

LECTURE NOTES

ON

MICROCONTROLLER & DIGITAL

SIGNAL PROCESSING-R16

B.Tech VI semester

Ms. J.SRAVANA

(Assistant professor)

ELECRTONICS AND COMMUNICATION ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

(Autonomous)DUNDIGAL, HYDERABAD - 50004

MODULE – I

MICROPROCESSORS AND

MICROCONTROLLER

UNIT-1

Microprocessor and Microcontroller

8086 Microprocessor

Introduction to 8085 Microprocessor:

The Salient Features of 8085 Microprocessor:

 8085 is an 8 bit microprocessor, manufactured with N-MOS technology.

 It has 16-bit address bus and hence can address up to 216 = 65536 bytes (64KB)

memory locations through A0-A15.

 The first 8 lines of address bus and 8 lines of data bus are multiplexed AD0 - AD7.

Data bus is a group of 8 lines D0 - D7.

 It supports external interrupt request.8085 consists of 16 bit program counter (PC)

and stack pointer (SP).

 Six 8-bit general purpose register arranged in pairs: BC, DE, HL.

 It requires a signal +5V power supply and can operate at 3 MHz, 5 MHz and 6

MHz Serial in/Serial out Port.

 It is enclosed with 40 pins DIP (Dual in line package).

Internal Architecture of 8085:

8085 Bus Structure:

Address Bus:

 The address bus is a group of 16 lines generally identified as A0 to A15.

 The address bus is unidirectional: bits flow in one direction-from the MPU to peripheral

devices.

 The MPU uses the address bus to perform the first function: identifying a peripheral or a

memory location.

Data Bus:

 The data bus is a group of eight lines used for data flow.

 These lines are bi-directional - data flow in both directions between the MPU and memory

and peripheral devices.

 The MPU uses the data bus to perform the second function: transferring binary

information.

 The eight data lines enable the MPU to manipulate 8-bit data ranging from 00 to FF (28 =

256 numbers).

 The largest number that can appear on the data bus is 11111111.

Control Bus:

 The control bus carries synchronization signals and providing timing signals.

 The MPU generates specific control signals for every operation it performs. These signals

are used to identify a device type with which the MPU wants to communicate.

Registers of 8085:

 The 8085 have six general-purpose registers to store 8-bit data during program execution.

 These registers are identified as B, C, D, E, H, and L.

 They can be combined as register pairs-BC, DE, and HL-to perform some 16-bit

operations.

Accumulator (A):

 The accumulator is an 8-bit register that is part of the arithmetic/logic unit (ALU).

 This register is used to store 8-bit data and to perform arithmetic and logical operations.

 The result of an operation is stored in the accumulator.

Flags:

 The ALU includes five flip-flops that are set or reset according to the result of an

operation.

 The microprocessor uses the flags for testing the data conditions.

 They are Zero (Z), Carry (CY), Sign (S), Parity (P), and Auxiliary Carry (AC) flags. The

most commonly used flags are Sign, Zero, and Carry.

The bit position for the flags in flag register is,

1. Sign Flag (S):

 After execution of any arithmetic and logical operation, if D7 of the result is 1, the

sign flag is set. Otherwise it is reset.

 D7 is reserved for indicating the sign; the remaining is the magnitude of number.

 If D7 is 1, the number will be viewed as negative number. If D7 is 0, the number will

be viewed as positive number.

2. Zero Flag (z):

 If the result of arithmetic and logical operation is zero, then zero flag is set otherwise it is

reset.

3. Auxiliary Carry Flag (AC):

 If D3 generates any carry when doing any arithmetic and logical operation, this flag is set.

Otherwise it is reset.

4. Parity Flag (P):

 If the result of arithmetic and logical operation contains even number of 1's then this flag will

be set and if it is odd number of 1's it will be reset.

5. Carry Flag (CY):

 If any arithmetic and logical operation result any carry then carry flag is set otherwise it is

reset.

Arithmetic and Logic Unit (ALU):

 It is used to perform the arithmetic operations like addition, subtraction, multiplication,

division, increment and decrement and logical operations like AND, OR and EX-OR.

 It receives the data from accumulator and registers.

 According to the result it set or reset the flags.

Program Counter (PC):

 This 16-bit register sequencing the execution of instructions.

 It is a memory pointer. Memory locations have 16-bit addresses, and that is why this is a

16-bit register.

 The function of the program counter is to point to the memory address of the next

instruction to be executed.

 When an opcode is being fetched, the program counter is incremented by one to point to

the next memory location.

Stack Pointer (SP):

 The stack pointer is also a 16-bit register used as a memory pointer.

 It points to a memory location in R/W memory, called the stack.

 The beginning of the stack is defined by loading a 16-bit address in the stack pointer

(register).

Temporary Register: It is used to hold the data during the arithmetic and logical operations.

Instruction Register: When an instruction is fetched from the memory, it is loaded in the

instruction register.

Instruction Decoder: It gets the instruction from the instruction register and decodes the

instruction. It identifies the instruction to be performed.

Serial I/O Control: It has two control signals named SID and SOD for serial data transmission.

Timing and Control unit:

 It has three control signals ALE, RD (Active low) and WR (Active low) and three status

signals IO/M(Active low), S0 and S1.

 ALE is used for provide control signal to synchronize the components of microprocessor

and timing for instruction to perform the operation.

 RD (Active low) and WR (Active low) are used to indicate whether the operation is

reading the data from memory or writing the data into memory respectively.

 IO/M(Active low) is used to indicate whether the operation is belongs to the memory or

peripherals.

 If,

Interrupt Control Unit:

 It receives hardware interrupt signals and sends an acknowledgement for receiving the

interrupt signal.

Pin Diagram and Pin Description Of 8085

8085 is a 40 pin IC, DIP package. The signals from the pins can be grouped as follows

1. Power supply and clock signals

2. Address bus

3. Data bus

4. Control and status signals

5. Interrupts and externally initiated signals

6.

7. Serial I/O ports

1. Power supply and clock frequency signals

 Vcc + 5 volt power supply

 Vss Ground

 X1, X2: Crystal or R/C network or LC network connections to set the frequency of

internal clock generator.

 The frequency is internally divided by two. Since the basic operating timing frequency is

3 MHz, a 6 MHz crystal is connected externally.

 CLK (output)-Clock Output is used as the system clock for peripheral and devices

interfaced with the microprocessor.

2. Address Bus:

 A8 - A15 (output; 3-state)

 It carries the most significant 8 bits of the memory address or the 8 bits of the I/O address;

3. Multiplexed Address / Data Bus:

 AD0 - AD7 (input/output; 3-state)

 These multiplexed set of lines used to carry the lower order 8 bit address as well as data

bus.

