AEROSPAC	CE STRUCTUR	RAL ANAI	YSIS	USING	NASTRA-	[
Structural	analysis of airc	craft wing									
Week-8	AEROSPAC	CE STRUCTUR	RAL ANAI	YSIS U	USING	NASTRA-	I				
<u> </u>	analysis of airc										

Week-9	AEROSPACE STRUCTURAL ANALYSIS USING NASTRA-III
Analysis of	fuselage
Week-10	AEROSPACE STRUCTURAL ANALYSIS USING NASTRA-IV
Rocket mo	tor case analysis
Week-11	AEROSPACE STRUCTURAL ANALYSIS USING NASTRA-V
a) Stru	ictural and thermal analysis of rocket nozzles
b) Fra	ctural mechanics of crack propagation
Week-12	FLOW SIMULATION USING ANSYS/FLUENT
Simulation	of flow past airfoils and wings
Reference	Books:
	ering analysis with ANSYS software, Y. Nakasone, S.Yoshimoto, T.A. Stolarski, Elsevier
	ation, 2006.
	Vastran 2014.1 Quick Reference Guide, Jun. 2015.
	tational Fluid Mechanics And Heat Transfer, Second Edition, John C.Tannehill,
	Anderson, Richard H.Pletcher, Taylor & Francis Publication, 1997. Itational Fluid Dynamics T.J.Chug, Cambridge University Press, 2002.
4. Compu	Rational Fluid Dynamics 1.J.Chug, Cambridge Oniversity 11ess, 2002.
Web Refer	ences:
	esource.ansys.com/staticassets/ANSYS/staticassets/resourcelibrary/article/AA-V4-I1-
	ng-Simulation-to-Future-Engineers.pdf
	vww.autodesk.in/products/simulation/overview
3. http://v	vww.serc.iisc.in/facilities/ansys-13-0-cfd/

Course Code		Category	Ho	ours / V	Veek	Credits	Ma	ximum 1	Marks	
			L	Т	Р	С	CIA	SEE	Total	
BAE2	201	Elective	3	-	-	3	30	30 70 10		
Contact Cla	asses: 45	Tutorial Classes	: Nil	Pra	ictical (Classes: Nil	То	tal Clas	ses: 45	
. Give an I. Provide II. Teach ba V. Serve as	should ena understand an orientati asic numeri an introdu	able the students to: ing of phenomena ar ion on classical and r ical methods of design ction for possible fur action to current rese	nd theor nodern gn. ther stu	method dies.		C				
U NIT-I	FATIGU	E OF STRUCTUR	ES					Class	ses: 08	
liagrams, N	lotches a	e limit, Effect of n nd stress concentra Notched S-N curves.						-		
U NIT-II	STATIST	FICAL ASPECTS ()F FAT	IGUE	BEHA	VIOUR		Class	ses: 10	
	g Analysis	cle fatigue, Coffin-M s of load histories, C								
UNIT-III	PHYSIC	AL ASPECTS OF I	FATIG	UE				Class	ses: 10	
	Ç	ack initiation, Crack acture surfaces.	growth	, Final	fracture	2,.				
UNIT-IV	FRACTU	JRE MECHANICS	5					Class	ses: 09	
Strangth of	theory to d	lies, potential energy luctile materials, Str	ess anal	ysis of						
of Griffith's	tress intens	sity factors for typica								

FATIGUE AND FRACTURE MECHANICS

- 1. D. Brock, "Elementary Engineering Fracture Mechanics", Noordhoff International Publishing Co., London, 1994.
- 2. J. F. Knott, "Fundamentals of Fracture Mechanics", Butterworth & Co., (Publishers) Ltd., London, 1983.

Reference Books:

- 1. W. Barrois and L. Ripley, "Fatigue of Aircraft Structures", SPergamon Press, Oxford, 1983.
- 2. C. G. Sih, "Mechanics of Fracture", Vol.1 Sijthoff and Noordhoff International Publishing Co., Netherland, 1989.
- 3. S.T. Rolfe and J.M. Barsom, "Fracture and Fatigue Control in Structure".

Web References:

- 1. http://ocw.mit.edu/courses/materials-science-and-engineering/3-35-fracture-and-fatigue-fall-2003.
- 2. http://www.eng.ox.ac.uk/solidmech/research/fatigue-fracture-mechanics.
- 3. http://www.fatiguefracture.com

E-Text Books:

1. https://books.google.co.in/books/about/Fatigue_and_Fracture.html?id=rE5K9zBrprAC&redir_esc=y

- 2. http://www.springer.com/us/book/9789024725809
- 3. https://www.scribd.com/doc/111356174/D-Broek-Elementary-Engineering-Fracture-MechanicsV

DESIGN ANALYSIS OF COMPOSITE STRUCTURES

Cours	e Code	Category	Ho	ours / W	eek	Credits	Ma	aximum I	Marks
DAT	E 202		L	Т	Р	С	CIA	SEE	Total
BAI	E202	Elective	3	-	-	3	30	70	100
Contact C	Classes: 45	Tutorial Classe	es: Nil	Prac	tical Cl	asses: Nil	Tot	al Classe	s: 45
I. Develo II. Classif	e should enal p advance res y the compos	ble the students to search and develops ite materials based hods for analysis th	ment proj on matrix	x and fib	ores.	te materials	and its f	abricatior	1.
UNIT-I	PROPERT LAMINAT	TES OF CONSTI 'ES	TUENT	MATEI	RIALS	& COMPO	SITE	Clas	ses: 09
matrices ar	nd filaments	ed composite plat of different types. vith fibers and matu	Netting	-	· •				
UNIT-II	ELASTIC	PROPERTIES						Clas	ses: 09
		f isotropic, orthot rientation of fibers		d anisot	ropic m	aterials, tra	nsformat	ion of m	aterial
UNIT-III	METHOD	S OF ANALYSIS	- I & ME	CTHOD	S OF AI	NALYSIS-	п	Clas	ses: 09
		approach to deter ty approach and ma		•			lus and	Poisson's	ratio.
-	-	ress –strain relation I strength theories,						geometrie	c axes,
UNIT-IV	ANALYSI	S OF LAMINATE	ED BEAN	MS ANI) PLAT	ES		Clas	ses: 09
antisymmet	tric & unsyn	Classical lamina nmetric composite is of laminated bea	s with c	ross ply					
UNIT-V	SHEAR DI	EFORMATION A	NALYS	IS & BU	J CKLI N	NG ANALY	SIS	Clas	ses: 09
theories. nt Buckling a	h order theor	minated composite			-				

- 1. Agarwal.B.D, Broutman.L.J, "Analysis and Performance of Fibre Composites", John Wiley and sons, New York, 1980.
- 2. Lubin.G, Von. Nostrand, "Advanced Plastics and Fibre Glass", Reinhold Co. Newyork, 1989.

Reference Books:

- 1. Gupta.L, Advanced Composite Materials, Himalayan Books, NewDelhi, 1998.
- 2. Jones.R.M, Mechanics of Composite Materials, McGraw Hill Kogakusha ltd. Tokyo.
- 3. Reddy. J.N, Mechanics of Composite Materials,

Web References:

- 1. http://onlinelibrary.wiley.com/book.
- 2. https://www.asme.org/products/courses/design-analysis-fabrication-composite-structures.
- 3. http://as.wiley.com/WileyCDA/WileyTitle/productCd-1118401603.html

- 1. https://www.bookshout.com/ebooks/design-and-analysis-of-composite-structures
- 2. https://www.overdrive.com/media/1303069/design-and-analysis-of-composite-structures
- 3. http://www.lehmanns.de/technik/25035754-9781119957065-design-and-analysis-of-compositestructures

AEROELASTICITY

Course	e Code	Category	Ho	ours / W	eek	Credits	Maximum Marks			
BAE	2002		L	Т	Р	С	CIA	SEE	Total	
DAE	203	Elective	3	-	-	3	30 70		100	
Contact C	lasses: 45	Tutorial Class	es: Nil	Prac	tical Cl	asses: Nil	Tot	al Class	es: 45	
I. Outline aeroelas II. Describe compon III. Construe critical s	hould enable importance of tic problems. e structural dy ents and their ct theoretical b speeds.	the students to: aeroelasticity in f mamic and steady role in aeroelastic basis for the soluti	and unste tity. on of stat	eady aero	odynami lastic pro	cs aspects o oblems an es	f airfran stimate l	ne and it oads and		
UNIT-I	AEROELA	STIC PHENOM	ENA					Classe	s: 08	
		problems; The aeron nstabilities. Influe							Design	
UNIT-II	DIVERGE	NCE OF A LIFT	ING SUF	RFACE				Classe	s: 10	
for simple	rectangular	lealizations; Strip wings, 'Semirigi proximations, num	d'assur	nption	and ap	proximate	solution	s; Gen		
UNIT-III	STEADY S	TATE AEROLA	STIC PR	ROBLEN	MS			Classe	s: 08	
and successiv	e approximat	on control, critical ions, lift distribution astic deformation of	on, rigid a	and elast	ic wings	5.	ency, se	mi rigic	l theory	
UNIT-IV	FLUTTER	PHENOMENON	1					Classe	s: 10	
analysis, two	o dimensiona Galerkin meth	ers, stiffness criter l thin airfoils ir od for critical flu	n steady itter speed	incomp d, stabili	ressible ty of	flow, quas disturbed r	si stead	y aeroc solution	lynamic of the	

UNIT-V EXAMPLES OF AEROELASTIC PROBLEMS

Galloping of transmission lines and Flow induced vibrations of transmission lines, tall slender structures and suspension bridges.

Text Books:

- 1. Y.C. Fung, "An Introduction to the Theory of Aeroelasticity", John Wiley & Sons Inc., New York, 2008.
- 2. E.G. Broadbent, "Elementary Theory of Aeroelasticity", Bun Hill Publications Ltd., 1986.

Reference Books:

- 1. R.L. Bisplinghoff, H.Ashley, and R.L. Halfmann, "Aeroelasticity", 2ndEdition Addison Wesley Publishing Co., Inc., 1996.
- 2. R.H. Scanlan and R. Rosenbaum, "Introduction to the study of Aircraft Vibration and Flutter", Macmillan Co., New York, 1981.
- 3. R. D. Blevins, "Flow Induced Vibrations", Krieger Pub Co., 2001

Web References:

- 1. http://www.efunda.com/math/math_home/math.cfm
- 2. http://ocw.mit.edu/resources/#Mathematics
- 3. http://www.sosmath.com/
- 4. http://mathworld.wolfram.com/

- 1. http://www.e-booksdirectory.com/details.php?ebook=10166
- 2. http://www.e-booksdirectory.com/details.php?ebook=7400re

Cours	e Code	Category	Но	urs / V	Veek	Credits	Maximum Mark			
DAI	E204	Elective	L	Т	Р	С	CIA	SEE	Tota	
DAI	C2V4	Elective	3	-	-	3	30	70	100	
Contact (Classes: 45	Tutorial Class	es: Nil	Pra	ctical C	lasses: Nil	Tota	l Classes	Classes: 45	
II. Explain III. Develop	and deploy th	UAV systems and ne UAV systems.				SYSTEMS		Clas	ses: 1(
system.		egories of UAV s		roles	of unm	anned aircra	ft, compo			
Introduction design; Aer Aerodynamic Aircraft, Ch Tactical Airc Hybrid Airc Aerodynamic Equipment,	to design and odynamics ar cs, Response aracteristics o craft, Close-ra- craft Configu- cs, Structures Design for St	UAV SYSTEMS d selection of the d airframe confi to Air Turbu f Aircraft Types-I nge/Battlefield Air rations, Aspects and Mechanisms, ealth: Acoustic Si Non-dispensable a	e system guration lence, Long-en ccraft, M of Airf Selectio gnature,	ns-Lift Airfrand duranc IUAV rame n of po Visua	-induce me Co re, Long Types, Design ower- p al Signa	d Drag, Para onfigurations g-range Role MAV and N : Scale Effe lants, Modul ature, Therma	asitic Dra ; Medium Aircraft, AV Types ects, Pacl ar Constru	lesign, c lesign, c lesign, c lesign, c lesign, c Medium s, UCAV caging f lesign, A lesign, A	y-wing Factica I-range , Nove Density ncillar	
UNIT-III	DESIGN O	F UAV SYSTEM	S-II					Clas	ses: 09	

UNMANNED AIR VEHICLES

Communications-Communication Media, Radio Communication, Mid-air Collision (MAC) Avoidance, Communications Data Rate and Bandwidth Usage, Antenna Type; Control and Stability: HTOL Aircraft, Convertible Rotor Aircraft, Payload Control, Sensors, Autonomy; Navigation: NAVSTAR Global Positioning System (GPS), TACAN, LORAN C, Inertial Navigation, Radio Tracking, Way-point Navigation; Launch and Recovery.

Design for Reliability: Determination of the Required Level of Reliability, Achieving Reliability, Reliability Data Presentation, Multiplexed Systems, Reliability by Design, Design for Ease of Maintenance; Design for Manufacture and Development

UNIT-V	DEPLOYMENT AND FUTURE OF UAV SYSTEMS:	Classes: 08
	rials and full certification; UAV System Deployment- Network-centric Operation Manned and Other Unmanned System; Naval, arm and air force roles, civilian, ial roles	
Text Books:		
1. Reg Aust 2010.	in, Wiley, "Unmanned Aircraft Systems, UAVS Design and Deployment",	2 nd Edition,
Reference B	ooks:	
to Unman 2. Valavanis	a. Barnhart, Stephen B. Hottman, Douglas M. Marshall, Eric Shappee, (eds.), "and Aircraft Systems", CRC Press, 2012. , Kimon P., Vachtsevanos, George J. "Handbook of Unmanned Aerial Vehic Edition, 2004.	
Web Refere	nces:	

1.

- 1. http://www.tndte.com 2. http://www.scribd.com
- 3. http://www.sbtebihar.gov.in
- 4. http://www.ritchennai.org

E-Text Books:

- 1. Corrosion.ksc.nasa.gov/electrochem_cells.htm
- 2. http://www.science.uwaterloo.ca/~cchieh/cact/applychem/watertreatment.html
- 3. http://www.acs.org/content/acs/en/careers/college-to-career/areas-of-chemistry/polymerchemistry.html

System Development and Certification-System Development, Certification, Establishing Reliability; System Ground Testing: UAV Component Testing, UAV Sub- assembly and Sub-system Testing, Testing Complete UAV, Control Station Testing, Catapult Launch System Tests, Documentation; System In-

flight Testing: Test Sites, Preparation for In-flight Testing, In- flight Testing, System Certification.

THE DEVELOPMENT OF UAV SYSTEMS:

UNIT-IV

Course Code		Category	Н	ours / W	/eek	Credits	Maxi	mum N	Iarks
DAE/	005		L	Т	Р	С	CIA	SEE	Tota
BAE	205	Elective	3	-	-	3	30	70	100
Contact Cl	asses: 45	Tutorial Classe	s: Nil	Pract	tical Cla	asses: Nil	Tota	Classe	s: 45
I. Underst II. Invent i III. Evaluat handlin	should enal tand the bas nethods for e methods f g characteri	ble the students to: ics of vehicle aerody the reduction of dra for the improvement stics. rement of comfort ch	ig and fue of operat	tional ch	aracteri				
UNIT-I	OVERVI	EW AND INTROI	OUCTIO	N				Class	es: 08
vehicles, exte a vehicle, pr	ernal and in essure distr	s and trends, funda ternal flow problem ibution, Aerodynam ld around car, perfor	, resistand	ce to veł , Vehicl	nicle mo e drag a	otion, Mecha	anics of a ide and 1	ir flow	around
UNIT-II	AERODY	NAMIC DRAG A	ND SHA	PE OP	FMIZA	TION OF	CARS	Class	es: 10
strategies for	aerodynam boat tailing	ow field around a c nic development, low g, hatch back, fast ba t of fasteners.	v drag pr	ofiles; F	ront end	1 modificati	on, front	and rea	ar wind
shield angle,	-							Class	oc. 10
shield angle, rear configur	VEHICL	E HANDLING AN	D STAB						cs. 10
shield angle, rear configur UNIT-III Origin, char vehicle dyna	acteristics a mics under	E HANDLING AN and effects of force side winds-dirt accu tion design features,	es and m imulation	on the v	vehicle,	wind noise.		lity pro	
shield angle, rear configur UNIT-III Origin, char vehicle dyna Mechanisms	acteristics a mics under and genera	and effects of force side winds-dirt accu tion design features,	es and n imulation measure	on the v	vehicle,	wind noise.			blems
shield angle, rear configur UNIT-III Origin, char vehicle dyna Mechanisms UNIT-IV	acteristics a mics under and genera RACE C	and effects of force side winds-dirt accu	es and n mulation , measure	oments on the v ment and	vehicle, d techni	wind noise. ques.		Class	oblems, es: 09