 During the opcode fetch operation, in the first clock cycle, the lines deliver the lower

order address A0 - A7.

 In the subsequent IO / memory, read / write clock cycle the lines are used as data bus.

 The CPU may read or write out data through these lines.

4. Control and Status signals:

 ALE (output) - Address Latch Enable.

 This signal helps to capture the lower order address presented on the multiplexed address /

data bus.

 RD (output 3-state, active low) - Read memory or IO device.

 This indicates that the selected memory location or I/O device is to be read and that the

data bus is ready for accepting data from the memory or I/O device.

 WR (output 3-state, active low) - Write memory or IO device.

 This indicates that the data on the data bus is to be written into the selected memory

location or I/O device.

 IO/M (output) - Select memory or an IO device.

 This status signal indicates that the read / write operation relates to whether the memory or

I/O device.

 It goes high to indicate an I/O operation.

 It goes low for memory operations.

5. Status Signals:

 It is used to know the type of current operation of the microprocessor.

6. Interrupts and externally initiated operations:

 They are the signals initiated by an external device to request the microprocessor to do a

particular task or work.

 There are five hardware interrupts called,

 On receipt of an interrupt, the microprocessor acknowledges the interrupt by the active

low INTA (Interrupt Acknowledge) signal.

Reset In (input, active low)

 This signal is used to reset the microprocessor.

 The program counter inside the microprocessor is set to zero.

 The buses are tri-stated.

Reset Out (Output)

 It indicates CPU is being reset.

 Used to reset all the connected devices when the microprocessor is reset

7. Direct Memory Access (DMA):

Tri state devices:

 3 output states are high & low states and additionally a high impedance state.

 When enable E is high the gate is enabled and the output Q can be 1 or 0 (if A is 0, Q is 1,

otherwise Q is 0). However, when E is low the gate is disabled and the output Q enters

into a high impedance state.

 For both high and low states, the output Q draws a current from the input of the OR gate.

 When E is low, Q enters a high impedance state; high impedance means it is electrically

isolated from the OR gate's input, though it is physically connected. Therefore, it does not

draw any current from the OR gate's input.

 When 2 or more devices are connected to a common bus, to prevent the devices from

interfering with each other, the tristate gates are used to disconnect all devices except the

one that is communicating at a given instant.

 The CPU controls the data transfer operation between memory and I/O device. Direct

Memory Access operation is used for large volume data transfer between memory and an

I/O device directly.

 The CPU is disabled by tri-stating its buses and the transfer is effected directly by external

control circuits.

 HOLD signal is generated by the DMA controller circuit. On receipt of this signal, the

microprocessor acknowledges the request by sending out HLDA signal and leaves out the

control of the buses. After the HLDA signal the DMA controller starts the direct transfer

of data.

READY (input)

 Memory and I/O devices will have slower response compared to microprocessors.

 Before completing the present job such a slow peripheral may not be able to handle

further data or control signal from CPU.

 The processor sets the READY signal after completing the present job to access the data.

 The microprocessor enters into WAIT state while the READY pin is disabled.

8. Single Bit Serial I/O ports:

 SID (input) - Serial input data line

 SOD (output) - Serial output data line

 These signals are used for serial communication

Overview or Features of 8086

 It is a 16-bit Microprocessor (μp).It’s ALU, internal registers works with 16bit binary

word.

 8086 has a 20 bit address bus can access up to 220= 1 MB memory locations.

 8086 has a 16bit data bus. It can read or write data to a memory/port either 16bits or 8 bit

at a time.

 It can support up to 64K I/O ports.

 It provides 14, 16 -bit registers.

 Frequency range of 8086 is 6-10 MHz

 It has multiplexed address and data bus AD0- AD15 and A16 – A19.

 It requires single phase clock with 33% duty cycle to provide internal timing.

 It can prefetch upto 6 instruction bytes from memory and queues them in order to speed

up instruction execution.

 It requires +5V power supply.

http://www.8085projects.info/post/Overview-or-Features-of-8086.aspx

 A 40 pin dual in line package.

 8086 is designed to operate in two modes, Minimum mode and Maximum mode.

o The minimum mode is selected by applying logic 1 to the MN / MX# input pin.

This is a single microprocessor configuration.

o The maximum mode is selected by applying logic 0 to the MN / MX# input pin.

This is a multi micro processors configuration.

Register Organization of 8086

General purpose registers

The 8086 microprocessor has a total of fourteen registers that are accessible to the

programmer. It is divided into four groups. They are:

 Four General purpose registers

 Four Index/Pointer registers

 Four Segment registers

 Two Other registers

General purpose registers:

Accumulator register consists of two 8-bit registers AL and AH, which can be combined

together and used as a 16-bit register AX. AL in this case contains the low order byte of the word,

and AH contains the high-order byte. Accumulator can be used for I/O operations and string

manipulation.

Base register consists of two 8-bit registers BL and BH, which can be combined together

and used as a 16-bit register BX. BL in this case contains the low-order byte of the word, and BH

contains the high-order byte. BX register usually contains a data pointer used for based, based

indexed or register indirect addressing.

http://www.8085projects.info/post/General-purpose-registers.aspx

Count register consists of two 8-bit registers CL and CH, which can be combined together

and used as a 16-bit register CX. When combined, CL register contains the low order byte of the

word, and CH contains the high-order byte. Count register can be used in Loop, shift/rotate

instructions and as a counter in string manipulation

Data register consists of two 8-bit registers DL and DH, which can be combined together

and used as a 16-bit register DX. When combined, DL register contains the low order byte of the

word, and DH contains the high-order byte. Data register can be used as a port number in I/O

operations. In integer 32-bit multiply and divide instruction the DX register contains high-order

word of the initial or resulting number.

Index or Pointer Registers

These registers can also be called as Special Purpose registers.

Stack Pointer (SP) is a 16-bit register pointing to program stack, i.e. it is used to hold the

address of the top of stack. The stack is maintained as a LIFO with its bottom at the start of the

stack segment (specified by the SS segment register).Unlike the SP register, the BP can be used to

specify the offset of other program segments.

Base Pointer (BP) is a 16-bit register pointing to data in stack segment. It is usually used

by subroutines to locate variables that were passed on the stack by a calling program. BP register

is usually used for based, based indexed or register indirect addressing.

Source Index (SI) is a 16-bit register. SI is used for indexed, based indexed and register

indirect addressing, as well as a source data address in string manipulation instructions. Used in

conjunction with the DS register to point to data locations in the data segment.

Destination Index (DI) is a 16-bit register. Used in conjunction with the ES register in

string operations. DI is used for indexed, based indexed and register indirect addressing, as well

as a destination data address in string manipulation instructions. In short, Destination Index and

SI Source Index registers are used to hold address.

http://www.8085projects.info/post/Index-or-Pointer-Registers.aspx

Segment Registers

Most of the registers contain data/instruction offsets within 64 KB memory segment.