GROUND VEHICLE AERODYNAMICS

UNIT-V	MEASUREMENT AND TEST TECHNIQUES	Classes: 08
	, scope, fundamental techniques, simulation limitations, prototype tests, wind methods; Test techniques- scope, measuring equipment and transducers,	
Text Books	:	
	nrich Hucho, "Aerodynamics of Road vehicles", SAE International, 1998. "Wind Tunnel Testing" John Wiley & sons, New York, 2 nd Edition, 1974.	
Reference B	ooks:	
	la, "Flight Vehicle Aerodynamics", MIT Press, 1 st Edition, 2014. atz, "Race Car Aerodynamics Designing for Speed", Bentley Publishers, 1995	j.
Web Refere	nces:	
	w.yanfabu.com/resources/editupload/files/2013112216461820.pdf	
	w.ara.bme.hu/oktatas/letolt/Vehicleaerodyn/Vehicleaerodyn.pdf diva-portal.org/smash/get/diva2:461388/FULLTEXT01.pdf	
E-Text Book	KS:	
1. http://stor	e.elsevier.com/Aerodynamics-of-Road-Vehicles/isbn-9781483102078/	
2. http://sam	ples.sainsburysebooks.co.uk/9781483102078_sample_760841.pdf	
·	w.sciencedirect.com/science/book/9780750612678	4 1
4. http://ww	w.abebooks.com/Low-Speed-Wind-Tunnel-Testing-2nd-edition/9297496646	/bd

WIND ENGINEERING

Cour	se Code	Category	Н	lours / V	Veek	Credits	Maxi	mum N	Iarks
			L	Т	Р	С	CIA	SEE	Total
BA	AE206	Elective	3	-	-	3	30	70	100
Contact	Classes: 45	Tutorial Classes	: Nil	Practical Classes: Nil			Tota	l Classe	es: 45
I. Stimu II. Priori III. Devel	e should enable late research ef tize leading-edg lop and execute	e the students to: forts in wind engineer ge research in wind en plans for learning from lyzing and disseminati	gineering m future	g. windsto	_			-	
UNIT-I	ATMOSPHE	ERIC WINDS & ATM	MOSPHI	ERIC B	OUNDA	ARY LAYE	R	Class	es: 08
component	ts; Wind tunnel	ect of terrain on atmo models: Role of non-o							es and
component	ts; Wind tunnel n a wind tunnel	models: Role of non-o	dimension	nal grou				boundar	es and
component type flow i UNIT-II Ship propu history, cl coefficient	s; Wind tunnel n a wind tunnel WIND ENEF Ilsion- sails- lift assification; P ; Working prin	models: Role of non-o	ERGY-1 modern rque coe efficients	nal grou II yachts; s of con	ps; Crea Horizon eleme nventior	ation of atmo tal and verti ntary actuat nal horizonta	cal axis tor disc al axis	Class wind tu theory wind tu	y layer es: 10 rbines- - Betz ırbines,
component type flow i UNIT-II Ship propu history, cl coefficient avonious v theory.	ts; Wind tunnel n a wind tunnel WIND ENEH Ilsion- sails- lift assification; P ; Working prin vertical axis wi	models: Role of non-o. RGY-I & WIND EN t and drag translators- ower coefficient, to nciple and power co	ERGY-1 modern rque coe efficients vertical	nal grou yachts; efficient- s of con axis win	Horizon eleme nventior nd turbi	ttion of atmo ttal and verti ntary actual al horizonta nes; Introdu	cal axis tor disc al axis	Class wind tu theory wind tu	es: 10 rbines- - Betz lement
component type flow i UNIT-II Ship propu history, cl coefficient avonious w theory. UNIT-III Power req cut back combinatio	wind tunnel n a wind tunnel WIND ENER Ilsion- sails- lift assification; P ; Working prin vertical axis wi VEHICLE A uirements and c angle- racing ons;Pressure dis	models: Role of non-o RGY-I & WIND EN t and drag translators- ower coefficient, ton nciple and power co nd turbines, Darrieus ERODYNAMICS & drag coefficients of au cars, commercial tra tribution on low-rise b	ERGY-1 modern rque coe efficients vertical BUILD tomobile ansport v puildings.	II yachts; efficient- s of con axis win ING AF es- cause vehicles-	Horizon eleme nventior nd turbi CRODY es of vo - buses,	ation of atmo atal and vertin ntary actuat al horizonta nes; Introdu NAMICS rtex formation trucks, drive	cal axis tor disc al axis ction to on and c iver cab	Class wind tu theory wind tu blade e Class trag- eff in and	es: 10 rbines - Betz rbines lement es: 10 rects of trailer
component type flow i UNIT-II Ship propu history, cl coefficient avonious w theory. UNIT-III Power requ cut back combination	wind tunnel n a wind tunnel WIND ENER Usion- sails- lift assification; P Working prin vertical axis wind VEHICLE A uirements and c angle- racing ons;Pressure dis	models: Role of non-o. RGY-I & WIND EN t and drag translators- ower coefficient, ton nciple and power co nd turbines, Darrieus ERODYNAMICS & drag coefficients of au cars, commercial tra	ERGY-1 modern rque coe efficients vertical BUILD atomobile ansport v puildings.	II yachts; efficient- s of con axis win ING AH es- cause vehicles-	Horizon Horizon eleme nventior nd turbi ERODY es of vo - buses, special p	ntal and vertintary actuation of atmon ntary actuation al horizontanes; Introdu NAMICS rtex formation, trucks, driven of the problems of the p	cal axis cal axis tor disc al axis ction to on and c iver cab	Class wind tu theory wind tu blade e Class trag- eff in and	es: 10 rbines - Betz rbines lemen es: 10 rects o trailes

Effects of Reynolds number on wake formation of bluff shapes; Vortex induced vibrations, galloping of transmission lines and stall flutter.

UNIT-V DESIGN OF CHIMNEY

Height of chimney for various gas effluents, Effective height of chimney, flume rise, Different types of flume rise for various climatic conditions.

Text Books :

- 1. R. D. Blevins, "Flow Induced Vibrations", Van Nostard, 1990.
- 2. N. G. Calvert, "Wind Power Principles", Charles Griffin & Co., London, 1979.

Reference Books:

- 1. R. S. Scorer, "Environmental Aerodynamics", Ellis Harwood Ltd, England, 1978.
- 2. M. Sovran, "Aerodynamics Drag Mechanisms of Bluff Bodies and Road Vehicles", Plenum Press, 1978.
- 3. P. Sachs, "Wind Forces in Engineering", Pergamon Press, 1988.

Web References:

- 1. https://www.scribd.com/doc/42602999/Flow-Induced-Vibration-by-Robert-D-Blevins-2nd-Ed
- 2. https://books.google.co.in/books?isbn=1846284937
- 3. https://books.google.co.in/books?isbn=047059365

- 1. https://books.google.co.in/books?id=355RAAAAMAAJ&source=gbs_navlinks_s&redir_esc=y
- 2. http://www.abebooks.co.uk/book-search/title/windpower-principles-their-application-on-the-small-scale/author/calvert-n-g/
- 3. https://books.google.co.in/books?isbn=0080559131

Group II: AE Hours / Week Credits **Course Code** Category **Maximum Marks** L Т Р С CIA SEE Total **BAE207** Elective 3 _ _ 3 30 70 100 **Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45 OBJECTIVES:** The course should enable the students to: I. Identify different components of wind tunnel and their function. Estimate pressure distribution on airfoil, sphere, cylinder other aerodynamic surfaces and bluff body. II. III. Perform experiment to measure forces on a model force balance. IV. Perform experiment to determine boundary layer. V. Determine flow visualization techniques. **AERODYNAMIC EXPERIMENTS- HISTORY, MODEL TESTNG** UNIT-I Classes: 08 AND WIND TUNNELS- TYPES, APPLICATION Forms of aerodynamic experiments: observation, measurement, objectives, history, means; Model testingwind tunnel, principles, scaling laws, scale parameters, significance; Wind tunnels, low speed types, description; High speed tunnels, transonic, supersonic, hypersonic, shock tubes, special tunnels, low turbulence, high Re, environmental, automobile, function, distinctive features, application; Major wind tunnel facilities- description, details. LOW SPEED WIND TUNNELS- CONSTRUCTION, COMPONENTS, **UNIT-II** Classes: 10 **PERFORMANCE & WIND TUNNEL CORRECTIONS** Low speed wind tunnel, principal components, working section, diffuser, corners, turning vanes, fan, straighteners, honeycombs, screens, contraction cone, fan, motor- function, description, design requirements, construction, performance- loss coefficients; Wind tunnel performance, flow quality, power losses; Wind tunnel corrections; Sources of inaccuracies, buoyancy, solid blockage, wake blockage, streamline curvature- causes, estimation, and correction; Total correction on airspeed, dynamic pressure, zero lift drag. LOAD MEASUREMENTS- WIND TUNNEL BALANCES AND **UNIT-III** Classes: 10 **FLOW MEASUREMENTS- INSTRUMENTATION** Load measurements, wind tunnel balances, types, description, application; Steady and unsteady pressure measurements and various types of pressure probes and transducers, errors in pressure measurements. Measurement of temperature using thermocouples, resistance thermometers, temperature sensitive paints and liquid crystals; Measurement of airspeed, flow direction, boundary layer profile using Pitot static tubes, 5 hole probes, total head rake- function, working principle, types, details of design and construction, use.

EXPERIMENTAL AERODYAMICS

UNIT-IV	FLOW VISUALISATION TECHNIQUES	Classes: 09
up, operation	lisation, need, types, tufts, china clay, oil film, smoke, working principle, descr on, observation, recording, interpretation of imagery, relative merits, application cal methods, shadow graphy, Schleiren, interferometry.	
UNIT-V	MEASUREMENT OF VELOCITY- HOTWIRE ANEMOMETRY, LASER DOPPLER ANEMOMETRY, PARTICLE IMAGE VELOCIMETRY- OVERVIEW	Classes: 08
	anemometry, laser Doppler anemometry, particle image velocimetry, worki of equipment, experimental setup, settings, calibration, measurement, data s.	
Text Book	s :	
2. High Sp	eed Wind Tunnel Testing, Barlow, J.B., Rae, W.H., Pope, A., Wiley 1999. weed Wind Tunnel Testing, Pope, A. and Goin, K.L., Wiley, 1965. V.J., Handbook of Flow Visualization, 2nd edition, Taylor and Francis, 2001.	
Reference	Books:	
2. Goldste	w, P., Experimental Fluid Mechanics, Pergamon Press, 1970. in, R.J., (Ed.) Fluid Mechanics Measurements, Taylor Francis, Washington 1996. C., Yarin, A. L., Foss, J. F., Handbook of Experimental Fluid Mechanics, Spring	
Web Refer	ences:	
2. ocw.me	ace.manchester.ac.uk/our-research/research-themes//aerodynamics/ tu.edu.tr/pluginfile.php/1876/mod_resource//0//AE547_1_Outline1.pdf www.coursehero.com/file/13548586/AE547-1-Outline1pdf/	
E-Text Bo	oks:	
2. https://b 3. http://as	ooks.google.co.in/books?isbn=0471694029 ooks.google.co.in/books?id=VxchAAAAMAAJ .wiley.com/WileyCDA/WileyTitle/productCd-0471557749.html ww.gbv.de/dms/ilmenau/toc/318379147.PDF	

Course	Code	Category	He	ours / W	Veek	Credits	Maxi	mum N	larks
course	coue			T	P	C	CIA	SEE	Total
BAE	208	Elective	3	-	-	3	30	70	100
Contact C	lasses: 45	Tutorial Classes:	Nil	Pract	tical Cla	asses: Nil	Tota	Total Classes: 4	
I. Explain II. Discuss	should ena the aerodyn the lateral a	ble the students to: namic characteristics in and directional stability odynamic loads in miss	, control		aneuveri	ing flight.			
UNIT-I	INTROD	UCTION						Class	es: 08
interference	; Classes o	evolution; Lift and f missiles, types of d owing, triform, and cru	esign a	nd cont					
UNIT-II		NAMIC CHARACT NENTS & MISSILE F				RAME		Class	es: 10
revolution; and tail; Mis drag; Boost speed, rate	Aerodynam ssile perforr glide trajec of climb, t	ival, hemi-spherical, e ics of airfoil, aspect-ra nance: Introduction; Dr ctory: graphical and ite ime to climb, stall sp d flight and design cons	tio, win rag: Fric erative r peed, m	g plan f ction, pr nethod; aximum	form; Ad essure, Long r	erodynamic interference ange cruise	control: e, induce trajecto	Wing, d and b ory; Ma	canard oat tail ximum
UNIT-III	LONGIT FLIGHT	UDINAL STABILITY	(AND	CONTI	ROL, M	IANEUVE	RING	Class	es: 10
		e of freedom analysis, r forward control and r			ile aero	dynamics:	static sta	ability r	nargin,
Flat turn: C margin.	Cruciform, t	riform, pull-ups; Relat	ion bet	ween m	aneuver	rability and	l load fa	actor; S	tability
UNIT-IV	DIRECTI	ONAL & LATERAL	STAB		AND CO	ONTROL		Class	es: 09
Introduction	to lateral s	m configuration: win tability and control; In imping in roll, induced	duced r	oll: Cru	iciform,	lateral con	trol cruc	ciform,	
UNIT-V	AIR LOA	DS: DESIGN CRITE	RIA					Class	es: 08
Forward co	ntrol· Rear	control; Component a	ir loode	Dodu	o o mo du		Contract Co	mnono	

MISSILE AERODYNAMICS

- 1. S. S. Chin, "Missile Configuration Design", McGraw Hill, 196.
- 2. Jack N. Neilson, "Missile Aerodynamics", McGraw Hill, 1960.

Reference Books:

- 3. M. J. Hemsch, J. N. Nielsen, "Tactical Missile Aerodynamics", AIAA, 2006.
- 4. J. H. Blacklock, "Automatic Control of Aircraft and Missiles", John Wiley & Sons, 2nd Edition, 1991.

Web References:

- 1. http://techdigest.jhuapl.edu/views/pdfs/V04_N3_1983/V4_N3_1983_Cronvich.pdf
- 2. http://www.dtic.mil/dtic/tr/fulltext/u2/a217480.pdf
- 3. http://ntrs.nasa.gov/archive/nasa/casi; ntrs.nasa.gov/19880020389; pdf

- 1. http://www.abebooks.com/Missile-Configuration-Design-CHIN-S-S/9847235911/bd
- 2. https://aerocastle.files.wordpress.com/2012/04/missile_configuration_desig.pdf
- 3. http://www.worldcat.org/title/missile-configuration-design/oclc/602683910
- 4. https://www.waterstonesmarketplace.com/Missile-aerodynamics-Jack-Norman-Nielsen/book/4396415

Group III: AE Hours / Week Credits **Course Code** Category **Maximum Marks** L Т Р С CIA SEE Total **BAE209 Elective** 3 _ 3 30 70 100 **Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45 OBJECTIVES:** The course should enable the students to: I. Understand the concepts in combustion theory. Familiarize in the area of combustion in various engines. II. III. Calculate the combustion efficiency. IV. Determine the supersonic combustion. UNIT-I **BASICS OF COMBUSTION THEORY** Classes: 08 Combustion stochiometry and thermo chemical calculation, chemical kinetics and equilibrium, transport phenomena, theory of viscosity, conductivity and diffusivity. UNIT-II **PRE-MIXED FLAMES** Classes: 10 Description of premixed flames, burning velocity and parametric dependences, experimental methods of measuring burning velocity, simple one-dimensional thermal theory of flame, concepts of minimum ignition energy, quenching distance, stability limits and flame stabilization; Turbulent premixed flame. UNIT-III DIFFUSION FLAME Classes: 10 Jet flame physical description, theoretical analysis-Burke-Schumann's analysis, mechanism of soot formation, difference between premixed and diffusion flames, liquid fuel combustion, difference between premixed and diffusion flames. Liquid fuel combustion, difference between premixed and diffusion flames, liquid fuel combustionconservation equations, calculation of mass burning rate, droplet burning time, droplet combustion in convective environment. **COMBUSTION IN RECIPROCATING AND GAS- TURBINE UNIT-IV** Classes: 09 **ENGINES** Description of the combustion process in piston engines, Combustion efficiency and factors affecting it, Rankine-Hugoniot curves, deflagration and detonation in reciprocating engines and preventive methods; Description of different types of combustion chambers in gas-turbine engines, primary requirements of the combustor, flow structure, recirculation and flame stabilization in main combustion chamber, afterburners. **COMBUSTION IN ROCKET ENGINES AND EMISSION UNIT-V** Classes: 08 Types of rockets based on combustion, solid fuel combustion, combustion of carbon particle, simplified analysis, boundary layer combustion, combustion of carbon sphere with co burning gas phase; Chemical emission from combustion and its effects, exhaust gas analysis, emission control methods.

THEORY OF COMBUSTION

- 1. Stephen R Turns, "An Introduction to combustion Concepts and Application", TMH Publication, 3rd Edition, 2011.
- 2. Fawzy El-Mahallawy, Saad El-Din Habik, Elsevier "Fundamentals and Technology of combustion", 1st Edition, 2002.
- 3. D. P. Mishra, "Fundamentals of combustion", PHI Publication, 1st Edition, 2007.

Reference Books:

- 1. Charles E. Baukal, "Heat Transfer in Industrial Combustion" CRC Press, 1st Edition, 2000.
- 2. G. Singer, "Combustion, Fossil Power Systems" Ed Publications, 4th Edition, 1966.
- 3. S. P. Sharma, Chandra Mohan "Fuels and Combustion", Tata McGraw Hill Publishing Co., New Delhi, 1st Edition, 1987.
- 4. M. L. Mathur, R. P. Sharma, "Gas Turbine, Jet and Rocket Propulsion", Standard Publishers and Distributors, New Delhi, 1988.

Web References:

- 1. http://www.personal.utulsa.edu/~kenneth-weston/chapter3.pdf
- 2. http://www.em-ea.org/guide%20books/book-2/2.1%20fuels%20and%20combustion.pdf

- 1. https://books.google.co.in/books?id=cVJkP4oEjZsC&printsec=frontcover&dq=Fuels+and+Combustion +latest+edition&hl=en&sa=X&ved=0ahUKEwjK2tWHzPfNAhVMto8KHRiMCBAQ6AEIHTAA#v=o nepage&q=Fuels%20and%20Combustion%20latest%20edition&f=false
- 2. http://poisson.me.dal.ca/site2/courses/mech4840/04_Fuels%20&%20Combustion%20calculation09.pdf

Course	Code	Category	Ho	urs / We	ek	Credits	Ma	ximum N	larks	
			L	T	P	C	CIA	SEE	Total	
BAE2	210	Elective	3	-	-	3	30	70	100	
Contact Cl	asses: 45	Tutorial Class	es: Nil	Pract	ical Cla	sses: Nil	То	tal Classe	lasses: 45	
I. Understa II. Analyze III. Explain	should ena and the ene the steam, rotary fans	able the students t rgy transfer in turb water turbines. , blowers and comp nitting turbo machi	oo machin pressors.	nes.						
UNIT-I	ENERGY	TRANSFER IN	TURBO	MACH	IINES			Cla	sses: 08	
equation and	l Euler turb	second laws of the ine equation, princ ative velocities, on	ciples of i	mpulse a	and reac	tion maching				
UNIT-II STEAM TURBINES					Cla	Classes: 10				
U.F curtis st efficiency, s staging: Par carry over e axial thrust,	age, and ra tage efficie son's stage fficiency, s reheat facto	bocity and pressure teau stage, include ency and analysis f es, degree of reac stage efficiency, va for in turbines, prob tion, governing an	e qualitati for optimu tion, noz ane effici blem of ra	ve analy um effic zle effic ency, co idial equ	vsis, effe iency, n viency, v onditions ilibrium	ect of blade nass flow a velocity co s for optim a, free and f	e and noz and blade efficient um effic orced vo	zle losses e height; F , stator ef iency, spe ortex types	on vane Reactions ficiency, red ratio,	
UNIT-III	WATER	TURBINES						Cla	Classes: 10	
governing of definition of Performance and centrifu	of water to mano-metric and chara gal pumps	Francis and Kap urbines; Centrifuga ric head, gross hea acteristics: Applica , unit and specifi efficiencies, Main	al pumps d, static h ation of d fic quant	s: classi nead, vec limensio ities, se	fication, ctor diag nal ana election	, advantag gram and w lysis and s of machin	e over ork done similarity nes, hyd	reciprocat to wate lraulic, ve	ing type r turbine olumetric	
UNIT-IV		Y FANS, BLOWE	_	-					sses: 09	
Classification shape, veloc stresses, eff diagrams, we Dimensions factor, temp	n based o ity triangle ficiency, c ork done, of inlet e o and pres	n pressure rise, c e, degree of reaction haracteristics, fan temp and pressu ye, impeller and c ssure ratio, degree pic efficiencies.	entrifuga ons, slip c laws a re ratio, liffuser; A	l and ax coefficies nd chan slip fao Axial flo	tial flow nt, size cacteristictor, wo	w machines and speed ics; Centri ork input f pressors; V	of machi fugal Co factor, p ector dia	fugal Blow ine, vane sompressor ressure co agrams, w	wers Van shape and – Vecto pefficient vork don	

TURBOMACHINERY AND DYNAMICS

UNIT-V	POWER TRANSMITTING TURBO MACHINES	Classes: 08
coupling and distinction; l	and general theory, their torque ratio, speed ratio, slip and efficiency, velocity of I Torque converter, characteristics, positive displacement machines and turbo n Positive displacement pumps with fixed and variable diplacements, hydrostatic tensifier, accumulator, press and crane.	nachines, their
Text Books	:	
	H., Turbines, "Compressor and Fans", TMH, 2 nd Edition, 2008. a B. K., "Fundamentals of Turbomachines", PHI Learning Private Limited, 5 th 2	Edition, 2005.
Reference E	Books:	
1. Kadambi Edition, 1	V Manohar Prasad; "An introduction to EC Turbomachinery" Vol.III, WileyE 999.	astern, 1 st
Web Refere	ences:	
▲	w.slideshare.net/asifzhcet/fluid-mechanics-and-hydraulic-machines-dr-r-k-ban wiley.com/WileyCDA/WileyTitle/productCd-0470124229.html	sal
E-Text Boo	ks:	
▲ ·	s.asme.org/Divisions/FED/16300.pdf 212.172.242/Digital_Library/Mechanical/TURBOMACHINES/Principles%200 pdf	of%20Turbom

HYPERSONIC AND HIGH-TEMPERATURE GAS DYNAMICS

Group III:	AE									
Cours	se Code	Category	He	ours / We	eek	Credits	Max	imum M	larks	
B A	E211	Elective	L	Т	Р	С	CIA	SEE	Total	
DA		Liective	3	-	-	3	30	100		
Contact	Classes: 45	Tutorial Class	ses: Nil	Pract	ical Cla	sses: Nil	Total Classes: 45			
I. Provide non-eq II. Explain III. Infer th IV. Illustra	should enable e a fundamenta uilibrium real- n the fundamenta ie importance a te the physical	e the students to al description of l gas effects. Intal features of hy and influence of a mechanisms cau fluence of hypers	hyperson ypersonic non-equil ising aero	flows, an ibrium re odynamic	nd how eal-gas e	these differ effects in hig	from othe	er flows. ature flov	C	
UNIT-I	OVERVIEV	V AND INTROI	DUCTIO	N				Classes	s: 08	
Hypersonic	shock and e	orce and aerody expansion-wave s in terms of the	relations	: hypers	sonic sl	hock and e	expansion	-wave re	elations,	
UNIT-II	SURFACE I	INCLINATION	METHO	DDS ANI	D THE	ORIES		Classes	s: 10	
to Newtonia flowfields: disturbance hypersonic flowfields:	an theory, tang Approximate equations, h equivalence p Exact methods	methods: Newton gent-wedge tange methods: Govern hypersonic simi principle and bla method of chan e shapes, shock—s	ent-cone r ning equa larity; H ast-wave racteristic	nethods, ations, m Iypersoni theory, t cs, time-n	shock-e ach-nur c smal thin sho narching	expansion m mber indepe ll-disturbanc ock-layer th g finite diffe	ethod; Hy endence, I ee theory leory; Hy erence me	vpersonic typersonic : Some personic thod, cor	inviscid ic small- results, inviscid relations	
UNIT-III	VISCOUS F	LOW AND HY	PERSON	NIC VIS	COUS	INTERACI	TIONS	Classes	s: 10	
viscous flo boundary-la	w: Navier-story, not	ects boundary la okes equations, n-similar hyperso temperature meth	boundar	y-layer	equatio	ns for hyp	personic t	flow, hy	personic	
interaction,	hypersonic sho viscous flows,	actions: Strong a ock-wave/bounda viscous shock-la	ary-layer	interacti	ons, con	mputational-	fluid-dyn	amic solu	utions of	

Importance of high-temperature flows, nature of high-temperature flows; Chemical effects in air: The velocity-altitude map; Elements of kinetic theory: Perfect-gas equation of state, collision frequency and mean free path, velocity and speed distribution functions, definition of transport phenomena, transport coefficients, mechanism of diffusion, energy transport by thermal conduction and diffusion, transport properties for high-temperature air.

UNIT-V INVISCID HIGH-TEMPERATURE EQUILIBRIUM FLOWS AND NONEQUILIBRIUM FLOWS

Classes: 08

Governing equations for inviscid high-temperature equilibrium flow, equilibrium normal and oblique shock-wave flows, equilibrium quasi-one-dimensional nozzle flows, frozen and equilibrium flows, equilibrium and frozen specific heats, equilibrium speed of sound, equilibrium conical flow, equilibrium blunt-body flows, governing equations for inviscid, non-equilibrium flows, non-equilibrium normal and oblique shock-wave flows, non-equilibrium quasi-one-dimensional nozzle flows, non-equilibrium blunt-body flows, binary scaling, non-equilibrium flow over other shapes: non-equilibrium method of characteristics.

Text Books :

- 1. John D. Amderson, "Hypersonic and High Temperature Gas Dynamics", McGraw Hill, 2nd Edition, 1989.
- 2. John J. Berlin, "Hypersonic Aerodynamics" AIAA Education series, 1st Edition, 1994.

Reference Books:

W. D. Hayes, Ronalds F. Probstein, "Hypersonic Flow Theory" Academic Press, 1st Edition, 1959.
 H. W. Liepman, A. Roshko, "Elements of Gas Dynamics" John Wiley and Sons Inc., 4th Edition, 2002.

Web References:

1. http://www.southampton.ac.uk/engineering/undergraduate/modules/sesa6074_hypersonic_and_high_tem perature_gas_dynamics.page#aims_and_objectives

E-Text Books:

1. https://www.scribd.com/doc/248036966/Anderson-Hypersonic-and-High-Temperature-Gas-Dynamics

ROCKETS AND MISSILES

Group III: AE								
Course Code	Category	Ho	urs / V	Veek	Credits	Maxi	mum N	Iarks
DAE 313	Elective	L	Т	Р	С	CIA	SEE	Total
BAE212	Elective	3	-	-	3	30	70	100
Contact Classes: 45Tutorial Classes: NilPractical Classes: NilTotal Classes: Nil							Classe	es: 45

OBJECTIVES:

The course should enable the students to:

- I. Understand the basics of rocket and missiles, their constructions and functions.
- II. Understand the combustion and propulsion systems in rockets.
- III. Analyze the various aerodynamic forces and moments.
- IV. Select suitable materials for the rockets and missiles.

UNIT-I ROCKET SYSTEMS

Ignition system in rockets, types of igniters, igniter design considerations; Design consideration of liquid rocket combustion chamber, injector propellant feed lines, valves, propellant tanks and their outlets; Pressurized and turbine feed systems; Propellant slosh and propellant hammer; Elimination of geysering effect in missiles; Combustion system of solid rockets.

UNIT-II AERODYNAMICS OF ROCKET AND MISSILES

Classes: 10

Classes: 08

Airframe components of rockets and missiles; Forces acting on a missile while passing through atmosphere; Classification of missiles; Method of describing aerodynamic forces and moments; Lateral aerodynamic moment; Lateral damping moment and longitudinal moment of a rocket; Lift and drag forces; Drag estimation; Body upwash and downwash in missiles; Rocket dispersion; Numerical problems.

UNIT-III	ROCKET MOTION IN FREE SPACE AND GRAVITATIONAL FIELD	Classes: 10
	onal and two dimensional rocket motions in free space and homogeneous iption of vertical, inclined and gravity turn trajectories.	s gravitational
Determinati	on of range and altitude; Simple approximations to burnout velocity.	
UNIT-IV	STAGING AND CONTROL OF ROCKET AND MISSILES	Classes: 09

Rocket vector control, methods, thrust termination; Secondary injection thrust vector control system; Multistaging of rockets; Vehicle optimization; Stage separation dynamics; Separation techniques.

UNIT-V	MATERIALS FOR ROCKET AND MISSILES	
--------	-----------------------------------	--

Classes: 08

Selection of materials; Special requirements of materials to perform under adverse conditions.

- 1. G. P. Sutton, O. Biblarz, "Rocket Propulsion Elements", John Wiley & Sons Inc., New York, 8th Edition, 2010.
- 2. M. J. L. Turner, "Rocket and Spacecraft propulsion", Praxis publishing, 2nd Edition, 2006.
- 3. M. Mathur, R. P. Sharma, "Gas Turbines and Jet and Rocket Propulsion", Standard Publishers, New Delhi, 4th Edition, 2005.
- 4. P.G. Hill, C. R. Peterson, "Mechanics & Thermodynamics of Propulsion" Addison Wesley Longman Inc, 3rd Edition, 1999.

Reference Books:

- 1. J.W. Cornelisse H.F.R. Schoyer & K.F. Wakker "Rocket Propulsion and Space Dynamics", pitman publications, London, 1st Edition, 1979.
- 2. E. R. Parket, "Materials for Missiles and Spacecraft", McGraw Hill Book Co., 2nd Edition, 1982.
- 3. Gordon C. Oates "Aerothermodynamics of Gas Turbine Rocket Propulsion" American Institute of Aeronautics and Astronautics, Inc. 3rd Edition, 1997.

Web References:

- 1. http://as.wiley.com/WileyCDA/WileyTitle/productCd-0470080248.html
- 2. https://archive.org/details/RocketPropulsionAndSpaceflightDynamics
- 3. http://rapidshare.com/files/163497637/The_Jet_Engine.rar
- $4.\ http://www.personal.utulsa.edu/~kenneth-weston/chapter5.pdf$

- 1. http://www.ewp.rpi.edu/hartford/~ernesto/S2013/EP/MaterialsforStudents/Lee/Sutton-Biblarz-Rocket_Propulsion_Elements.pdf
- 2. https://archive.org/details/RocketPropulsionAndSpaceflightDynamics
- 3. http://www.pyrobin.com/files/rocket%20and%20spacecraft%20propulsion%203540221905_1.pdf

Course Code	Category	Ног	ırs / W	eek	Credits	Ma	ximum Ma	arks	
		L	T	P	C	CIA	SEE	Tota	
BAE213	Elective	3	-	-	3	30 70			
Contact Classes:	45 Tutorial Cla	sses: Nil	Prac	tical Cl	asses: Nil	Tot	tal Classes	: 45	
Understand thI. Exposure on r	enable the studer e advanced concep nissile systems, mis skills effectively in	ts of missi ssile airfra	mes, at	itopilots	, guidance la		rol.		
UNIT-I MISS	ILE SYSTEMS I	NTRODU	CTIO	N			Clas	ses: 08	
equations of motio	missile for defend n coordinate System n missile system ele	ms, Lagrar	nge's ea	quations	for rotating				
	MIT-II MISSILE AIRFRAMES, AUTOPILOTS AND CONTROL								
UNIT-II MISS	ILE AIRFRAME	S, AUTOI	PILOT	'S AND	CONTROL	4	Clas	ses: 10	
Missile aerodynan configurations; M applications, open-	ILE AIRFRAME nics: Force equation issile mathematica loop autopilots; Ir ilot design, pitch-y	ons, mom al model; nertial inst	ent equ Autop rument	uations, ilots: D is and fo	phases of r Definitions, 1	nissile flig types of	ght; Missil autopilots,	e contro examp	
Missile aerodynan configurations; M applications, open- agility- pitch autop	nics: Force equation issile mathematica loop autopilots; Ir	ons, mome al model; hertial inst aw-roll au	ent equ Autop rument	uations, ilots: D is and fo	phases of r Definitions, 1	nissile flig types of	ght; Missil autopilots, ponse, stał	e contro examp	
Missile aerodynan configurations; M applications, open- agility- pitch autop UNIT-III MISS Factical guidance	nics: Force equation issile mathematica loop autopilots; Ir ilot design, pitch-y	ons, momental model; nertial inst aw-roll au LAWS ues, deriva	ent equ Autop rument topilot	uations, ilots: E s and fo design.	phases of r Definitions, t eedback; Au	nissile flig types of topilot res guidance	ght; Missil autopilots, ponse, stab Clas equations,	e contro exampl pility an ses: 10 explici	
Missile aerodynan configurations; M applications, open- agility- pitch autop UNIT-III MISS Factical guidance proportional naviga	nics: Force equation issile mathematica loop autopilots; Ir ilot design, pitch-ya ILE GUIDANCE intercept techniqu	ons, mome al model; nertial inst aw-roll au LAWS ues, deriva roportiona gation, cor	ent equ Autop rument topilot ation o l naviga	nations, ilots: E s and fo design. of the f ation, be	phases of r Definitions, t eedback; Au undamental eam riding, b	nissile flig types of topilot res guidance ank to turr	ght; Missil autopilots, ponse, stab Clas equations, n missile gu	e contro exampl pility an ses: 10 explici idance.	
Missile aerodynan configurations; M applications, open- agility- pitch autop UNIT-III MISS Factical guidance proportional naviga Three-dimensional optimal control of	nics: Force equation issile mathematica loop autopilots; Ir ilot design, pitch-y. ILE GUIDANCE intercept techniqu ttion, augmented proportional navig	ons, mome al model; hertial inst aw-roll au LAWS ues, deriva roportiona gation, con tems.	ent equ Autop rument topilot ation o l naviga	nations, ilots: E s and fo design. of the f ation, be	phases of r Definitions, t eedback; Au undamental eam riding, b	nissile flig types of topilot res guidance ank to turr	ght; Missil autopilots, ponse, stab Clas equations, n missile gu ance, appli	e contro exampl pility an ses: 10 explici idance.	
Missile aerodynan configurations; M applications, open- agility- pitch autop UNIT-III MISS Factical guidance proportional naviga Fhree-dimensional optimal control of E UNIT-IV STRA Introduction, the correlated velocity missiles, atmosph	nics: Force equation issile mathematica loop autopilots; Ir ilot design, pitch-y. ILE GUIDANCE intercept technique ation, augmented proportional navigue inear feedback sys	ons, momental model; nertial inst aw-roll au LAWS ues, derivation gation, conterns. ES , Lambert be-gained listic mis	ent equ Autop rument topilot ation o l naviga npariso t's theo concep sile in	ations, ilots: E is and for design. of the f ation, be on of gu	phases of r Definitions, t eedback; Au undamental eam riding, b idance system rst order m vation of th missile tra	nissile flig types of topilot res guidance ank to turr m perform otion of a e force ed	ght; Missil autopilots, ponse, stab Clas equations, n missile gu ance, appli Clas a ballistic quation for	e contro exampl pility an ses: 10 explici- idance. cation c ses: 09 missile ballisti	
Missile aerodynam configurations; M applications, open- gility- pitch autop UNIT-III MISS Factical guidance proportional naviga Three-dimensional optimal control of I UNIT-IV STRA ntroduction, the correlated velocity missiles, atmosph ntroduction to crui	nics: Force equation issile mathematica loop autopilots; Ir ilot design, pitch-ye ILE GUIDANCE intercept technique tion, augmented proportional navigue inear feedback system TEGIC MISSILI two-body problem and velocity-to-be eric re-entry, bal	ons, mome al model; hertial inst aw-roll au LAWS ues, deriva roportiona gation, cor tems. ES , Lambert be-gained listic mis train conto	ent equ Autop rument topilot ation o l naviga npariso concep sile in our mato	ations, ilots: E is and for design. of the f ation, be on of gu	phases of r Definitions, t eedback; Au undamental eam riding, b idance system rst order m vation of th missile tra	nissile flig types of topilot res guidance ank to turr m perform otion of a e force ed	ght; Missil autopilots, ponse, stat Clas equations, n missile gu ance, appli Clas a ballistic quation for uations of	e contro example pility and ses: 10 explici- idance. cation of ses: 09 missile ballist	

MISSILE GUIDANCE AND CONTROL

- 1. G.M. Siouris, "Missile Guidance and control systems", Springer, 2003.
- 2. J. H. Blakelock, Automatic Control of Aircraft and Missiles, 2nd Edition, John Wiley & Sons, 1990.
- 3. Eugene L. Fleeman, Tactical Missile Design, First Edition, AIAA Education series, 2001.