There are four different 64 KB segments for instructions, stack, data and extra data. To specify

where in 1 MB of processor memory these 4 segments are located the processor uses four

segment registers.

Code segment (CS) is a 16-bit register containing address of 64 KB segment with

processor instructions. The processor uses CS segment for all accesses to instructions referenced

by instruction pointer (IP) register. CS register cannot be changed directly. The CS register is

automatically updated during far jump, far call and far return instructions.

Stack segment (SS) is a 16-bit register containing address of 64KB segment with program

stack. By default, the processor assumes that all data referenced by the stack pointer (SP) and

base pointer (BP) registers is located in the stack segment. SS register can be changed directly

using POP instruction.

Data segment (DS) is a 16-bit register containing address of 64KB segment with program

data. By default, the processor assumes that all data referenced by general registers (AX, BX, CX,

DX) and index register (SI, DI) is located in the data segment. DS register can be changed

directly using POP and LDS instructions.

Extra segment (ES) used to hold the starting address of Extra segment. Extra segment is

provided for programs that need to access a second data segment. Segment registers cannot be

used in arithmetic operations.

Other registers of 8086

http://www.8085projects.info/post/Segment-Registers.aspx
http://www.8085projects.info/post/Internal-Registers-of-8086.aspx

Instruction Pointer (IP) is a 16-bit register. This is a crucially important register which is used

to control which instruction the CPU executes. The IP, or program counter, is used to store the

memory location of the next instruction to be executed. The CPU checks the program counter to

ascertain which instruction to carry out next. It then updates the program counter to point to the

next instruction. Thus the program counter will always point to the next instruction to be

executed.

Flag Register contains a group of status bits called flags that indicate the status of the CPU or the

result of arithmetic operations. There are two types of flags:

1. The status flags which reflect the result of executing an instruction. The programmer cannot

set/reset these flags directly.

2. The control flags enable or disable certain CPU operations. The programmer can set/reset

these bits to control the CPU's operation.

Nine individual bits of the status register are used as control flags (3 of them) and status flags (6

of them).The remaining 7 are not used.

A flag can only take on the values 0 and 1. We say a flag is set if it has the value 1.The status

flags are used to record specific characteristics of arithmetic and of logical instructions.

Control Flags: There are three control flags

1. The Direction Flag (D): Affects the direction of moving data blocks by such instructions as

MOVS, CMPS and SCAS. The flag values are 0 = up and 1 = down and can be set/reset by the

STD (set D) and CLD (clear D) instructions.

2. The Interrupt Flag (I): Dictates whether or not system interrupts can occur. Interrupts are

actions initiated by hardware block such as input devices that will interrupt the normal execution

of programs. The flag values are 0 = disable interrupts or 1 = enable interrupts and can be

manipulated by the CLI (clear I) and STI (set I) instructions.

3. The Trap Flag (T): Determines whether or not the CPU is halted after the execution of each

instruction. When this flag is set (i.e. = 1), the programmer can single step through his program to

debug any errors. When this flag = 0 this feature is off. This flag can be set by the INT 3

instruction.

Status Flags: There are six status flags

1. The Carry Flag (C): This flag is set when the result of an unsigned arithmetic operation is too

large to fit in the destination register. This happens when there is an end carry in an addition

operation or there an end borrows in a subtraction operation. A value of 1 = carry and 0 = no

carry.

2. The Overflow Flag (O): This flag is set when the result of a signed arithmetic operation is too

large to fit in the destination register (i.e. when an overflow occurs). Overflow can occur when

adding two numbers with the same sign (i.e. both positive or both negative). A value of 1 =

overflow and 0 = no overflow.

3. The Sign Flag (S): This flag is set when the result of an arithmetic or logic operation is

negative. This flag is a copy of the MSB of the result (i.e. the sign bit). A value of 1 means

negative and 0 = positive.

4. The Zero Flag (Z): This flag is set when the result of an arithmetic or logic operation is equal

to zero. A value of 1 means the result is zero and a value of 0 means the result is not zero.

5. The Auxiliary Carry Flag (A): This flag is set when an operation causes a carry from bit 3 to

bit 4 (or a borrow from bit 4 to bit 3) of an operand. A value of 1 = carry and 0 = no carry.

6. The Parity Flag (P): This flags reflects the number of 1s in the result of an operation. If the

number of 1s is even its value = 1 and if the number of 1s is odd then its value = 0.

Architecture of 8086 or Functional Block diagram of 8086

 8086 has two blocks Bus Interface Unit (BIU) and Execution Unit (EU).

 The BIU performs all bus operations such as instruction fetching, reading and writing

operands for memory and calculating the addresses of the memory operands. The

instruction bytes are transferred to the instruction queue.

http://www.8085projects.info/post/Architechture-of-8086-or-Functional-Block-diagram-of-8086.aspx

 EU executes instructions from the instruction system byte queue.

 Both units operate asynchronously to give the 8086 an overlapping instruction fetch and

execution mechanism which is called as Pipelining. This results in efficient use of the

system bus and system performance.

 BIU contains Instruction queue, Segment registers, Instruction pointer, Address adder.

 EU contains Control circuitry, Instruction decoder, ALU, Pointer and Index register, Flag

register.

Figure: 8086 Architecture

Explanation of Architecture of 8086

Bus Interface Unit:

 It provides a full 16 bit bidirectional data bus and 20 bit address bus.

 The bus interface unit is responsible for performing all external bus operations.

 Specifically it has the following functions:

 Instruction fetch Instruction queuing, Operand fetch and storage, Address relocation and

Bus control.

 The BIU uses a mechanism known as an instruction stream queue to implement pipeline

architecture.

 This queue permits prefetch of up to six bytes of instruction code. When ever the queue of

the BIU is not full, it has room for at least two more bytes and at the same time the EU is

not requesting it to read or write operands from memory, the BIU is free to look ahead in

the program by prefetching the next sequential instruction.

 These prefetching instructions are held in its FIFO queue. With its 16 bit data bus, the BIU

fetches two instruction bytes in a single memory cycle.

 After a byte is loaded at the input end of the queue, it automatically shifts up through the

FIFO to the empty location nearest the output.

 The EU accesses the queue from the output end. It reads one instruction byte after the

other from the output of the queue. If the queue is full and the EU is not requesting access

to operand in memory.

 These intervals of no bus activity, which may occur between bus cycles are known as Idle

state.

 If the BIU is already in the process of fetching an instruction when the EU request it to

read or write operands from memory or I/O, the BIU first completes the instruction fetch

bus cycle before initiating the operand read / write cycle.

 The BIU also contains a dedicated adder which is used to generate the 20bit physical

address that is output on the address bus. This address is formed by adding an appended

16 bit segment address and a 16 bit offset address.

http://www.8085projects.info/post/Explanation-of-Architechture-of-8086.aspx

 For example: The physical address of the next instruction to be fetched is formed by

combining the current contents of the code segment CS register and the current contents of

the instruction pointer IP register.

 The BIU is also responsible for generating bus control signals such as those for memory

read or write and I/O read or write.

Execution Unit

 The Execution unit is responsible for decoding and executing all instructions.

 The EU extracts instructions from the top of the queue in the BIU, decodes them,

generates operands if necessary, passes them to the BIU and requests it to perform the

read or write bus cycles to memory or I/O and perform the operation specified by the

instruction on the operands.

 During the execution of the instruction, the EU tests the status and control flags and

updates them based on the results of executing the instruction.

 If the queue is empty, the EU waits for the next instruction byte to be fetched and shifted

to top of the queue.

 When the EU executes a branch or jump instruction, it transfers control to a location

corresponding to another set of sequential instructions.

 Whenever this happens, the BIU automatically resets the queue and then begins to fetch

instructions from this new location to refill the queue.

General Bus Operation

 The 8086 has a combined address and data bus commonly referred as a time multiplexed

address and data bus.

 The main reason behind multiplexing address and data over the same pins is the maximum

utilization of processor pins and it facilitates the use of 40 pin standard DIP package.

 The bus can be demultiplexed using a few latches and transceivers, when ever required.

 Basically, all the processor bus cycles consist of at least four clock cycles. These are

referred to as T1, T2, T3, and T4. The address is transmitted by the processor during T1. It

is present on the bus only for one cycle.

http://www.8085projects.info/post/General-Bus-Operation.aspx

 The negative edge of this ALE pulse is used to separate the address and the data or status

information. In maximum mode, the status lines S0, S1 and S2 are used to indicate the

type of operation.

 Status bits S3 to S7 are multiplexed with higher order address bits and the BHE signal.

Address is valid during T1 while status bits S3 to S7 are valid during T2 through T4.

Maximum mode

 In the maximum mode, the 8086 is operated by strapping the MN/MX pin to ground.

 In this mode, the processor derives the status signal S2, S1, S0. Another chip called bus

controller derives the control signal using this status information.

 In the maximum mode, there may be more than one microprocessor in the system

configuration.

Minimum mode

 In a minimum mode 8086 system, the microprocessor 8086 is operated in minimum mode

by strapping its MN/MX pin to logic 1.

 In this mode, all the control signals are given out by the microprocessor chip itself.

 There is a single microprocessor in the minimum mode system.

Pin Diagram of 8086 and Pin description of 8086

Figure shows the Pin diagram of 8086. The description follows it.

 The Microprocessor 8086 is a 16-bit CPU available in different clock rates and packaged

in a 40 pin CERDIP or plastic package.

 The 8086 operates in single processor or multiprocessor configuration to achieve high

performance. The pins serve a particular function in minimum mode (single processor

mode) and other function in maximum mode configuration (multiprocessor mode).

 The 8086 signals can be categorized in three groups.

o The first are the signal having common functions in minimum as well as maximum

mode.

o The second are the signals which have special functions for minimum mode

o The third are the signals having special functions for maximum mode.

 The following signal descriptions are common for both modes.

 AD15-AD0: These are the time multiplexed memory I/O address and data lines.

http://www.8085projects.info/post/Pin-Diagram-of-8086-and-Pin-description-of-8086.aspx

o Address remains on the lines during T1 state, while the data is available on the

data bus during T2, T3, Tw and T4. These lines are active high and float to a

tristate during interrupt acknowledge and local bus hold acknowledge cycles.

 A19/S6, A18/S5, A17/S4, and A16/S3: These are the time multiplexed address and status

lines.

o During T1 these are the most significant address lines for memory operations.

o During I/O operations, these lines are low.

o During memory or I/O operations, status information is available on those lines for

T2, T3, Tw and T4.

o The status of the interrupt enable flag bit is updated at the beginning of each clock

cycle.

o The S4 and S3 combine indicate which segment registers is presently being used

for memory accesses as in below fig.

o These lines float to tri-state off during the local bus hold acknowledge. The status

line S6 is always low.

o The address bit is separated from the status bit using latches controlled by the ALE

signal.

 BHE/S7: The bus high enable is used to indicate the transfer of data over the higher order

(D15-D8) data bus as shown in table. It goes low for the data transfer over D15-D8 and is

used to derive chip selects of odd address memory bank or peripherals. BHE is low during

T1 for read, write and interrupt acknowledge cycles, whenever a byte is to be transferred

on higher byte of data bus. The status information is available during T2, T3 and T4. The

signal is active low and tristated during hold. It is low during T1 for the first pulse of the

interrupt acknowledge cycle.

 RD – Read: This signal on low indicates the peripheral that the processor is performing

memory or I/O read operation. RD is active low and shows the state for T2, T3, Tw of any

read cycle. The signal remains tristated during the hold acknowledge.

 READY: This is the acknowledgement from the slow device or memory that they have

completed the data transfer. The signal made available by the devices is synchronized by

the 8284A clock generator to provide ready input to the 8086. the signal is active high.

 INTR-Interrupt Request: This is a triggered input. This is sampled during the last clock

cycles of each instruction to determine the availability of the request. If any interrupt

request is pending, the processor enters the interrupt acknowledge cycle. This can be

internally masked by resulting the interrupt enable flag. This signal is active high and

internally synchronized.

 TEST: This input is examined by a ‘WAIT’ instruction. If the TEST pin goes low,

execution will continue, else the processor remains in an idle state. The input is

synchronized internally during each clock cycle on leading edge of clock.

 CLK- Clock Input: The clock input provides the basic timing for processor operation and

bus control activity. It’s an asymmetric square wave with 33% duty cycle.

Figure shows the Pin functions of 8086.

The following pin functions are for the minimum mode operation of 8086.

 M/IO – Memory/IO: This is a status line logically equivalent to S2 in maximum mode.

When it is low, it indicates the CPU is having an I/O operation, and when it is high, it

indicates that the CPU is having a memory operation. This line becomes active high in the

previous T4 and remains active till final T4 of the current cycle. It is tristated during local

bus “hold acknowledge “.

 INTA – Interrupt Acknowledge: This signal is used as a read strobe for interrupt

acknowledge cycles. i.e. when it goes low, the processor has accepted the interrupt.

 ALE – Address Latch Enable: This output signal indicates the availability of the valid

address on the address/data lines, and is connected to latch enable input of latches. This

signal is active high and is never tristated.

 DT/R – Data Transmit/Receive: This output is used to decide the direction of data flow

through the transceivers (bidirectional buffers). When the processor sends out data, this

signal is high and when the processor is receiving data, this signal is low.