Reference Books:

- 1. P. Garnell, "Guided Weapon Control Systems", Pergamon Press, 2nd Edition 1980.
- 2. Joseph Ben Asher, Isaac Yaesh "Advances in Missile Guidance Theory" AIAA Education series, 1998
- 3. Paul Zarchan, "Tactical and Strategic Missile Guidance" AIAA Education series, 2007

Web References:

- 1. http://www.sciencedirect.com/science/article/pii/S1000936108600217https://www.academia.edu/8521 925/Atmospheric_re-entry_vehicle_mechanics
- 2. http://link.springer.com/article/10.1007/s11633-010-0563-z
- 3. http://as.wiley.com/WileyCDA/WileyTitle/productCd-0471506516.html

- 1. http://read.pudn.com/downloads165/doc/project/753314/Missile%20Guidance%20and%20Control%2 0Systems.pdf
- 2. http://rahauav.com/Library/Stability-Control/Aircraft%20&%20Missile%20BLAKELOCK.pdf
- 3. https://info.aiaa.org/Regions/SE/CF/Meeting%20Minutes/AIAA%20Distinguished%20Lecture-Missile%20Design%20and%20System%20Engineering-24%20Slides.pdf

Group IV: AE Hours / Week Credits **Course Code** Category **Maximum Marks** L Т Р С CIA SEE Total **BAE214** Elective 30 3 _ 3 70 100 **Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45 OBJECTIVES:** The course should enable the students to: I. Illustrate the history of flight simulation. Understand the principle of modeling and simulation of flight control systems. II. III. Describe the dynamics of aircraft and model validation. UNIT-I **INTRODUCTION** Classes: 08 Historical Perspective, the first 40 years of flight 1905–1945, analogue computing, 1945–1965, digital computing 1965–1985, the microelectronics revolution, 1985 present, the case for simulation, safety, financial benefits, training transfer, engineering flight simulation, the changing role of simulation, the organization of a flight simulator, equations of motion, aerodynamic model, engine model, data acquisition, gear model, weather model, visual system, sound system, motion system, control loading, instrument displays, navigation systems, maintenance, the concept of real-time simulation, pilot cues, visual cueing, motion cueing, training versus simulation, examples of simulation, commercial flight training, military flight training, Ab initio flight training, land vehicle simulators, engineering flight simulators aptitude testing, computer-based training, maintenance training. UNIT-II PRINCIPLES OF MODELLING Classes: 10 Modelling concepts, Newtonian mechanics, axes systems, differential equations, numerical integration, approximation methods, first order methods, higher order methods, real-time computing, data acquisition, data transmission, data acquisition, flight data, interpolation, distributed systems, a real-time protocol, problems in modelling, UNIT-III **AIRCRAFT DYNAMICS** Classes: 10 Principles of flight modelling, the atmosphere, forces, aerodynamic lift, aerodynamic side force, aerodynamic drag, propulsive forces, gravitational force, moments, static stability, aerodynamic moments, aerodynamic derivatives, axes systems, the body frame, stability axes, wind axes, inertial axes, transformation between axes. Earth-centred earth-fixed frame, latitude and longitude, quaternions, equations of motion; Propulsion, piston engines, jet engines, the landing gear, the equations collected; The equations revisited: Long range navigation, coriolis acceleration. UNIT-IV SIMULATION OF FLIGHT CONTROL SYSTEMS Classes: 09 The Laplace transform, simulation of transfer functions; Proportional-integral-derivative control systems, trimming, aircraft flight control systems, the turn coordinator and the yaw damper, the autothrottle, vertical speed management, altitude hold, heading hold, localizer tracking, auto-land systems, flight management systems.

FLIGHT SIMULATION

UNIT-V MODEL VALIDATION AND VISUAL SYSTEMS Classes: 08

Simulator qualification and approval, model validation methods, cockpit geometry, open-loop tests, closed-loop tests, latency, performance analysis, longitudinal dynamics, lateral dynamics, model validation in perspective; Visual systems: Background, the visual system pipeline, graphics operations, real-time image generation, a rudimentary real time wire frame image generation system, an open GL real-time textured image generation system, an open scene graph image generation system, visual database management, projection systems, problems in visual systems.

Text Books :

- 1. David Allerton, "Principles of Flight simulation" John Wiley & Sons, Ltd Publication, 1st Edition.
- 2. M. J Rycroft, "Flight simulation", Cambridge university press, 1st Edition, 1999.
- 3. J. M. Rolfe, K. J. Staples "Flight simulation", Cambridge University press, 1st Edition, 1987.
- 4. Jeffrey Strickland, "Missile Flight Simulation", Lulu press, Inc, 2nd Edition, 2012.
- 5. Jonathan M. Stern "Microsoft Flight Simulator Handbook" Brady Publishing, 1st Edition, 1995.

Reference Books:

- 1. Ranjan Vepa, "Flight Dynamics, Simulation, and Control: For Rigid and Flexible Aircraft", CRC press, 1st Edition, 2014.
- 2. Duane Mc Ruer, Irving Ashkenas, Dunstan Graham "Aircraft Dynamics and Automatic Control" Princeton University Press, 2nd Edition, 2014.
- 3. Brian L. Stevens, Frank L. Lewis, "Aircraft Control and Simulation", John Wiley & Sons Ltd Publication, 2nd Edition, 2003.

Web References:

- 1. https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol1/kwc2/article1.html
- 2. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.132.5428&rep=rep1&type=pdf
- 3. http://research.omicsgroup.org/index.php/Flight_simulator
- 4. http://as.wiley.com/WileyCDA/WileyTitle/productCd-0471371459.html

- 1. http://www.aeronautics.nasa.gov/pdf/principles_of_flight_in_action_9_12.pdf
- 2. http://helijah.free.fr/dev/Principles-of-Flight-Simulation.pdf
- 3. https://leseprobe.buch.de/images-adb/ee/49/ee495ffc-8dc1-4a07-ad7b-b18540b9fb60.pdf
- 4. http://samples.sainsburysebooks.co.uk/9780470682197_sample_388478.pdf

FLIGHT TESTING

Course Code		Category	H	ours / V	Week	Credits	Maximum Mark			
BAE	214	Elective	L	Т	Р	С	CIA	SEE	Total	
DAL	217	Liccure	3	-	-	3	30	70	100	
Contact C	lasses: 45	Tutorial Classes:	Nil	Practical Classes: Nil Tot				ll Classes: 45		
I. Unders II. Evaluat III. Explain	should enab tand the basi- ting measure the flight pe	le the students to: c methods for flight tes ment of different quant erformance in different tic and dynamic stabilit	ities. approacl	nes.						
UNIT-I	INTROD	UCTION						Class	es: 08	
		for reducing data unc easurement; Determina	•	0		· .	ed syste	ms theo	ory and	
UNIT-II	MEASUR	EMENT OF DIFFER	ENT Q	UANTI	TIES			Classes: 10		
data; Reduc	ction method	in flight, level flight p s for propeller; Driven ance theory; climb per	aircraft;	Level	flight p	erformance				
UNIT-III	PERFOR	MANCE						Class	es: 10	
Energy appr	oach to perfo	ormance flight; Turning	perform	ance; N	fethods :	for drag dete	rminatio	n in flig	ht.	
Airspeed vs. and methods		angle performance me	thod for	powere	ed-lift A	ircraft; Take	e-off and	landing	theory	
UNIT-IV	STATIC S	STABILITY						Class	es: 09	
Introduction stability flight		ability and control flig ds.	ght, stati	ic longi	itudinal	stability the	eory, stat	ic longi	tudinal	
UNIT-V	V DYNAMIC STABILITY							Class	es: 08	
•	l maneuverir	bility theory; Dynamic ng stability theory, mar	neuverin	g stabil	ity meth	•	ta, longi	tudinal	control	

- 1. Ralph D. Kimberlin, "Flight Testing of Fixed Wing Aircraft", AIAA, 1st Edition, 2003.
- 2. Mikhail Grigor'evich Kotik, "Flight testing of aircraft", National Aeronautics and Space Administration, 1st Edition, 1967.

Reference Books:

- 1. Hubert C. Smith, "Understanding Performance Flight Testing: Kitplanes and Production Aircraft", McGraw Hill, 2nd Edition, 2002.
- 2. Ward Donald T, Strganac Thomas W, Niewohhner Rob, "Introduction to flight test engineering", Vol-I, Kendall Hunt Publishing; 3rd Edition, 2006.

Web References:

- 1. http://www.velocityaircraft.com/manuals/16_GGG.pdf
- 2. http://doi.contentdirections.com/mr/mgh.jsp?doi=10.1036/0071376798

- 1. http://www.faa.gov/documentlibrary/media/advisory_circular/ac_90-89b.pdf
- 2. http://cecs.wright.edu/balloon/images/a/ab/Introduction_to_Flight_Test_Engineering.pdf

ATMOSPHERIC REENTRY VEHICLE MECHANISM

Course	Code	Category	Н	ours / V	Veek	Credits	Maxi	ximum Marks		
BAE	216	Elective	L	Т	Р	С	CIA	SEE	Total	
ĎAĽ	210	Liecuve	3	-	-	3	30	70	100	
Contact C	lasses: 45	Tutorial Classes	: Nil	Prac	tical Cl	asses: Nil	Tota	l Classes: 45		
I. Unders II. Define	should ena stand the bas aerodynam	ble the students to: sic mechanism of reen- ic principles and flight s of motion for reentry	dynami	cs.				1		
UNIT-I	OVERVI	EW AND INTRODU	CTION					Class	es: 08	
frame of re	eference, the	e terrestrial field of g nal exponential model	gravitati	on, mod	dels of	atmosphere	, main p	aramete	ers and	
UNIT-II	AERODY	NAMICS						Class	Classes: 10	
•		tts, modes of flow, cor ly of sphere cones, pla				l mode, qua	lities of f	light,		
UNIT-III	SPECIAL	TREATMENT FOI	R REEN	TRY V	EHICI	Æ		Class	es: 10	
Frame: Dire	ction cosine	nts of inertia, cg offse matrices, Euler angle Movement of the cent	s, repres	entatior	ns with f	our paramet	ers;	g of Re	ference	
UNIT-IV	EQUATI	ONS OF MOTION						Class	es: 09	
of attack ree	entry; Allen'	reentry: General equa 's reentry results, influ al incidence: Zero spin	ence of	ballistic	coeffic					
UNIT-V	FLIGHT	DYNAMICS OF RE	ENTRY	VEHI	CLE			Class	es: 08	
angular mo isolated cen misalignmen	tion; Roll-l ter of gravi	e of the incidence: ock-in Phenomenon: ty, isolated principal ies: static instabilities,	Associa axis mis	ation of salignme	aerody ent, con	namic asyn hined cg o	nmetry ffset and	and cg princip	offset, al axis	

- 1. Patrick Gallais, "Atmospheric Re-Entry Vehicle Mechanics", Springer, 1st Edition, 2007.
- 2. W. Hankey, "Re-Entry Aerodynamics", AIAA Education series, 1st Edition, 1988.
- 3. Frank J. Regan "Dynamics of Atmospheric Re-Entry" American institute of astronautics and aeronautics publications, 1st Edition, 1993.

Reference Books:

- 1. Peter Fortes cue, "spacecraft systems engineering" Wiley, 4th Edition, 1992.
- 2. Vladimir A. Chobotov," Orbital Mechanics" AIAA Education series, 3rd edition 2002.

Web References:

1. http://spacecraft.ssl.umd.edu/academics/791S04/791S04.040302.text.pdf

- 1. http://download.e-bookshelf.de/download/0000/0122/72/L-G-0000012272-0002345666.pdf
- 2. http://www.spaceatdia.org/uploads/mariano/ss1/Spacecraft%20Systems%20Engineering.pdf

DISASTER MANAGEMENT

Course	e Code	Category	Hou	ırs / We	ek	Credits	Ma	ximum M	Iarks
BST	701	Elective	L	Т	Р	С	CIA	SEE	Total
0.51	/01	Elective	3	-	-	3 30		70	100
Contact C	lasses: 45	Tutorial Class	ses: Nil	Pract	ical C	lasses: Nil	To	otal Class	es: 45
I. Exposu II. Unders III. Explore IV. Enhanc V. Develo	nt should en are to disasted tand the rela- e on Disasted e awarenessed p rudiment	nable the studen ers, their significa ationship betwee r Risk Reductio s of institutional ary ability to r y live, with due se	nce and t n vulnera n (DRR) = processes espond t	bility, d approac in the c	hes. ountry				
UNIT-I	INTROD	UCTION TO NA	ION TO NATURAL AND MANMADE DISASTERS					Cl	lasses: 09
causes, In UNIT-II Classificati etc. Differed disasters, un Tropical cy atmospher	npacts (inclu DISASTE FLOODS ons, Causes ential Impac rban disaster yclones & ic hazards/	, Impacts includin ts in terms of case rs, pandemics, co Local storms, De disasters, Cold y	nomic. po TAL IM ng social, te, class, { mplex en estruction waves, He	PACTS econom gender, nergenci n by tro eat way	environ , CYC ic, poli age, lo es, clir opical es, Cau	itical, enviro cation, disal nate change. cyclones and uses of flood	lth, psych ND nmental, pility Glo d local st	hosocial, e Cl health, ps bal trends torms, Cu hazards in	etc.). lasses: 09 cychosocia s in umulative India.
UNIT-III	APPROA	CHES TO DISA	ASTER F	RISK R	EDUC	TION		C	lasses: 09
based Disa Structural,	ster risk red nonstructura	ysis, phases, cultu duction. al sources, roles a tes, centre and otl	nd respon	sibilitie		-			
UNIT-IV	1	ELATIONSHIP			SASTI	ERS AND		C	lasses: 09
embankme	nts, changes	erabilities, differe s in Land-use etc. e technology and	Climate	Change		-			

UNIT-V	DISASTER RISK MANAGEMENT IN INDIA	Classes: 09				
Hazard and	Hazard and Vulnerability profile of India Components of Disaster Relief: Water, Food, Sanitation,					
Shelter, Health, Waste Management Institutional arrangements (Mitigation, Response and Preparedness,						
OM Act an	OM Act and Policy, other related policies, plans, programmes and legislation).					
Field work	and case Studies to understand vulnerabilities and to work on reducing disast	er risks and				
to build a	culture of safety. Projects must be conceived creatively based on the geogra	aphic				
location an	nd hazard profile of the region where the institute is located.					
Text Books	5:					

- 1. Nick, "Disaster Management: A Disaster Manager's Handbook", Asian Development Bank, Manila Philippines, 1991.
- 2. Kapur, et al., "Disasters in India: Studies of Grim Reality", Rawat Publishers, Jaipur, 2005.
- 3. Pelling Mark, "The Vulnerability of Cities: Natural Disaster and Social Resilience", Earthscan Publishers, London, 2003.