 DEN – Data Enable: This signal indicates the availability of valid data over the

address/data lines. It is used to enable the transceivers (bidirectional buffers) to separate

the data from the multiplexed address/data signal. It is active from the middle of T2 until

the middle of T4. This is tristated during ‘hold acknowledge’ cycle.

 HOLD, HLDA- Acknowledge: When the HOLD line goes high; it indicates to the

processor that another master is requesting the bus access. The processor, after receiving

the HOLD request, issues the hold acknowledge signal on HLDA pin, in the middle of the

next clock cycle after completing the current bus cycle.

 At the same time, the processor floats the local bus and control lines. When the processor

detects the HOLD line low, it lowers the HLDA signal. HOLD is an asynchronous input,

and is should be externally synchronized. If the DMA request is made while the CPU is

performing a memory or I/O cycle, it will release the local bus during T4 provided :

1. The request occurs on or before T2 state of the current cycle.

2. The current cycle is not operating over the lower byte of a word.

3. The current cycle is not the first acknowledge of an interrupt acknowledge sequence.

4. A Lock instruction is not being executed.

The following pin functions are applicable for maximum mode operation of 8086.

 S2, S1, and S0 – Status Lines: These are the status lines which reflect the type of

operation, being carried out by the processor. These become activity during T4 of the

previous cycle and active during T1 and T2 of the current bus cycles.

 LOCK: This output pin indicates that other system bus master will be prevented from

gaining the system bus, while the LOCK signal is low. The LOCK signal is activated by

the ‘LOCK’ prefix instruction and remains active until the completion of the next

instruction. When the CPU is executing a critical instruction which requires the system

bus, the LOCK prefix instruction ensures that other processors connected in the system

will not gain the control of the bus.

The 8086, while executing the prefixed instruction, asserts the bus lock signal output,

which may be connected to an external bus controller. By prefetching the instruction, there is

a considerable speeding up in instruction execution in 8086. This is known as instruction

pipelining.

 At the starting the CS: IP is loaded with the required address from which the execution is

to be started. Initially, the queue will be empty and the microprocessor starts a fetch

operation to bring one byte (the first byte) of instruction code, if the CS: IP address is odd

or two bytes at a time, if the CS: IP address is even.

 The first byte is a complete opcode in case of some instruction (one byte opcode

instruction) and is a part of opcode, in case of some instructions (two byte opcode

instructions), the remaining part of code lie in second byte.

 The second byte is then decoded in continuation with the first byte to decide the

instruction length and the number of subsequent bytes to be treated as instruction data.

The queue is updated after every byte is read from the queue but the fetch cycle is initiated

by BIU only if at least two bytes of the queue are empty and the EU may be concurrently

executing the fetched instructions.

 The next byte after the instruction is completed is again the first opcode byte of the next

instruction. A similar procedure is repeated till the complete execution of the program.

The fetch operation of the next instruction is overlapped with the execution of the current

instruction. As in the architecture, there are two separate units, namely Execution unit and

Bus interface unit.

 While the execution unit is busy in executing an instruction, after it is completely

decoded, the bus interface unit may be fetching the bytes of the next instruction from

memory, depending upon the queue status.

 RQ/GT0, RQ/GT1 – Request/Grant: These pins are used by the other local bus master

in maximum mode, to force the processor to release the local bus at the end of the

processor current bus cycle.

 Each of the pin is bidirectional with RQ/GT0 having higher priority than RQ/GT1. RQ/GT

pins have internal pull-up resistors and may be left unconnected. Request/Grant sequence

is as follows:

1. A pulse of one clock wide from another bus master requests the bus access to

8086.

2. During T4(current) or T1(next) clock cycle, a pulse one clock wide from 8086 to

the requesting master, indicates that the 8086 has allowed the local bus to float and

that it will enter the ‘hold acknowledge’ state at next cycle. The CPU bus interface

unit is likely to be disconnected from the local bus of the system.

3. A one clock wide pulse from another master indicates to the 8086 that the hold

request is about to end and the 8086 may regain control of the local bus at the next

clock cycle. Thus each master to master exchange of the local bus is a sequence of

3 pulses. There must be at least one dead clock cycle after each bus exchange. The

request and grant pulses are active low. For the bus request those are received

while 8086 is performing memory or I/O cycle, the granting of the bus is governed

by the rules as in case of HOLD and HLDA in minimum mode.

Minimum Mode 8086 System

Minimum mode 8086 system

 In a minimum mode 8086 system, the microprocessor 8086 is operated in minimum mode

by strapping its MN/MX pin to logic 1.

 In this mode, all the control signals are given out by the microprocessor chip itself. There

is a single microprocessor in the minimum mode system.

 The remaining components in the system are latches, transceivers, clock generator,

memory and I/O devices. Some type of chip selection logic may be required for selecting

memory or I/O devices, depending upon the address map of the system.

 Latches are generally buffered output D-type flip-flops like 74LS373 or 8282. They are

used for separating the valid address from the multiplexed address/data signals and are

controlled by the ALE signal generated by 8086.

 Transceivers are the bidirectional buffers and some times they are called as data

amplifiers. They are required to separate the valid data from the time multiplexed

address/data signals.

 They are controlled by two signals namely, DEN and DT/R.

 The DEN signal indicates the direction of data, i.e. from or to the processor. The system

contains memory for the monitor and users program storage.

http://www.8085projects.info/post/Minimum-Mode-8086-System.aspx

 Usually, EPROM is used for monitor storage, while RAM for users program storage. A

system may contain I/O devices.

Write Cycle Timing Diagram for Minimum Mode

 The working of the minimum mode configuration system can be better described in terms

of the timing diagrams rather than qualitatively describing the operations.

 The opcode fetch and read cycles are similar. Hence the timing diagram can be

categorized in two parts, the first is the timing diagram for read cycle and the second is the

timing diagram for write cycle.

 The read cycle begins in T1 with the assertion of address latch enable (ALE) signal and

also M / IO signal. During the negative going edge of this signal, the valid address is

latched on the local bus.

 The BHE and A0 signals address low, high or both bytes. From T1 to T4 , the M/IO signal

indicates a memory or I/O operation.

 At T2, the address is removed from the local bus and is sent to the output. The bus is then

tristated. The read (RD) control signal is also activated in T2.

 The read (RD) signal causes the address device to enable its data bus drivers. After RD

goes low, the valid data is available on the data bus.

 The addressed device will drive the READY line high. When the processor returns the

read signal to high level, the addressed device will again tristate its bus drivers.

 A write cycle also begins with the assertion of ALE and the emission of the address. The

M/IO signal is again asserted to indicate a memory or I/O operation. In T2, after sending

the address in T1, the processor sends the data to be written to the addressed location.

 The data remains on the bus until middle of T4 state. The WR becomes active at the

beginning of T2 (unlike RD is somewhat delayed in T2 to provide time for floating).

http://www.8085projects.info/post/Write-Cycle-Timing-Diagram-for-Minimum-Mode.aspx

 The BHE and A0 signals are used to select the proper byte or bytes of memory or I/O

word to be read or write.

 The M/IO, RD and WR signals indicate the type of data transfer as specified in table

below.

Bus Request and Bus Grant Timings in Minimum Mode System of 8086

 Hold Response sequence: The HOLD pin is checked at leading edge of each clock pulse.

If it is received active by the processor before T4 of the previous cycle or during T1 state

of the current cycle, the CPU activates HLDA in the next clock cycle and for succeeding

bus cycles, the bus will be given to another requesting master.

 The control of the bus is not regained by the processor until the requesting master does not

drop the HOLD pin low. When the request is dropped by the requesting master, the

HLDA is dropped by the processor at the trailing edge of the next clock.

Maximum Mode 8086 System

 In the maximum mode, the 8086 is operated by strapping the MN/MX pin to ground.

 In this mode, the processor derives the status signal S2, S1, S0. Another chip called bus

controller derives the control signal using this status information.

 In the maximum mode, there may be more than one microprocessor in the system

configuration.

 The components in the system are same as in the minimum mode system.

 The basic function of the bus controller chip IC8288 is to derive control signals like RD

and WR (for memory and I/O devices), DEN, DT/R, ALE etc. using the information by

the processor on the status lines.

 The bus controller chip has input lines S2, S1, S0 and CLK. These inputs to 8288 are

driven by CPU.

http://www.8085projects.info/post/Bus-Request-and-Bus-Grant-Timings-in-Minimum-Mode-System-of-8086.aspx
http://www.8085projects.info/post/Maximum-Mode-8086-System.aspx

 It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC and

AIOWC. The AEN, IOB and CEN pins are especially useful for multiprocessor systems.

 AEN and IOB are generally grounded. CEN pin is usually tied to +5V. The significance of

the MCE/PDEN output depends upon the status of the IOB pin.

 If IOB is grounded, it acts as master cascade enable to control cascade 8259A, else it acts

as peripheral data enable used in the multiple bus configurations.

 INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or to

an interrupting device.

 IORC, IOWC are I/O read command and I/O write command signals respectively.

 These signals enable an IO interface to read or write the data from or to the address port.

 The MRDC, MWTC are memory read command and memory write command signals

respectively and may be used as memory read or write signals.

 All these command signals instructs the memory to accept or send data from or to the bus.

 For both of these write command signals, the advanced signals namely AIOWC and

AMWTC are available.

 Here the only difference between in timing diagram between minimum mode and

maximum mode is the status signals used and the available control and advanced

command signals.

 R0, S1, S2 are set at the beginning of bus cycle.8288 bus controller will output a pulse as

on the ALE and apply a required signal to its DT / R pin during T1.

 In T2, 8288 will set DEN=1 thus enabling transceivers, and for an input it will activate

MRDC or IORC. These signals are activated until T4. For an output, the AMWC or

AIOWC is activated from T2 to T4 and MWTC or IOWC is activated from T3 to T4.

 The status bit S0 to S2 remains active until T3 and become passive during T3 and T4.

 If reader input is not activated before T3, wait state will be inserted between T3 and T4.

Memory Read Timing Diagram in Maximum Mode of 8086

Memory Write Timing in Maximum mode of 8086

http://www.8085projects.info/post/Memory-Read-Timing-Diagram-in-Maximum-Mode-of-8086.aspx
http://www.8085projects.info/post/Memory-Write-Timing-in-Maximum-mode-of-8086.aspx
http://www.8085projects.info/post/Memory-Write-Timing-in-Maximum-mode-of-8086.aspx

RQ/GT Timings in Maximum Mode

 The request/grant response sequence contains a series of three pulses. The request/grant

pins are checked at each rising pulse of clock input.

 When a request is detected and if the condition for HOLD request is satisfied, the

processor issues a grant pulse over the RQ/GT pin immediately during T4 (current) or T1

(next) state.

 When the requesting master receives this pulse, it accepts the control of the bus, it sends a

release pulse to the processor using RQ/GT pin.

Minimum Mode Interface

 When the Minimum mode operation is selected, the 8086 provides all control signals

needed to implement the memory and I/O interface.

 The minimum mode signal can be divided into the following basic groups :

1. Address/data bus

2. Status

3. Control

4. Interrupt and

5. DMA.

Each and every group is explained clearly.

http://www.8085projects.info/post/RQGT-Timings-in-Maximum-Mode.aspx
http://www.8085projects.info/post/Minimum-Mode-Interface.aspx

Address/Data Bus:

 These lines serve two functions. As an address bus is 20 bits long and consists of signal

lines A0 through A19. A19 represents the MSB and A0 LSB. A 20bit address gives the

8086 a 1Mbyte memory address space. More over it has an independent I/O address space

which is 64K bytes in length.

 The 16 data bus lines D0 through D15 are actually multiplexed with address lines A0

through A15 respectively. By multiplexed we mean that the bus work as an address bus

during first machine cycle and as a data bus during next machine cycles.

 D15 is the MSB and D0 LSB. When acting as a data bus, they carry read/write data for

memory, input/output data for I/O devices, and interrupt type codes from an interrupt

controller.

Status signal:

 The four most significant address lines A19 through A16 are also multiplexed but in this

case with status signals S6 through S3.

 These status bits are output on the bus at the same time that data are transferred over the

other bus lines.

 Bit S4 and S3 together from a 2 bit binary code that identifies which of the 8086 internal

segment registers is used to generate the physical address that was output on the address

bus during the current bus cycle. Code S4S3 = 00 identifies a register known as extra

segment register as the source of the segment address.

 Status line S5 reflects the status of another internal characteristic of the 8086. It is the

logic level of the internal enable flag. The last status bit S6 is always at the logic 0 level.

Control Signals:

 The control signals are provided to support the 8086 memory I/O interfaces. They control

functions such as when the bus is to carry a valid address in which direction data are to be

transferred over the bus, when valid write data are on the bus and when to put read data on

the system bus.

 ALE is a pulse to logic 1 that signals external circuitry when a valid address word is on

the bus. This address must be latched in external circuitry on the 1-to-0 edge of the pulse

at ALE.

 Another control signal that is produced during the bus cycle is BHE bank high enable.

Logic 0 on this used as a memory enable signal for the most significant byte half of the

data bus D8 through D1. These lines also serve a second function, which is as the S7

status line.