Reference Books:

- 1. Sharma, V. K. (1999), "Disaster Management", National Centre for Disaster Management, IIPE, Delhi, 1999.
- 2. Anil, K. Gupta and Sreeja, S. Nair (2011), "Environmental Knowledge for Disaster Risk Management", NIDM, New Delhi, 2011.

Web References:

- 1. http://humanityroad.org/
- 2. http://www.wcpt.org/disaster-management/what-is-disaster-management
- 3. http://www.ndmindia.nic.in/
- 4. http://nidm.gov.in/default.asp
- 5. http://www.unisdr.org/2005/mdgs-drr/national-reports/India-report.pdf

Web References:

- 1. http://www.ekalavvya.com/disaster-management-in-india-volume-i-free-ebook/
- 2. http://cbse.nic.in/natural%20hazards%20&%20disaster%20management.pdf
- 3. http://www.undp.org/content/dam/india/docs/disaster_management_in_india.pdf
- 4. http://www.digitalbookindex.org/_search/search010emergencydisastera.asp

RENEWABLE ENERGY SYSTEMS

Course Code		Category	Ho	ours / W	'eek	Credits	Maximum Marks				
DDL	701	Floativo	L	Т	Р	С	CIA	SEE	Total		
BPE	/01	Elective	3	-	-	3	30	70	100		
Contact C	Classes: 45	Tutorial Classes	: Nil	Prac	tical C	lasses: Nil	Nil Total Classes: 45				
I. Illustra II. Discus III. Explain IV. Design	e should ena the the conce s the Magne n tidal and w n energy conv	able the students to: pt of photo voltaic pow to hydrodynamic (MHI vave energy. version systems with lo nnology of fuel cells.	D) and w	vind ener			on syster	ns.			
UNIT-I	РНОТОУ	OLTAIC POWER G	ENERA	TION S	SYSTE	MS		Clas	ses: 09		
UNIT-II		quipment systems.									
Principles of MHD tech	GENERA of MHD pov nology; Win	ver generation, ideal M d Energy conversion: F	HD gene	erator pe	erforma	nce, practica		generator	r,		
Principles of MHD tech	GENERA of MHD pow nology; Win perating chan	TION ver generation, ideal M d Energy conversion: H	HD gene Power fro	erator pe om wind	erforma l, prope	nce, practica		generator types of			
Principles of MHD techn turbines, of UNIT-III Tides and t tidal power Wave ener	GENERA of MHD pow nology; Win perating chan TIDAL A tidal power s r generation. gy conversio	TION ver generation, ideal M d Energy conversion: F cacteristics. ND WAVE ENERGY tations, modes of opera	HD gene Power fro CONV ation, tid	erator per om wind ERSIO al project	erforma l, prope N ct exam	nce, practica rties of air a ples, turbine motion of w	nd wind,	generator types of Clas nerators	r, `wind ses:08 for		
Principles of MHD techn turbines, of UNIT-III Tides and t tidal power Wave energ application	GENERA of MHD pow nology; Win perating chan TIDAL A tidal power s r generation. gy conversions, types of o	TION ver generation, ideal M d Energy conversion: F cacteristics. ND WAVE ENERGY tations, modes of opera on: Properties of waves cean thermal energy co CONVERSION SYS	HD gene Power fro CONV ation, tid , power conversior	erator per om wind ERSIO al project content, n system	erforma l, prope N ct exam vertex s applio	nce, practica rties of air a ples, turbine motion of w cation of OT	nd wind,	generator types of Clas nerators vice ems exan	r, wind ses:08 for nples.		
Principles of MHD techn turbines, of UNIT-III Tides and t tidal power Wave energy application UNIT-IV Miscellane geothermal energy stor	GENERA of MHD pow nology; Win perating char TIDAL A tidal power s r generation. gy conversion s, types of o ENERGY EFFECTS cous energy c l energy, the rage, combin	TION ver generation, ideal M d Energy conversion: F cacteristics. ND WAVE ENERGY tations, modes of opera on: Properties of waves cean thermal energy co CONVERSION SYS	HD gene Power fro CONV ation, tid , power of ponversior CTEMS A al gasific nversion,	erator per om wind ERSIO al project content, n system AND EN cation ar princip	erforma l, prope N et exam vertex s applic NVIRO d lique les of E	nce, practica rties of air a ples, turbine motion of w cation of OT NMENTAI faction, bior MF generat	aves, dev EC syste	generator types of Class nerators vice ems exan Class version, eneration	r, wind ses:08 for oples. sses:09		

Text Books:

- 1. Ashok Desai V, Non-Conventional Energy, Wiley Eastern Ltd, 1990.
- 2. Rakosh das Begamudre, "Energy conversion systems", New age International publishers, New Delhi 2000.
- 3. Freris L.L. Prentice Hall1, "Wind energy Conversion Systems", 1990.
- 4. Spera D.A., "Wind Turbine Technology: Fundamental concepts of wind turbine technology", ASME Press, NY, 1994.

Reference Books:

- 1. Mittal K.M, Non-Conventional Energy Systems, Wheeler Publishing Co. Ltd, 1997.
- 2. Ramesh R, Kurnar K.U, Renewable Energy Technologies, Narosa Publishing House, New Delhi, 1997.
- 3. John Twidell, Tony Weir "Renewable Energy Resources", 2nd edition.
- 4. Kreith, Kreider, "Solar Energy Handbook", McGrawHill

Web References:

- 1. http://www.nrel.gov/docs/fy13osti/54909.pdf
- 2. http://www.gisday.com/resources/ebooks/renewable-energy.pdf
- 3. http://www.geni.org/globalenergy/library/energytrends/currentusage/renewable/Renewable-Energy-Potential-for-India.pdf
- 4. http://www.cerien.upc.edu/jornades/jiie2005/ponencies/power%20converters%20and%20control%20 of%20renewable%20energy%20systems%20paper.pdf
- 5. https://www.irena.org/DocumentDownloads/Publications/RE_Technologies_Cost_Analysis-SOLAR_PV.pdf

- 1. http://maxwell.sze.hu/~marcsa/MegujuloEnergiaforrasok/Books/renewable%20energy%20resources. pdf
- 2. http://lab.fs.uni-
- lj.si/kes/erasmus/Renewable%20Energy%20Conversion,%20Transmission,%20and%20Storage.pdf
- 3. http://www.landartgenerator.org/LAGI-FieldGuideRenewableEnergy-ed1.pdf

AUTOMOTIVE DESIGN

Course Code		Category	Ηοι	ırs / W	eek	Credits		Maximu	ım Marks
BCC7	/01	Elective	L	Т	Р	С	CIA	SEE	Total
BCC/	01	Elective	3	-	-	3	30	70	100
Contact Classes: 45Tutorial Classes: NilPractical Classes: NilTotal Class								sses: 45	
I. Unders II. Analyze III. Design	should en tand and S automotiva	able the students of specify automotive a ve exterior design the exteriors using ma s of automotive ext	styling rends. anual a	nd digit		-	utomotiv	e exterio	rs.
UNIT-I		IOTIVE DESIGN ASED ON BODY			OGY,	CLASSIFI	CATIO	N OF	Classes: 09
sub types, s sports utility	edan and vehicles,	evelopment and his its sub-types, coup multi utility vehicle ORM TECHNOLO	be and es.	its vari	ants, c	onvertible a	nd its v		tation wagon
UNIT-II Platform tec		IOTIVE PACKAC ypes of chassis, and		notive n	ackagi	ng. Definitio	on motiv	vation ve	Classes: 09
platform, be chassis, con chassis, alur definition ar (engine com	nefits of p posite cor ninium mo nd differen partment)	latform sharing and astruction, unibody phocoque construction t layout sectors in p , rear end (luggage requirements.	l downs constru ion, car backagi	side of p action, t bon fib ing, Inte	platforr ubular re mon erior din	n technology space frame ocoque cons mensions, ex	y; Histor , glass-fi struction sterior di	y of auto ibre mono , ULSAB mensions	motive ocoque type, s, front end
UNIT-III	AUTOM	IOTIVE FRONT-	REAR	R END	DESIG	N			Classes: 09
design them Evolution of	e, regulati f grille des	ront end design, fro on for bumper desig ign, grille design as ler, bumper design,	gn. s a new	brand i	mage,	hood design	and new	-	Ĩ
UNIT-IV		MOTIVE LIGHT						SSES	Classes: 09
lighting, hea lamps, lates	dlamp des t trends in	ent in automotive li sign and styling, adv automotive lighting gn, importance of gl	vanced g, diffei	lighting rent typ	g technes of au	ology, pedes utomotive gl	strian frie asses, re	endly ligh	nts, signal elopment in

UNIT-V AUTOMOT PROTECT	TVE EXTERIOR DESIGN, PAINTING , SURFACE	Classes: 09
---------------------------	---	-------------

Design methodology, image boards: lifestyle board, mood board, theme board, design trends, design movements, application of design principles, product aesthetics, different types of corrosion on automotive bodies, corrosion protection methods, automotive body painting procedure, paint components and latest trends in automotive body colors.

Text Books:

- 1. J.Fenton, "Handbook of Automotive Body and System Design", Professional Engineering Publishing, 1st Edition, 2000.
- 2. Erik Eckermann, "World History of the Automobile", SAE International, 1st Edition, 2002.

Reference Books:

- 1. Stephen Newbury, "Car Design Year Book 1 to 5", Marrell, 1stEdition, London, 2007.
- 2. Tony Lewin, "How to Design Car Like A Pro", Motorbooks International, 1st Edition, 2003.

Web References:

- 1.www.carbodydesign.com
- 2.www.style4cars.com
- 3.www.cardesignnews.com

E-Text Books:

1.http://www.sciencedirect.com/science/book/9780750656924

2.http://books.sae.org/r-312/

Open Elective I: AE / (CAD / CAM) / CSE / SE / ST /PEED | I Semester: ES Course code Hours / Week Maximum Marks Category Credits Т Р С CIA SEE L Total **BES001 Core/Elective** 3 3 70 _ 30 100 **Total Classes: 45 Tutorial Classes: Nil** Practical Classes: Nil **Contact Classes: 45 OBJECTIVES:** The course should enable the students to: I. Understand embedded C and use it for programming embedded system. II. Apply techniques for data transfer between I/O ports and memory. III. Apply object oriented programming for designing embedded system. IV. Use timers to generate time delays. UNIT-I PROGRAMMING EMBEDDED SYSTEMS IN C Classes: 09 Introduction, what is an embedded system, which processor should you use, which programming language should you use, which operating system should you use, how do you develop embedded software, conclusions; Introduction, what's in a name, the external interface of the standard 8051, reset requirements, clock frequency and performance, memory issues, I/O pins, timers, interrupts, serial interface, power consumption, conclusions. UNIT-II **SWITCHES** Classes: 09 Introduction, basic techniques for reading from port pins; Example: Reading and writing bytes, example: Reading and writing bits (simple version), Example: Reading and writing bits (generic version), The need for pull-up resistors, Dealing with switch bounce, Example: Reading switch inputs (basic code), example: counting goats, conclusions. UNIT-III ADDING STRUCTURE TO THE CODE Classes: 09 Introduction, object oriented programming with C, the project header (MAIN.H), the port header (PORT.H). Example: Restructuring the 'Hello Embedded World' example, Example: Restructuring the goat-counting example, further examples and conclusions. **UNIT-IV MEETING REAL-TIME CONSTRAINTS** Classes: 09 Introduction, creating hardware delays using Timer 0 and Timer 1, example: Generating a precise 50 ms delay, example: Creating a portable hardware delay, Why not use Timer 2? The need for timeout mechanisms, creating loop timeouts and example: Testing loop timeouts, example: A more reliable switch interface, Creating hardware timeouts, example: Testing a hardware timeout, conclusions. CASE STUDY: INTRUDER ALARM SYSTEM UNIT-V Classes: 09 Introduction, The software architecture, key software components used in this example, running the program, the software, conclusions.

EMBEDDED C

Text Books:

1. Michael J. Pont, "Embedded C", Pearson Education, 2nd Edition, 2008.

Reference Books:

1. Nigel Gardner, "The Microchip PIC in CCS C", Ccs Inc, 2nd Revision Edition, 2002.

Web References:

- 1. http://www.keil.com/forum/5973/
- 2. http://nptel.ac.in/courses/Webcourse-contents/IIT%20Kharagpur/Embedded%20systems /New_index1.html
- 3. http://nptel.iitg.ernet.in/courses/Elec_Engg/IIT%20Delhi/Embedded%20Systems%20(Video).htm
- 4. http://freevideolectures.com/Course/2999/Embedded-Systems-I/5

- 1. http://teachers.teicm.gr/kalomiros/Mtptx/e-books/eBook%20-%20PIC%20Programming%20with%20C.pdf
- 2. http://www.ecpe.nu.ac.th/ponpisut/22323006-Embedded-c-Tutorial-8051.pdf
- 3. http://dsp-book.narod.ru/CPES.pdf
- 4. http://staff.ustc.edu.cn/~shizhu/WinCE/winCE6%20Fundamentals.pdf
- 5. http://read.pudn.com/downloads167/ebook/769402/Wrox.Professional.Microsoft.Windows.Embedd
- 6. ed.CE.6.0.Nov.2008.eBook-DDU.pdf
- 7. https://syhpullpdf.files.wordpress.com/2015/05/embedded-systems-textbook-pdf.pdf

ADVANCED JAVA PROGRAMMING AND WEB SERVICES

	Code	Category	H	ours / We	ek	Credits	Max	kimum N	Iarks	
BCS	701	Elective	L	Т	Р	С	CIA	SEE	Total	
DC3/01		Licetive	3	-	-	3	30	70	100	
Contact C	ontact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total						tal Class	l Classes: 45		
I. Underst II. Implem	e should ena tand OOPS nent databas	able the students to Concepts Describe e connections. to design user inter	e client s		-					
UNIT-I	INTROD	UCTION TO OC)Ps					Clas	ses: 09	
Machine, Ja	ava Environ	s: Java History, Ja ment, Program, Da s, Exception Hand	ata types						cts,	
UNIT-II	APPLET	S AND SWINGS						Clas	Classes: 09	
applet tag, p Swing, Feat	passing para tures, JCom	o applet, applet vs meters to applet, t ponent, JApplet, J	ypes of a	pplets, ex	amples;	swing: intro	duction t	o JFC, s	wing,	
TextField,	JMenu, JM		,						ns,	
UNIT-III HTML com scripts, obje XML: docu	HTML A mon tags: 1 ects in java s ment type d	enuBar ND XML ist, tables, images, script, dynamic H7 lefinition, XML sc	forms, f ML wit	rames; cas h java scri	pt.	•	introduc	Class tion to ja	va	
UNIT-III HTML com scripts, obje XML: docu processors:	HTML A mon tags: 1 ects in java s ment type d DOM and S	enuBar ND XML ist, tables, images, script, dynamic H7 lefinition, XML sc	forms, f TML wit hemas, d	rames; cas h java scri locument o	pt.	•	introduc	Class tion to ja L, using	va	
UNIT-III HTML com scripts, obje XML: docu processors: UNIT-IV Web servers JSDK, serve parameters; session trac	HTML A mon tags: 1 ects in java s ment type d DOM and S WEB SE s: Tomcat so elet API, ja servlets: ja king, securi	enuBar ND XML ist, tables, images, script, dynamic HT lefinition, XML sc SAX. RVERS,SERVLE erver installation a wax. servelet packa wax, servelet HTT ty issues, JSP: pro	forms, f FML with hemas, d CTS ANI nd testin age, read P packaş blem wit	rames; cas h java scri locument D JSP g, introdu ling servel ge, handlin h servelet	pt. object me ction to s et param ng http re	odel, presen servelets: life eters, readir equest and re	introduc ting XM ecycle of ag initiali esponses	Class tion to ja L, using Class f a servel ization , using co	xa XML xes: 09 et, pokies	
UNIT-III HTML com scripts, obje XML: docu processors: UNIT-IV Web servers JSDK, serve parameters; session trac	HTML A mon tags: 1 ects in java s ment type d DOM and S WEB SE s: Tomcat se elet API, ja servlets: ja king, securi design with	enuBar ND XML ist, tables, images, script, dynamic HT lefinition, XML sc SAX. RVERS,SERVLE erver installation a vax. servelet packs wax, servelet HTT	forms, f FML with hemas, d CTS ANI nd testin age, read P packaş blem wit	rames; cas h java scri locument D JSP g, introdu ling servel ge, handlin h servelet	pt. object me ction to s et param ng http re	odel, presen servelets: life eters, readir equest and re	introduc ting XM ecycle of ag initiali esponses	Class tion to ja L, using Class f a servel ization , using co process	xa XML xes: 09 et, pokies	

Text Books:

- 1. Dreamtech Chris Bates, "Web Programming, building internet applications", WILEY, 2nd Edition.
- 2. Patrick Naughton and Herbert Schildt, "The complete Reference Java 2", TMH, 5th Edition.
- 3. Hans Bergsten, "Java Server Pages", SPD O"Reilly.

Reference Books:

- 1. Sebesta, "Programming world wide web", Pearson Core,8th Edition 2008.
- 2. Marty Hall, Larry Brown, "Servlets and Javaserver Pages", Volume 1: Core Technologies, Pearson 2nd Edition 1998.