 Using the M/IO and DT/R lines, the 8086 signals which type of bus cycle is in progress

and in which direction data are to be transferred over the bus. The logic level of M/IO tells

external circuitry whether a memory or I/O transfer is taking place over the bus. Logic 1 at

this output signals a memory operation and logic 0 an I/O operation.

 The direction of data transfer over the bus is signaled by the logic level output at DT/R.

When this line is logic 1 during the data transfer part of a bus cycle, the bus is in the

transmit mode. Therefore, data are either written into memory or output to an I/O device.

On the other hand, logic 0 at DT/R signals that the bus is in the receive mode. This

corresponds to reading data from memory or input of data from an input port.

 The signals read RD and write WR indicates that a read bus cycle or a write bus cycle is in

progress. The 8086 switches WR to logic 0 to signal external device that valid write or

output data are on the bus.

 On the other hand, RD indicates that the 8086 is performing a read of data of the bus.

During read operations, one other control signal is also supplied. This is DEN (data

enable) and it signals external devices when they should put data on the bus. There is one

other control signal that is involved with the memory and I/O interface. This is the

READY signal.

 READY signal is used to insert wait states into the bus cycle such that it is extended by a

number of clock periods. This signal is provided by an external clock generator device and

can be supplied by the memory or I/O sub-system to signal the 8086 when they are ready

to permit the data transfer to be completed.

Interrupt signals:

 The key interrupt interface signals are interrupt request (INTR) and interrupt acknowledge

(INTA).

 INTR is an input to the 8086 that can be used by an external device to signal that it need to

be serviced.

 Logic 1 at INTR represents an active interrupt request. When an interrupt request has been

recognized by the 8086, it indicates this fact to external circuit with pulse to logic 0 at the

INTA output.

 The TEST input is also related to the external interrupt interface. Execution of a WAIT

instruction causes the 8086 to check the logic level at the TEST input.

 If the logic 1 is found, the MPU suspend operation and goes into the idle state. The 8086

no longer executes instructions; instead it repeatedly checks the logic level of the TEST

input waiting for its transition back to logic 0.

 As TEST switches to 0, execution resume with the next instruction in the program. This

feature can be used to synchronize the operation of the 8086 to an event in external

hardware.

 There are two more inputs in the interrupt interface: the nonmaskable interrupt NMI and

the reset interrupt RESET.

 On the 0-to-1 transition of NMI control is passed to a nonmaskable interrupt service

routine. The RESET input is used to provide a hardware reset for the 8086. Switching

RESET to logic 0 initializes the internal register of the 8086 and initiates a reset service

routine.

DMA Interface signals:

 The direct memory access DMA interface of the 8086 minimum mode consist of the

HOLD and HLDA signals.

 When an external device wants to take control of the system bus, it signals to the 8086 by

switching HOLD to the logic 1 level. At the completion of the current bus cycle, the 8086

enters the hold state. In the hold state, signal lines AD0 through AD15, A16/S3 through

A19/S6, BHE, M/IO, DT/R, RD, WR, DEN and INTR are all in the high Z state.

 The 8086 signals external device that it is in this state by switching its HLDA output to

logic 1 level.

Maximum Mode Interface

 When the 8086 is set for the maximum-mode configuration, it provides signals for

implementing a multiprocessor / coprocessor system environment.

 By multiprocessor environment we mean that one microprocessor exists in the system and

that each processor is executing its own program.

 Usually in this type of system environment, there are some system resources that are

common to all processors. They are called as global resources. There are also other

resources that are assigned to specific processors. These are known as local or private

resources.

 Coprocessor also means that there is a second processor in the system. In these two

processors does not access the bus at the same time. One passes the control of the system

bus to the other and then may suspend its operation.

 In the maximum-mode 8086 system, facilities are provided for implementing allocation of

global resources and passing bus control to other microprocessor or coprocessor.

8288 Bus Controller – Bus Command and Control Signals:

 8086 does not directly provide all the signals that are required to control the memory, I/O

and interrupt interfaces.

http://www.8085projects.info/post/Maximum-Mode-Interface.aspx

 Specially the WR, M/IO, DT/R, DEN, ALE and INTA, signals are no longer produced by

the 8086. Instead it outputs three status signals S0, S1, S2 prior to the initiation of each

bus cycle. This 3- bit bus status code identifies which type of bus cycle is to follow.

 S2S1S0 are input to the external bus controller device, the bus controller generates the

appropriately timed command and control signals.

 The 8288 produces one or two of these eight command signals for each bus cycles. For

instance, when the 8086 outputs the code S2S1S0 equals 001; it indicates that an I/O read

cycle is to be performed.

 In the code 111 is output by the 8086, it is signaling that no bus activity is to take place.

 The control outputs produced by the 8288 are DEN, DT/R and ALE. These 3 signals

provide the same functions as those described for the minimum system mode.

 This set of bus commands and control signals is compatible with the Multibus and

industry standard for interfacing microprocessor systems.

 The output of 8289 are bus arbitration signals:

 Bus busy (BUSY), common bus request (CBRQ), bus priority out (BPRO), bus priority in

(BPRN), bus request (BREQ) and bus clock (BCLK).

 They correspond to the bus exchange signals of the Multibus and are used to lock other

processor off the system bus during the execution of an instruction by the 8086.

 In this way the processor can be assured of uninterrupted access to common system

resources such as global memory.

 Queue Status Signals: Two new signals that are produced by the 8086 in the maximum-

mode system are queue status outputs QS0 and QS1. Together they form a 2-bit queue

status code, QS1QS0.

 Following table shows the four different queue status.

 Local Bus Control Signal – Request / Grant Signals: In a maximum mode configuration,

the minimum mode HOLD, HLDA interface is also changed

 . These two are replaced by request/grant lines RQ/ GT0 and RQ/ GT1, respectively. They

provide a prioritized bus access mechanism for accessing the local bus.

Interrupts

Definition: The meaning of ‘interrupts’ is to break the sequence of operation. While the CPU is

executing a program, on ‘interrupt’ breaks the normal sequence of execution of instructions,

diverts its execution to some other program called Interrupt Service Routine (ISR).After

executing ISR , the control is transferred back again to the main program. Interrupt processing is

an alternative to polling.

Need for Interrupt: Interrupts are particularly useful when interfacing I/O devices that provide

or require data at relatively low data transfer rate.

Types of Interrupts: There are two types of Interrupts in 8086. They are:

(i)Hardware Interrupts and

(ii)Software Interrupts

(i) Hardware Interrupts (External Interrupts). The Intel microprocessors support hardware

interrupts through:

 Two pins that allow interrupt requests, INTR and NMI

 One pin that acknowledges, INTA, the interrupt requested on INTR.