Web References:

- 1. http://engineeringppt.blogspot.in/2010/01/advance-java-web-technology.html
- 2. http://www.scoopworld.in/2015/02/ajwt-ppt-lab-materials-cse.html
- 3. http://jntuh.ac.in/new/bulletin_board/WEB_TECHNOLOGIES.pdf

- 1. http://www.freetechbooks.com/advanced-programming-for-the-java-2-platform-t36.html
- 2. https://www.mkyong.com/featured/top-5-free-java-ebooks/
- 3. http://www.e-booksdirectory.com/listing.php?category=226

INTRODUCTION TO AEROSPACE ENGINEERING

Course	Code	Category	H	lours / V	Veek	Credits	Maximum Marks		
BAE'	701	Elective	L	Т	Р	С	CIA	SEE	Tota
DAL	/01	Liecuve	3	-	-	3	30	70	100
Contact Cla	Contact Classes: 45Tutorial Classes: NilPractical Classes: NilTotal Classes: 45							45	
I. Outline II. Descrip dimens III. Appris	should ena e different a ption of fl sional flow e about bou	able the students to aspects of flight vehic ow behavior of on and finite wing. Indary layer effects, performance, stabilit	cles and e-dimens aerodyna	sional in amic fore	ncompres	ssible and co	ompress		
UNIT-I	INTROD	DUCTION TO AER	ONAUI	TICS AN	ND ASTI	RONAUTIC	S	Clas	ses: 08
vehicle, ae	rodynamic nent, wind	of aeronautics and as forces; Parameters tunnels; Atmosphe MENSIONAL FLO ESSIBLE FLUIDS,	affecting ere: Prop W IN IN	g aerody perties of NCOMP	ynamic fo of U.S. PRESSIB	orces: Dimenstandard atm	nsional a nosphere	nalysis; , definit	Theory ions of
wind tunnel equations i channels ar equations; T Simulating and energy,	s, one dim n a variab nd wind tur Theory of the wing Slope of fi	Bernoulli's equation; bensional compression ble-area stream tub nnels; Two dimension lift: circulation, A with a vortex Line, nite wing lift curves for reduced induced	ible flow be, appli onal flow Airfoil p downwas , verifica	w conc ication and find pressure sh, ellipt	epts, spe to airsp ite wing: distribu tic lift dis	eed of sour beed measure Limitations tion, Helmh stribution; Li	nd, com ement, of one di noltz vo ift and di	pressible applicati imension ortex the rag: Mor	e flow ons to al flow corems nentum
UNIT-III		S EFFECTS, DRA AND HIGH-LIFT			ATION	, AIRFOILS	,	Clas	ses: 10
boundary separation;	layers: sk Total Incor	dary layer on blu in friction, nature of mpressible drag: Par Prediction of drag of	of Reyno rasite dra	olds nur ag, drag	nber, eff due to	ect of turbu lift, import	lent bou tance of	indary la f aspect	yer or ratio
supersonic a	aircraft, air	ock waves and M foils; Wings: early nts, effects of swee	airfoil	develop	ment, n	nodern airfo	ils, sup	ersonic a	airfoils

	AIRPLANE PERFORMANCE, STABILITY AND CONTROL,	Classes: 09
UINII-IV	AEROSPACE PROPULSION	Classes: 09

Level flight performance, climb performance, range, endurance, energy-state approach to airplane performance, takeoff performance, landing performance; Static longitudinal stability; Dynamic longitudinal stability; Dynamic lateral stability; Control and maneuverability: Turning performance, control systems, active controls; Aerospace propulsion: Piston engines, gas turbines; Speed limitations of gas turbines: Ramjets, propellers, overall propulsion efficiency, rocket engines, rocket motor performance, propulsion-airframe integration.

	AIRCRAFT STRUCTURES, HYPERSONIC FLOWS, ROCKET TRAJECTORIES AND ORBITS	Classes: 08
--	--	-------------

Aircraft structures: Importance of structural weight and integrity, development of aircraft structures, importance of fatigue, materials, loads, weight estimation; Hypersonic flows: temperature effects, Newtonian theory; rocket trajectories, multistage rockets, escape velocity, circular orbital or satellite velocity, elliptical orbits, orbital maneuvers.

Text Books :

- 1. Richard S. Shevell, Fundamentals of Flight, Pearson Education Publication, 2nd Edition, 1988.
- 2. Anderson J. D, "Introduction to Flight", McGraw-Hill, 5th Edition, 1989.
- 3. Newman D, "Interactive Aerospace Engineering and Design", McGraw-Hill, 1st Edition, 2002.
- 4. Barnard R.H and Philpot. D.R, "Aircraft Flight", Pearson, 3rd Edition, 2004.

Reference Books:

- 1. Introduction to Flight, John D. Anderson, Jr., Tata McGraw-Hill Publishing Company, Fifth Edition, Fifth Edition, 2007.
- 2. Kermode, A. C, "Flight without Formulae", McGraw Hill, 4th Edition, 1997.
- 3. Swatton P. J, "Flight Planning", Blackwell Publisher, 6th Edition, 2002.

Web References:

- 1. https://fas.org/irp/doddir/army/fm3-04-203.pdf
- 2. http://www.aerospaceengineering.es/book/
- 3. http://www.ne.nasa.gov/education/
- 4. http://nptel.ac.in

E-Text Books:

1.http://www.e-booksdirectory.com/

2.http://www.adl.gatech.edu/extrovert/Ebooks/ebook_Intro.pdf

3. http://www.academia.edu/7950378/Introduction_to_Flight_-_Anderson_5th_Ed.__

GEOSPATIAL TECHNIQUES

	e Code	Category	Periods / Week Credit					Maximum Marks		
BST	701	Elective	L	Т	Р	С	CIA	SEE	Total	
		Liceuve	3	-	-	3	30	70	100	
Contact Classes: 45Tutorial Classes: NilPractical Classes: NilTotal							otal Clas	ses: 45		
I. Provide social o II. Learn t	e should ena e technical s development the art of ima	ble the students to: kills to use geo-reference age interpretation and ma ons of geospatial technol	pping.		e purpos	e of econo	mic, edu	cational	, and	
UNIT-I	INTRODU	JCTION TO GEOSPA	FIAL	DATA	4			C	asses: 09	
	asic electrom	portant geospatial techno agnetic radiation.		•		ns., coordi			asses: 1	
		history of photogramme				ina mina	inla no			
cquisition	, Remote se	nsing data analysis methaic, ground control point	hods, a	advant	ages and	l limitatior	ns, hardv	ware and	l softwar	
-								C	asses: 1	
features.	MAPPINO	G AND CARTOGRAPH	IY						asses: 10	
features. UNIT-III What is ma systems, vi Introductio	ap and its in sual interpre n to digital	G AND CARTOGRAPH nportance, map scale ar tation of satellite images data analysis, cartograp purpose of a map, cartog	nd type , and in ohic sy	nterpro mboli	etation o zation, o	f terrain ev classificatio	aluation on of sy	vmbols, o	coordinat	
What is ma what is ma systems, vi	ap and its in sual interpre n to digital y, scale and p	nportance, map scale ar tation of satellite images data analysis, cartograp	nd type , and in ohic sy raphic	nterpro mboli design	etation o zation, o	f terrain ev classificatio	aluation on of sy	n mbols, o gital carto	coordinat	

UNIT-V	GEOSPATIAL TECHNOLOGIES APPLICATIONS	Classes:09
--------	--------------------------------------	------------

Visual image analysis for land use / land cover mapping, land use and land cover in water resources, surface water mapping and Inventory, geological and soil mapping, agriculture applications for forestry applications, water resources applications, urban and regional planning, environmental assessment, principles of land form identification and evaluation: sedimentary, igneous and metamorphic rock terrain.

Text Books :

- 1. John D. Bossler, "Manual of Geospatial Science and Technology" Taylor & Francis.
- 2. M. Anji Reddy, "Textbook of Remote Sensing and Geographical Information Systems", BS Publications.

Reference Books:

- 1. C. P. Lo Albert, K.W. Yonng, "Concepts and Techniques of GIS", Prentice Hall (India) Publications.
- 2. Peter A Burragh and Rachael A. Mc Donnell, "Principles of Geo- Physical Information Systems", Oxford Publishers, 2004.
- 3. M. Anji Reddy, "Geo-informatics for Environmental Management" BS Publications.

Web References:

- 1. https://www.aaas.org/content/what-are-geospatial-technologies
- 2. http://www.istl.org/10-spring/internet2.htmls

- 1. http://www.springer.com/us/book/9781441900494
- 2. https://www.amazon.com/Introduction-Geospatial-Technologies-Bradley-Shellito/dp/146413345X
- 3. http://www.springer.com/us/book/9784431555186
- 4. http://gep.frec.vt.edu/VCCS/materials/2011/Day1/Handouts/1.2-Ch.1_GIS_Intro.pdf
- 5. http://www.slideshare.net/CuteGirl11/introduction-to-geospatial-technologies-pdf

SOLAR PHOTOVOLTAIC ENERGY CONVERSION

Course	Code	Category	Hou	rs / W	eek	Credits	I	Maximum	Marks
BPE7	12	Elective	L	Т	Р	С	CIA	SEE	Total
DrEA)2	Liecuve	3	-	-	3	30	70	100
Contact Cla	ntact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total C				otal Class	es: 45			
I. Illustrate II. Analyze III. Design er	hould ena the operat the charact hergy conv	able the studen ion of Photo vo teristics of solar version systems mology of fuel	oltaic powe r photovolt with low i	taic po	wer gene				
UNIT-I INTRODUCTION							С	lasses: 09	
		ts, an atomic d the barrier, the	^				•	silicon th	e potentia
UNIT-II	PHYSI	CAL ASPECT	S OF SO	LAR C	ELL E	FFICIENC	Y	С	lasses: 09
of electron he	ole pairs, c	r cell efficiency direct recombin mal temperature	ation indir	ect rec	ombinat	ion, resistat	nce, self	shading, pe	
UNIT-III	SINGLI	E CRYSTAL S	SILICON	SOLA	R CELI	LS AND AI	RRAYS	С	lasses: 09
Ribbon to rib mirrors (MCI component of requirements Arrays: Arra production, th sun, controlli lenses tracki	bon (rtr) g M). Schott echnology for connec y support ne rmo ele ng intensit ng device	Solar cells: New growth innovati- ky barrier cells highlights, f cting componer , module cove ctric generators y, imaging opti- ss, steering me spectrum, conve	ve cell des s, inversior PV buildints, the phy ers, modu s, intercept cs, mirrors echanisms,	igns ba n layer ing bl vsical c le coo ing sun s, tracki	ack surfa cells, ce ocks, b onnectio ling, hy nlight, au	the fields (B ells for conc oosting vo on. placing t brid design rrays with r ice controls	SF) and centrated ltage an he cells; ns, Brayt electors,	other mino sun light a d ampera ton cycle, arrays that	ority carrie dvances i ge desig electricit follow th
	SOLAR	ARRAY CON	NSTRUCT	TIONS				С	lasses: 09
UNIT-IV								ow the sun	

UNIT-V	PV SUPPORT EQUIPMENT	Classes: 09
--------	----------------------	-------------

PV support equipment: PV vs conventional electricity, storing PV's electricity, batteries, fuel cells, power conditioning equipment the inverter regulators other devices; system analysis, design procedure, design constraints, other considerations.

Text Books:

- 1. CS Solanki, "Solar photovoltaic's fundamentals, Technologies and Applications", PHI Learning Pvt. Ltd., 2011.
- 2. Rai. G.D, "Solar energy utilization", Khanna publishes, 1993.
- 3. Rai,G.D., "Non- conventional resources of energy", Khanna publishers, Fourth edition, 2010.

Reference Books:

- 1. Rai. G.D, "Solar energy utilization", Khanna publishes, 1993.
- 2. Pai, B. R. and Ram Prasad, "Power Generation through Renewable Sources of Energy", Tata McGraw Hill, New Delhi, 1991.
- 3. Bansal, Kleeman and Meliss, "Renewable Energy Sources and Conversion Techniques", Tata Mc Graw Hill, 1990.
- 4. Godfrey Boyl, "Renewable Energy: Power sustainable future", Oxford University Press, Third edition, 2012.
- 5. B.H.Khan, "Non-Conventional Energy Resources", The McGraw Hills, Second edition, 2009.
- 6. John W Twidell and Anthony D Weir, "Renewable Energy Resources", Taylor and Francis, 2006.

Web References:

- 1. http://www.tue.nl/fileadmin/content/faculteiten/tn/PMP/White_papers/Delft2012_-_ALD4PV.pdf
- 2. http:// www.en.wikipedia.org/wiki/Photovoltaics
- 3. http://www.desware.net/Sample-Chapters/D06/D10-014.pdf
- 4. http://www.southampton.ac.uk/~solar/files/Strasbourg.pdf
- 5. http:// www.science.nasa.gov/science-news/science-at-nasa/2002/solarcells/

- 1. http://www.nrel.gov/docs/legosti/old/1448.pdf
- 2. http://www.irena.org/DocumentDownloads/Publications/IRENAETSAP%20Tech%20Brief%20E11 %20Solar%20PV.pd
- 3. http://www.opalrt.com/sites/default/files/technical_papers/SOLAR%20PHOTOVOLTAIC%20ENER GY%20GENERATION%20AND%20CONVERSION.pdf

COMPUTER GRAPHICS

Course Code		Category	H	ours / V	Veek	Credits	Μ	laximum	Marks	
BCC703			L T P	С	CIA	SEE	Total			
BCC702		Elective	3	-	-	3	30	70	100	
Contact Classes: 45 Tutorial Classes			: Nil	Prac	ctical Cl	asses: Nil	Tot	tal Classe	l Classes: 45	
I. Unders II. Apply	should en stand the b the geome	able the students to asics of Computer G strical modeling for c sures in computer gra	raphics a omputer			D/ CAM app	lications.			
UNIT-I	INTRO	DUCTION TO CON	MPUTE	R GR	PHICS			Clas	sses: 09	
		computer graphics in user interfaces, custor						tations, m	enu	
UNIT-II	GEOMI	ETRIC TRANSFOR MENTALS OF 2D	RMATI	ONS, P	ROJEC	TIONS AN	-	Clas	sses: 09	
coordinate s	ystems; Fi	tions and projections undamentals of 2D an types of projections.								
UNIT-III	DEVEL	OPMENT OF GEO	MENT	RICAI	. MODE	ELLING		Clas	sses: 09	
Curves: Moo parametric e	•	nar and space curves,	analyti	cal and	synthetio	c approaches	s, non-pa	rametric a	ind	
Surfaces M	•	bi-parametric freedo echniques.	om surfa	ces, Co	ons, Bez	zier, B-splind	e, and NU	JRBS sur	faces,	
	ace manipulation techniques.									
surface man	GEOM	ENTRICAL MODE	LING						565. 07	
surface man UNIT-IV Geometric N	Modeling:	ENTRICAL MODE Geometric modeling tre based, parametric	techniq				olid mode			
surface man UNIT-IV Geometric M hybrid mode	Aodeling: elers, featu	Geometric modeling	techniq and var	iation n	nodeling		olid mode	eling: B R		
surface man UNIT-IV Geometric M hybrid mode UNIT-V Data Structu	Aodeling: elers, featu DATA S ure in Corr	Geometric modeling are based, parametric TRUCTURES IN (aputer Graphics: Intro	techniq and var	iation n J <mark>TER (</mark>	nodeling GRAPH	ICS		eling: B R	ep CSG sses: 09	
surface man UNIT-IV Geometric M hybrid mode UNIT-V Data Structu base integrat	Modeling: elers, featu DATA S ure in Com tion for Cl	Geometric modeling are based, parametric TRUCTURES IN (aputer Graphics: Intro	techniq and var	iation n J <mark>TER (</mark>	nodeling GRAPH	ICS		eling: B R	ep CSG sses: 09	
surface man UNIT-IV Geometric M hybrid mode UNIT-V Data Structu base integrat Text Books 1. D. F. Rog	Modeling: elers, featu DATA S ure in Com tion for Cl ers, J. A.	Geometric modeling are based, parametric TRUCTURES IN (aputer Graphics: Intro	techniq and var COMPU oduction	iation n TER (to proc ents for	nodeling GRAPHI luct data	ICS standards a ter Graphics	nd data si	Class Class tructures,	ep CSG sses: 09 data- fill. 1989	

Reference Books:

- 1.C. Pozrikidis, "Introduction to Theoretical and Computational Fluid Dynamics", Oxford University Press, 2nd Edition, 2013.
- 2.V. Patankar, Hema shava Suhas, "Numerical heat transfer and fluid flow", Tata McGraw Hill **Web References:**
- 1. http://nptel.ac.in/courses/106106090/ 2. http://nptel.ac.in/courses/112102101/

E-Text Books:

1. http://www.freebookcentre.net/CompuScience/Free-Computer-Graphics-Books-Download.html 2.https://docs.google.com/file/d/0B_YZ665nBRhlYmNiOTU5ZDItMmU2OC00YTVmLThiNmMtMjg 3 Y2E3ZTgwZDYw/edit?hl=en_US&pref=2&pli=1

MICROCONTROLLERS FOR EMBEDDED SYSTEM DESIGN

Course Code		Category	He	ours / We	eek	Credits	Maximum Marks			
BES702			L	Т	Р	С	CIA	SEE	Tota	
BES702		Elective	3	-	-	3	30	70	100	
Contact Classes: 45 Tutorial Classes			s: Nil	Pract	ical Cla	sses: Nil	Total	Classes:	Classes: 45	
I. Unde II. Use syste	e should en erstand hard architecture ems. yze interruj	able the students ware units and dev s of embedded RI ot latency, contex	vices for de SC proces	sors and	system o	on chip proc		0		
UNIT-I		UCTION TO EM	IBEDDEI) SYSTE	MS			Cla	sses: 09	
	• ·	bedded software, c n design, classific	1 2		0		in embed	ded syste	m,	
UNIT-II	MICROO	CONTROLLERS						Cla	sses: 09	
	g processor 8	ut/output ports and 8051, PIC, memory								
UNIT-III	EMBEDI	DED RISC PROC	CESSORS					Cla	sses: 09	
olocks, dig Embedded	RISC proce		PSOC. ARM prod	cessor arc			•	s of oper	ation	
UNIT-IV INTERRUPTS AND DEVICE DRIVERS									sses: 09	
		opt handling Schen ce driver using int able timing device	terrupt serv	-			0.			
Exceptions	•									
Exceptions nterrupt la for interna	l programm	RK PROTOCOL	S					Cla	sses: 09	
Exceptions nterrupt la for interna UNIT-V	l programm NETWO	RK PROTOCOL protocols, Etherne		, SDMA,	Channe	l and IDMA	, externa			
Exceptions nterrupt la for interna UNIT-V	l programm NETWO munication			, SDMA,	Channe	l and IDMA	, externa			

3. Robert Ashpy, "Designers Guide to the Cypress PSOC", Elsevier, 1st Edition, 2005.

Reference Books:

- 1. Jonathan W. Valvano Brookes / Cole, "Embedded Microcomputer Systems, Real Time Interfacing", Thomas Learning, 1st Edition, 1998.
- 2. Andrew N. Sloss, Dominic Symes, Chris Wright, "ARM Systems Developers Guides, Design & Optimizing System Software", Elsevier, 1st Edition, 2004.
- 3. John B. Peatman, "Designing with PIC Microcontrollers", PH Inc, 1st Edition, 1998.

Web References:

- 1. http://nptel.ac.in/syllabus/108102045/
- 2. http://nptel.ac.in/courses/Webcourse
 - contents/IIT,KANPUR/microcontrollers/micro/ui/Course_home1_1.Htm

- 1. http://microcontrollershop.com/default.php?cPath=239
- 2. http://www.sciencedirect.com/science/book/9780750667555
- 3. https://books.google.co.in/books/about/Embedded_Systems_Design_with_8051_Microc.html?id= YiTa,HChn0UC&redir_esc=y
- 4. https://books.google.co.in/books/about/Microcontroller_And_Embedded_Systems.html?id=4GrXJeC6 HFkC

LINUX PROGRAMMING

Open Electi	ive II: AE /	(CAD/CAM) /	ES/ST	/ PEED					
Course		Category	r	ours / Wee	k	Credits	Ma	ximum N	Aarks
BCS	5702	Elective	L	Т	Р	С	CIA	SEE	Total
		Licente	3	-	-	3	30	70	100
Contact C	lasses: 45	Total Tutori	als: Nil	Total Pra	ctical C	lasses: Nil	Tot	tal Class	es: 45
I. Underst II. Explore III. Develop	should enal and basic Lin on impleme the skills no	ble the student nux utilities and ntation of Linu ecessary for sys kills required to	d Shell sc x utilities tems prog	using syste gramming	m calls.			I	
UNIT-I	LINUX U	FILITIES						Class	ses: 09
File handling utilities, Security by file permissions, Process utilities, Disk utilities, Networking commands, Filters, Text processing utilities and Backup utilities; Sed-Scripts, Operation, Addresses, Commands, awk-Execution, Fields and Records, Scripts, Operation, Patterns, Actions, Associative Arrays, String and Mathematical functions, System commands in awk, Applications.									
UNIT-II	SHELL P	ROGRAMMI	NG					Class	ses: 09
shell as a pr substitution,	ogramming shell comm	onsibilities, pip language, shell nands, the envir les, interrupt pr	meta cha ronment,	aracters, file quoting, te	e name s st comm	ubstitution, and, contro	shell va	riables, c	ommand
UNIT-III	FILES AN	D DIRECTO	RIES					Class	ses: 09
Files: File types, File System Structure, file metadata: Inodes, kernel support for files, system calls for file I/O operations: open, create, read, write, close, lseek, dup2, file status information: stat family, file and record locking: fcntl function.									
Directories:	File permissions - chmod, fchmod, file ownership, links: soft and hard links: symlink, link, unlink. Directories: Creating, removing and changing Directories, obtaining current working directory: getcwd, Directory contents, Scanning Directories: opendir, readdir, closedir, rewinddir functions.								
UNIT-IV	INTERPR	OCESS COM	MUNIC	ATION AN	D MES	SAGE QUI	EUES	Clas	sses: 09
different sys IPC between pipes, poper message qu	stems, pies- n unrelated p n and pclos ueues, clier	C between pro creation, IPC b processes using e library funct nt/server exam with semaphor	etween ro g FIFOs(1 ions, Me ple. Ser	elated proce Named pipe essage Queu	esses us s), diffe les: Ker	ing unname rences betw rnel support	d pipes, veen unn for me	FIFOs: amed an essages,	creation, d named APIs for

UNIT-V	SHARED MEMORY AND SOCKETS	Classes: 09
--------	---------------------------	-------------

Shared Memory: Kernel support for shared memory, APIs for shared memory, shared memory example, Sockets: Introduction to Berkeley Sockets, IPC over a network, Client-Server model, Socket address structures (unix domain and Internet domain), Socket system calls for connection oriented protocol and connectionless protocol.

Text Books:

- 1. T. Chan, "Unix System Programming using C++", PHI, 2nd Edition, 2005.
- 2. Sumitabha Das, "Unix Concepts and Applications", 4th Edition, TMH, 2011.
- 3. W. R. Stevens, "Unix Network Programming", PHI, 2nd Edition, 1999.

Reference Books:

- 1. Mathew, R. Stones, Wrox, "Beginning Linux Programming", Wiley India Edition, 4th Edition, 2008.
- 2. Graham Glass, King Ables, "Unix for programmers and users", 3rd Edition, Pearson, 2006.
- 3. Hoover, "SystemProgramming with C and Unix", Pearson, 2nd Edition ,2009.
- 4. K. A. Robbins, "Unix System Programming, Communication, Concurrency and Threads", Pearson Education, 6th Edition, 2007.

Web References:

- 1. http://www.fuky.org/abicko/beginning-linux-programming.pdf
- 2. https://www.pdc.kth.se/about/links/linux-programming-for-beginners
- 3. http://www.tutorialspoint.com/unix/unix_tutorial.pdf
- 4. http://www.rpi.edu/dept/arc/training/shell/slides.pdf

- 1. http://onlinevideolecture.com/ebooks/?subject=Linux
- 2. http://www.onlineprogrammingbooks.com/linux-succinctly/
- 3. http://ebook-dl.com/item/beginning_linux_programming_4th_edition_neil_matthew_richard_stones/

RESEARCH METHODOLOGY

Course Code		Category	ry Hours / W		eek	Credits	Maximum Mar		rks
BCS703		Elective	L	Т	Р	С	CIA	SEE	Total
		Elective	3	-	-	3	30	70	100
Contact Cl	asses: 45	Tutorial Clas	sses: Nil	Prac	ctical C	lasses: Nil	Tot	al Classes:	: 45
I. Identify II. Organiz III. Prepare IV. Underst	should en an approp- e and cond a research and the lav	able the studen riate research p luct research pr project thesis r v of patent and lge on process f	roblem in oject. eport. copyright	s.	nterestir	ng domain.			
UNIT-I	INTROD	UCTION						Class	es: 09
	• •	search, research	. .		-		•	•	search,
UNIT-II	MEASU	REMENT ANI	O SCALI	NG TI	ECHNI	QUES		Class	es: 09
		, tests of sound , time series and						chniques,	
UNIT-III		DS OF DATA							es: 09
·	l attitude ai	naire and interv nd goals, conce studies.				•			imous
UNIT-IV	INTERP	RETATION C	F DATA	AND	REPOI	RT WRITIN	IG	Class	es: 09
		aper, technique ni technical aud							ences and
UNIT-V	INTROD	OUCTION TO	INTELL	ECTU	AL PR	OPERTY		Class	es: 09
of intellecturights of re rights of re	al property production notice of	intellectual pro v rights; Law of v, rights to per copy right, inte ss, ownership r	copy right form the rnational	nts: Fu work copy r	ndamen publicly ight law	tal of copy riv, copy righ	ight law, or townershi	iginality of p issues, c	material opy righ

- 2. P. Gupta, "Statistical Methods", Sultan Chand and Sons, New Delhi, 1st Edition, 2005.
- 3. Richard W. Stim, "Intellectual Property: Patents, Trademarks, and Copyrights", Cengage learning, 2nd Edition, 2001.

Reference Books:

- 1. P. Narayana Reddy, G. V. R. K. Acharyulu, "Research Methodology and Statistical Tools", Excel Books, New Delhi, 1st Edition, 2008.
- 2. Prabuddha Ganguli, "Intellectual Property Right, Unleashing the Knowledge Economy", Tata Mc Graw Hill Publishing Company Ltd, 1st Edition, 2001.

Web References:

1. http://nptel.ac.in/courses/109103024/40

- 2. http://study.com/academy/topic/introduction-to-research-methods.html
- 3. https://www.vutube.edu.pk/vu-lectures/viewcategory/240/research-methods-sta630

- 1. http://www.metastudio.org/Science%20and%20Ethics/file/readDoc/535a76367d9d331598f49e2d/34_ Hb_on_IPR.pdf
- 2. http://www.bits-pilani.ac.in/uploads/Patent_ManualOct_25th_07.pdf
- 3. http://euacademic.org/BookUpload/9.pdf

INDUSTRIAL AERODYNAMICS AND WIND ENERGY

Course	Code	Category	Ho	ours / V	Veek	Credits	Maximum Marks		
DAD	-0.0		L	Т	Р	С	CIA	SEE	Tota
BAE702		Elective		-	-	3	30	70	100
Contact Cla	Contact Classes: 45 Tutorial Classes: N				tical Cla	asses: Nil	Tota	l Classes	s: 45
I. Understa II. Describe III. Familiar and prob UNIT-I Causes of w breeze, mou velocity prob	should ena and the atm e the wind e tize with no blems of flo ATMOSE LAYER vind therma intain wind file laws, e	able the students to: cospheric boundary layer energy and its application on-aeronautical uses of the induced vibrations. PHERIC WINDS ANIC All drive, Coriolis effect ls, thermals, cause of ffects of terrain on atm nel models, role of no	on in tu aerody D ATN t, press turbule ospher	urbines. ynamics IOSPH sure gra ence at ric bour	HERIC I dient eff ground ndary La	BOUNDAR fect, Geotro level; Atmo yer; Wind t	Y pic winds ospheric unnels ba	Clas s; Land a boundary	ses: 08 and sea and sea and sea
layer type fle UNIT-II Ship propuls History, firs classification	ow in a win WIND En sion, sails, l st example n. Horizont	td tunnel. NERGY ift and drag translators, of automatic feedba al axis wind turbine: E	, moder ck cor lement	rn yach ntrol fc ary actu	ts; Horiz or yaw uator dis	contal and ve in 16 th cen c theory, Be	ertical axi tury Eng etz coeffic	Clas s wind tu glish wir cient; De	ses: 10 arbines admills finitio
layer type fle UNIT-II Ship propuls History, firs classification of power co- tip speed ra turbine, save	ow in a win WIND En sion, sails, 1 st example n. Horizont efficient an atio explana onious vert	d tunnel. NERGY ift and drag translators, of automatic feedba	, moder ck cor lement r all w blade Darrie	rn yach ntrol fo ary actu ind turt elemen es vertic	ts; Horiz or yaw uator dis bines; W t theory cal axis	contal and ve in 16 th cen c theory, Be forking prin , convention	ertical axi tury Eng etz coeffic ciple, pov nal horize	Clas s wind tu lish wir cient; De ver coeff ontal axi	ses: 10 arbines admills finition ficients is wind
layer type fle UNIT-II Ship propuls History, firs classification of power co- tip speed ra turbine, save	ow in a win WIND En sion, sails, l st example n. Horizont efficient an tio explana onious vert xis wind tur	the tunnel. NERGY ift and drag translators, of automatic feedba al axis wind turbine: E ad torque coefficient fo ation, by introductory ical axis wind turbine,	, moder ck cor lement r all w blade Darrie wind tu	rn yach ntrol fo ary actu ind turt elemen es vertic	ts; Horiz or yaw uator dis bines; W t theory cal axis	contal and ve in 16 th cen c theory, Be forking prin , convention	ertical axi tury Eng etz coeffic ciple, pov nal horize	Clas s wind tu dish wir cient; De ver coeff ontal axi and dem	ses: 10 arbines admills finition ficients is wind
layer type fle UNIT-II Ship propuls History, firs classification of power co- tip speed ra turbine, save horizontal az UNIT-III Relative imp coefficients vortex formation	ow in a win WIND En sion, sails, l st example n. Horizont efficient an atio explanation onious vert xis wind tur VEHICL portance of of automobility ation and displayed of and displayed of and displayed ation and displayed of and displayed ation and displayed of an of an	the tunnel. NERGY ift and drag translators, of automatic feedba al axis wind turbine: E ad torque coefficient for ation, by introductory ical axis wind turbine, bines and vertical axis	, moder ck cor lement r all w blade Darrie wind tu d aeroo otch re	rn yach ntrol fo ary actu ind turk elemen s vertic urbines dynami ear wind c , traili	ts; Horiz or yaw uator dis bines; W t theory cal axis cs resist d screens	contal and ve in 16 th cen c theory, Be orking prin , convention wind turbing ance, powe	ertical axi tury Eng etz coeffic ciple, pov nal horize e, merits r require amlined s	Clas s wind tu dish wir cient; De ver coeff ontal axi and dem Clas ments ar shape, ca	ses: 10 urbines dmills finitio ficients is win erits o ses: 10 nd dra uuses o

UNIT-IV BUILDING AERODYNAMICS

Use of light weight components in modern buildings, pressure distribution on low-rise buildings, wind forces on buildings-aerodynamics of flat plate and circular cylinder, critical Reynold's no, sub -, super-& ultra critical Reynold's No. Role of wind tunnel requirements in determining shape factors (Drag coefficients) of building/structure shapes such as circular cylinder (chimneys & towers), rectangle, I-shape, L-shape, H-shape etc. vortex shedding & transverse oscillating loads. Slenderness ratio & correction factor. Special problems of tall buildings, interference effect of building.

UNIT-V FLOW INDUCED VIBATIONS

Classes: 08

Classification: Vortex induced vibration and flow induced instability such as galloping and stall flutter; Effects of Reynolds number on wake formation of bluff shapes; Vortex induced vibration: Experimental determination of strouhal numbers for different shapes such as circular cylinder, square, rectangle, Lshape ect, universal strouhal number, unsteady Bernoulli equation, concept of added mass, resonance; Fluid-structure interaction: Effect of transverse cylinder motion on flow and wake, lock-in vortex shedding near resonant frequency, experimental evidence of cylindrical motion influencing flow and thereby reducing strength of shed vortices; Methods of suppression of vortex induced vibration; Galloping & Stall flutter: Motion of one degree-of-freedom, quasi steady flow assumption, aerodynamic damping; Galloping: Force in the direction of plunging (transverse motion) and positive force coefficient, critical speed, galloping of transmission wire with winter ice, stall flutter of airfoils.

Text Books :

- 1. Siraj Ahmed, "Wind Energy theory and practice", PHI learning Pvt Ltd., 3rd Edition, 2015.
- 2. R. D. Blevins, "Flow Induced Vibrations", Van Nostard, 2nd Edition, 1990.
- 3. P. Sachs, "Wind Forces in Engineering", Pergamon press, 2nd Edition, 1988.
- 4. N. G. Calvert, "Wind Power Principles", Charles Griffin & co. London, 1st Edition, 1979.

Reference Books:

- 1. R. S. Scorer, "Environmental Aerodynamics", Ellis Harword Ltd, England, 1st Edition, 1978.
- 2. M. Sorvan, "Aerodynamics Drag Mechanisms of Bluff Bodies and Road vehicles", plenum press, 2nd Edition, 1978.

Web References:

- 1. http://www.mech.canterbury.ac.nz/research/fluid%20mechanics.shtml
- 2. http://www.journals.elsevier.com/journal-of-wind-engineering-and-industrial-aerodynamics

- 1. http://www.sciencedirect.com/science/journal/01676105
- 2. https://www.scribd.com/doc/42602999/Flow-Induced-Vibration-by-Robert-D-Blevins-2nd-Ed
- 3. http://store.elsevier.com/Wind-Forces-in-Engineering/Peter-Sachs/isbn-9781483148359/

VISION AND MISSION OF THE INSTITUTE

VISION

To bring forth professionally competent and socially sensitive engineers, capable of working across cultures meeting the global standards ethically.

MISSION

To provide students with an extensive and exceptional education that prepares them to excel in their profession, guided by dynamic intellectual community and be able to face the technically complex world with creative leadership qualities.

Further, be instrumental in emanating new knowledge through innovative research that emboldens entrepreneurship and economic development for the benefit of wide spread community.

M.TECH - PROGRAM OUTCOMES (PO's)

- **PO-1:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems (**Engineering Knowledge**).
- **PO-2:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences (**Problem Analysis**).
- **PO-3:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations (**Design/Development of Solutions**).
- **PO-4:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions (**Conduct Investigations of Complex Problems**).
- **PO-5:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations (**Modern Tool Usage**).
- **PO-6:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (**The Engineer and Society**).
- **PO-7:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability).
- **PO-8:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice (**Ethics**).
- **PO-9:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (**Individual and Team Work**).
- **PO-10:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (**Communication**).
- **PO-11:** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO-12**: Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change (**Life-long learning**).

OBJECTIVES OF THE DEPARTMENT

DEPARTMENT OF AERONAUTICAL ENGINEERING

Program Educational Objectives (PEO's)

The current Aeronautical Engineering program educational objectives were developed as part of the program's ongoing efforts to maintain through innovation in undergraduate program that meets the needs of our constituents. The current educational objectives of the Aeronautical Engineering program are:

- **PEO I:** To prepare and provide student with an academic environment for students to excel in postgraduate programs or to succeed in industry / technical profession and the life-long learning needed for a successful professional career in Aeronautical Engineering and related fields (Preparation & Learning Environment).
- **PEO II:** To provide students with a solid foundation in mathematical, scientific and engineering fundamentals required to solve engineering problems and also to pursue higher studies (Core Competence).
- **PEO III:** To train students with good scientific and engineering breadth so as to comprehend, analyze, design, and create novel products and solutions for the real life problems (Breadth).
- **PEO IV:** To inculcate in students professional and ethical attitude, effective communication skills, teamwork skills, multidisciplinary approach, and an ability to relate engineering issues to broader social context (Professionalism).

PROGRAM SPECIFIC OUTCOMES (PSO's)

- **PSO I: Professional skills:** Able to utilize the knowledge of aeronautical/aerospace engineering in innovative, dynamic and challenging environment for design and development of new products
- **PSO II: Problem solving skills:** Imparted through simulation language skills and general purpose CAE packages to solve practical, design and analysis problems of components to complete the challenge of airworthiness for flight vehicles
- **PSO III: Practical implementation and testing skills:** Providing different types of in house and training and industry practice to fabricate and test and develop the products with more innovative technologies
- **PSO IV:** Successful career and entrepreneurship: To prepare the students with broad aerospace knowledge to design and develop systems and subsystems of aerospace and allied systems and become technocrats.

FREQUENTLY ASKED QUESTIONS AND ANSWERS ABOUT AUTONOMY

1. Who grants Autonomy? UGC, Govt., AICTE or University

In case of Colleges affiliated to a university and where statutes for grant of autonomy are ready, it is the respective University that finally grants autonomy but only after concurrence from the respective state Government as well as UGC. The State Government has its own powers to grant autonomy directly to Govt. and Govt. aided Colleges.

2. Shall IARE award its own Degrees?

No. Degree will be awarded by Jawaharlal Nehru Technological University, Hyderabad with a mention of the name IARE on the Degree Certificate.

3. What is the difference between a Deemed University and an Autonomy College?

A Deemed University is fully autonomous to the extent of awarding its own Degree. A Deemed University is usually a Non-Affiliating version of a University and has similar responsibilities like any University. An Autonomous College enjoys Academic Autonomy alone. The University to which an autonomous college is affiliated will have checks on the performance of the autonomous college.

4. How will the Foreign Universities or other stake – holders know that we are an Autonomous College?

Autonomous status, once declared, shall be accepted by all the stake holders. The Govt. of Telangana mentions autonomous status during the First Year admission procedure. Foreign Universities and Indian Industries will know our status through our website.

5. What is the change of Status for Students and Teachers if we become Autonomous?

An autonomous college carries a prestigious image. Autonomy is actually earned out of our continued past efforts on academic performances, our capability of self- governance and the kind of quality education we offer.

6. Who will check whether the academic standard is maintained / improved after Autonomy? How will it be checked?

There is a built in mechanism in the autonomous working for this purpose. An Internal Committee called Academic Programme Evaluation Committee, which will keep a watch on the academics and keep its reports and recommendations every year. In addition the highest academic council also supervises the academic matters. The standards of our question papers, the regularity of academic calendar, attendance of students, speed and transparency of result declaration and such other parameters are involved in this process.

7. Will the students of IARE as an Autonomous College qualify for University Medals and Prizes for academic excellence?

No. IARE has instituted its own awards, medals, etc. for the academic performance of the students. However for all other events like sports, cultural on co-curricular organized by the University the students shall qualify.

8. Can IARE have its own Convocation?

No. Since the University awards the Degree the Convocation will be that of the University, but there will be Graduation Day at IARE.

9. Can IARE give a provisional degree certificate?

Since the examinations are conducted by IARE and the results are also declared by IARE, the college sends a list of successful candidates with their final Grades and Grade Point Averages including CGPA to the University. Therefore with the prior permission of the University the college will be entitled to give the provisional certificate.

10. Will Academic Autonomy make a positive impact on the Placements or Employability?

Certainly. The number of students qualifying for placement interviews is expected to improve, due to rigorous and repetitive classroom teaching and continuous assessment. Also the autonomous status is more responsive to the needs of the industry. As a result therefore, there will be a lot of scope for industry oriented skill development built-in into the system. The graduates from an autonomous college will therefore represent better employability.

11. What is the proportion of Internal and External Assessment as an Autonomous College?

Presently, it is 70 % external and 30% internal. As the autonomy matures the internal assessment component shall be increased at the cost of external assessment.

12. Is it possible to have complete Internal Assessment for Theory or Practicals?

Yes indeed. We define our own system. We have the freedom to keep the proportion of external and internal assessment component to choose.

13. Why Credit based Grade System?

The credit based grade system is an accepted standard of academic performance the world over in all Universities. The acceptability of our graduates in the world market shall improve.

14. What exactly is a Credit based Grade System?

The credit based grade system defines a much better statistical way of judging the academic performance. One Lecture Hour per week of Teaching Learning process is assigned One Credit. One hour of laboratory work is assigned half credit. Letter Grades like A, B,C,D, etc. are assigned for a Range of Marks. (e.g. 91% and above is A+, 80 to 90% could be A etc.) in Absolute Grading System while grades are awarded by statistical analysis in relative grading system. We thus dispense with sharp numerical boundaries. Secondly, the grades are associated with defined Grade Points in the scale of 1 to 10. Weighted Average of Grade Points is also defined Grade Points are weighted by Credits and averaged over total credits in a Semester. This process is repeated for all Semesters and a CGPA defines the Final Academic Performance

15. What are the norms for the number of Credits per Semester and total number of Credits for UG/PG programme?

These norms are usually defined by UGC or AICTE. Usually around 25 Credits per semester is the accepted norm.

16. What is a Semester Grade Point Average (SGPA)?

The performance of a student in a semester is indicated by a number called SGPA. The SGPA is the weighted average of the grade points obtained in all the courses registered by the student during the semester.

$$SGPA = \sum_{i=1}^{n} (C_{i}G_{i}) / \sum_{i=1}^{n} C_{i}$$

Where, C_i is the number of credits of the *i*th course and G_i is the grade point scored by the student in the *i*th course and *i* represent the number of courses in which a student registered in the concerned semester. SGPA is rounded to two decimal places.

17. What is a Cumulative Grade Point Average (CGPA)?

An up-to-date assessment of overall performance of a student from the time of his first registration is obtained by calculating a number called CGPA, which is weighted average of the grade points obtained in all the courses registered by the students since he entered the Institute.

$$CGPA = \sum_{j=1}^{n} (C_{i}S_{i}) / \sum_{j=1}^{n} C_{i}$$

Where, S_i is the SGPA of the i^{th} semester and C_i is the total number of credits in that semester and j represent the number of courses in which a student's is registered upto the semester. CGPA is rounded to two decimal places.

18. Is there any Software available for calculating Grade point averages and converting the same into Grades?

Yes, The institute has its own MIS software for calculation of SGPA, CGPA, etc.

19. Will the teacher be required to do the job of calculating SGPAs etc. and convert the same into Grades?

No. The teacher has to give marks obtained out of whatever maximum marks as it is. Rest is all done by the computer.

20. Will there be any Revaluation or Re-Examination System?

No. There will double valuation of answer scripts. There will be a make up Examination after a reasonable preparation time after the End Semester Examination for specific cases mentioned in the Rules and Regulations. In addition to this, there shall be a 'summer term' (compressed term) followed by the End Semester Exam, to save the precious time of students.

21. How fast Syllabi can be and should be changed?

Autonomy allows us the freedom to change the syllabi as often as we need.

22. Will the Degree be awarded on the basis of only final year performance?

No. The CGPA will reflect the average performance of all the semester taken together.

23. What are Statutory Academic Bodies?

Governing Body, Academic Council, Examination Committee and Board of Studies are the different statutory bodies. The participation of external members in everybody is compulsory. The institute has nominated professors from IIT, NIT, University (the officers of the rank of Pro-vice Chancellor, Deans and Controller of Examinations) and also the reputed industrialist and industry experts on these bodies.

24. Who takes Decisions on Academic matters?

The Governing Body of institute is the top academic body and is responsible for all the academic decisions. Many decisions are also taken at the lower level like Boards of Studies. Decisions taken at the Board of Studies level are to be ratified at the Academic Council and Governing Body.

25. What is the role of Examination committee?

The Examinations Committee is responsible for the smooth conduct of internal, End Semester and make up Examinations. All matters involving the conduct of examinations, spot valuations, tabulations and preparation of Grade Cards etc fall within the duties of the Examination Committee.

26. Is there any mechanism for Grievance Redressal?

The institute has grievance redressal committee, headed by Dean - Student affairs and Dean - IQAC.

27. How many attempts are permitted for obtaining a Degree? All such matters are defined in Rules & Regulation

28. Who declares the result?

The result declaration process is also defined. After tabulation work wherein the SGPA, CGPA and final Grades are ready, the entire result is reviewed by the Moderation Committee. Any unusual deviations or gross level discrepancies are deliberated and removed. The entire result is discussed in the Examinations and Result Committee for its approval. The result is then declared on the institute notice boards as well put on the web site and Students Corner. It is eventually sent to the University.

29. Who will keep the Student Academic Records, University or IARE?

It is the responsibility of the Dean, Academics of the Autonomous College to keep and preserve all the records.

30. What is our relationship with the JNT University?

We remain an affiliated college of the JNT University. The University has the right to nominate its members on the academic bodies of the college.

31. Shall we require University approval if we want to start any New Courses?

Yes, It is expected that approvals or such other matters from an autonomous college will receive priority.

32. Shall we get autonomy for PG and Doctoral Programmes also?

Yes, presently our PG programs also enjoying autonomous status.

MALPRACTICES RULES

DISCIPLINARY ACTION FOR / IMPROPER CONDUCT IN EXAMINATIONS

S.No	Nature of Malpractices/Improper conduct	Punishment
	If the candidate:	
1. (a)	Possesses or keeps accessible in examination hall, any paper, note book, programmable calculators, cell phones, pager, palm computers or any other form of material concerned with or related to the subject of the examination (theory or practical) in which he is appearing but has not made use of (material shall include any marks on the body of the candidate which can be used as an aid in the subject of the examination)	Expulsion from the examination hall and cancellation of the performance in that subject only.
(b)	Gives assistance or guidance or receives it from any other candidate orally or by any other body language methods or communicates through cell phones with any candidate or persons in or outside the exam hall in respect of any matter.	Expulsion from the examination hall and cancellation of the performance in that subject only of all the candidates involved. In case of an outsider, he will be handed over to the police and a case is registered against him.
2.	Has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination (theory or practical) in which the candidate is appearing.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted to appear for the remaining examinations of the subjects of that Semester/year. The Hall Ticket of the candidate is to be cancelled and sent to the Controller of Examinations.
3.	Impersonates any other candidate in connection with the examination.	The candidate who has impersonated shall be expelled from examination hall. The candidate is also debarred and forfeits the seat. The performance of the original candidate, who has been impersonated, shall be cancelled in all the subjects of the examination (including practicals and project work) already appeared and shall not be allowed to appear for examinations of the remaining subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all semester end examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. If the imposter is an outsider, he will be handed over to the police and a case is registered against him.

4.	Smuggles in the Answer book or additional sheet or takes out or arranges to send out the question paper during the examination or answer book or additional sheet, during or after the examination.	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all semester end examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.
5.	Uses objectionable, abusive or offensive language in the answer paper or in letters to the examiners or writes to the examiner requesting him to award pass marks.	Cancellation of the performance in that subject.
6.	Refuses to obey the orders of the Controller of Examinations /Additional Controller of Examinations/any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the COE or any person on duty in or outside the examination hall of any injury to his person or to any of his relations whether by words, either spoken or written or by signs or by visible representation, assaults the COE or any person on duty in or outside the examination hall or any of his relations, or indulges in any other act of misconduct or mischief which result in damage to or destruction of property in the examination hall or any part of the Institute premises or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the examination.	In case of students of the college, they shall be expelled from examination halls and cancellation of their performance in that subject and all other subjects the candidate(s) has (have) already appeared and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. The candidates also are debarred and forfeit their seats. In case of outsiders, they will be handed over to the police and a police case is registered against them.
7.	Leaves the exam hall taking away answer script or intentionally tears of the script or any part thereof inside or outside the examination hall.	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all semester end examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.
8.	Possess any lethal weapon or firearm in the examination hall.	Expulsion from the examination hall and cancellation of the performance in that subject

		and all other subjects the condidate large large large
		and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat.
9.	If student of the college, who is not a candidate for the particular examination or any person not connected with the college indulges in any malpractice or improper conduct mentioned in clause 6 to 8.	Student of the colleges expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat. Person(s) who do not belong to the College will be handed over to police and, a police case will be registered against them.
10.	Comes in a drunken condition to the examination hall.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year.
11.	Copying detected on the basis of internal evidence, such as, during valuation or during special scrutiny.	Cancellation of the performance in that subject and all other subjects the candidate has appeared including practical examinations and project work of that semester/year examinations.
12.	If any malpractice is detected which is not covered in the above clauses 1 to 11 shall be reported to the University for further action to award suitable punishment.	

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

UNDERTAKING BY STUDENT / PARENT

"To make the students attend the classes regularly from the first day of starting of classes and be aware of the College regulations, the following Undertaking Form is introduced which should be signed by both student and parent. The same should be submitted to the Dean, Academic".

I, Mr./Ms. ------ joining I Semester for the academic year 2016-2017 in Institute of Aeronautical Engineering, Hyderabad, do hereby undertake and abide by the following terms, and I will bring the ACKNOWLEDGEMENT duly signed by me and my parent and submit it to the Dean, Academic.

- 1. I will attend all the classes as per the timetable from the starting day of the semester specified in the institute Academic Calendar. In case, I do not turn up even after two weeks of starting of classes, I shall be ineligible to continue for the current academic year.
- 2. I will be regular and punctual to all the classes (theory/practical/drawing) and secure attendance of not less than 80% in every course as stipulated by Institute. I am fully aware that an attendance of less than 70% in more than three courses will make me lose one year.
- 3. I will compulsorily follow the dress code prescribed by the college.
- 4. I will conduct myself in a highly disciplined and decent manner both inside the classroom and on campus, failing which suitable action may be taken against me as per the rules and regulations of the institute.
- 5. I will concentrate on my studies without wasting time in the Campus/Hostel/Residence and attend all the tests to secure more than the minimum prescribed Class/Sessional Marks in each course. I will submit the assignments given in time to improve my performance.
- 6. I will not use Mobile Phone in the institute premises and also, I will not involve in any form of ragging inside or outside the campus. I am fully aware that using mobile phone to the institute premises is not permissible and involving in Ragging is an offence and punishable as per JNTUH/UGC rules and the law.
- 7. I declare that I shall not indulge in ragging, eve-teasing, smoking, consuming alcohol drug abuse or any other anti-social activity in the college premises, hostel, on educational tours, industrial visits or elsewhere.
- 8. I will pay tuition fees, examination fees and any other dues within the stipulated time as required by the Institution / authorities, failing which I will not be permitted to attend the classes.
- 9. I will not cause or involve in any sort of violence or disturbance both within and outside the college campus.
- 10. If I absent myself continuously for 3 days, my parents will have to meet the HOD concerned/ Principal.
- 11. I hereby acknowledge that I have received a copy of IARE R16 Academic Rules and Regulations, Syllabus copy and hence, I shall abide by all the rules specified in it.

ACKNOWLEDGEMENT

I have carefully gone through the terms of the undertaking mentioned above and I understand that following these are for my/his/her own benefit and improvement. I also understand that if I/he/she fail to comply with these terms, shall be liable for suitable action as per Institute/JNTUH/AICTE/UGC rules and the law. I undertake that I/he/she will strictly follow the above terms.

Signature of Student with Date

Signature of Parent with Date Name & Address with Phone Number