INTR and NMI

http://www.8085projects.info/post/Interrupts.aspx

 INTR is a maskable hardware interrupt. The interrupt can be enabled/disabled using

STI/CLI instructions or using more complicated method of updating the FLAGS register

with the help of the POPF instruction.

 When an interrupt occurs, the processor stores FLAGS register into stack, disables further

interrupts, fetches from the bus one byte representing interrupt type, and jumps to

interrupt processing routine address of which is stored in location 4 * <interrupt type>.

Interrupt processing routine should return with the IRET instruction.

 NMI is a non-maskable interrupt. Interrupt is processed in the same way as the INTR

interrupt. Interrupt type of the NMI is 2, i.e. the address of the NMI processing routine is

stored in location 0008h. This interrupt has higher priority than the maskable interrupt.

 – Ex: NMI, INTR.

(ii) Software Interrupts (Internal Interrupts and Instructions) .Software interrupts can be caused

by:

 INT instruction - breakpoint interrupt. This is a type 3 interrupt.

 INT <interrupt number> instruction - any one interrupt from available 256 interrupts.

 INTO instruction - interrupt on overflow

 Single-step interrupt - generated if the TF flag is set. This is a type 1 interrupt. When the

CPU processes this interrupt it clears TF flag before calling the interrupt processing

routine.

 Processor exceptions: Divide Error (Type 0), Unused Opcode (type 6) and Escape opcode

(type 7).

 Software interrupt processing is the same as for the hardware interrupts.

 - Ex: INT n (Software Instructions)

 Control is provided through:

o IF and TF flag bits

o IRET and IRETD

Performance of Software Interrupts

http://www.8085projects.info/post/Performance-of-Software-Interrupts.aspx

1. It decrements SP by 2 and pushes the flag register on the stack.

2. Disables INTR by clearing the IF.

3. It resets the TF in the flag Register.

5. It decrements SP by 2 and pushes CS on the stack.

6. It decrements SP by 2 and pushes IP on the stack.

6. Fetch the ISR address from the interrupt vector table.

Interrupt Vector Table

Functions associated with INT00 to INT04

INT 00 (divide error)

 INT00 is invoked by the microprocessor whenever there is an attempt to divide a number

by zero.

 ISR is responsible for displaying the message “Divide Error” on the screen

INT 01

 For single stepping the trap flag must be 1

 After execution of each instruction, 8086 automatically jumps to 00004H to fetch 4 bytes

for CS: IP of the ISR.

 The job of ISR is to dump the registers on to the screen

INT 02 (Non maskable Interrupt)

 When ever NMI pin of the 8086 is activated by a high signal (5v), the CPU Jumps to

physical memory location 00008 to fetch CS:IP of the ISR associated with NMI.

INT 03 (break point)

 A break point is used to examine the CPU and memory after the execution of a group of

Instructions.

 It is one byte instruction whereas other instructions of the form “INT nn” are 2 byte

instructions.

INT 04 (Signed number overflow)

 There is an instruction associated with this INT 0 (interrupt on overflow).

 If INT 0 is placed after a signed number arithmetic as IMUL or ADD the CPU will

activate INT 04 if 0F = 1.

 In case where 0F = 0, the INT 0 is not executed but is bypassed and acts as a NOP.

Performance of Hardware Interrupts

 NMI : Non maskable interrupts - TYPE 2 Interrupt

 INTR : Interrupt request - Between 20H and FFH

Interrupt Priority Structure

http://www.8085projects.info/post/Performance-of-Hardware-Interrupts.aspx

INTRODUCTION TO MICRO CONTROLLERS

6.0 INTRODUCTION:

We have noticed that Microprocessor is just not self-sufficient, and it requires other

components like memory and input/output devices to form a minimum workable system

configuration. To have all these components in a discrete form and to assemble them on a PCB is

usually not an affordable solution for the following reasons:

1) The overall system cost of a microprocessor based system built around a CPU, memory and

other peripherals is high as compared to a microcontroller based system.

2) A large sized PCB is required for assembling all these components, resulting in an enhanced

cost of the system.

3) Design of such PCBs requires a lot of effort and time and thus the overall product design

requires more time.

4) Due to the large size of the PCB and the discrete components used, physical size of the

product is big and hence it is not handy.

5) As discrete components are used, the system is not reliable nor is it easy to trouble- shoot such

a system.

Considering all these problems, Intel decided to integrate a microprocessor along with I/O ports

and minimum memory into a single package. Another frequently used peripheral, a

programmable timer, was also integrated to make this device a self-sufficient one. This device

which contains a microprocessor and the above mentioned components has been named a

microcontroller. A microcontroller is a microprocessor with integrated peripherals. Design with

microcontrollers has the following advantages:

1. As the peripherals are integrated into a single chip, the overall system cost is very low.

2. The size of the product is small as compared to the microprocessor based systems thus very

handy.

3. The system design requires very little efforts and is easy to troubleshoot and maintain.

4. As the peripherals are integrated with a microprocessor, the system is more reliable.

5. Though a microcontroller may have on-chip RAM, ROM and I/O ports, additional RAM,

ROM and I/O ports may be interfaced externally, if required.

6. The microcontrollers with on-chip ROM provide a software security feature which is not

available with microprocessor based systems using ROM/EPROM.

However, in case of a larger system design, which requires more number of I/O ports and

more memory capacity, the system designer may interface external I/O ports and memory with

the system. In such cases, the microcontroller based systems are not so attractive as they are in

case of the small dedicated systems. Figure 17.1 shows a typical microcontroller internal block

diagram.

As a microcontroller contains most of the components required to form a microprocessor system,

it is sometimes called a single chip microcomputer, since it also has the ability to easily

implement simple control functions.

6.1 OVERVIEW OF 8051 MICRO CONTROLLER

Let us look at Intel's 8-bit microcontroller family, popularly known as MCS-51 family.

The earlier versions of Intel's microcontrollers do not have on-chip EPROM. 8031 was one such

microcontroller from Intel, followed by the 8051 family. 8751 was the first microcontroller

version with on-chip EPROM, followed by a number of 8751 versions with slight modifications.

Recently, an electrically programmable and erasable version of 8051, named as 8951, has been

introduced. Table shows the comparison between different versions of 8051. All these members

of the 8051 family have identical instruction set and similar architecture with slight variations as

shown in Table.

6.2 ARCHITECTURE OF 8051

The internal architecture of 8051 is presented in Fig.

The functional description of each block is presented briefly below.

Accumulator (ACC): The accumulator register (ACC or A) acts as an operand register, in case

of some instructions. This may either be implicit or specified in the instruction.

B Register: This register is used to store one of the operands for multiply and divide instructions.

In other instructions, it may just be used as a scratch pad.

 Program Status Word (PSW): This set of flags contains the status information.

Stack Pointer (SP): This 8-bit wide register is incremented before the data is stored onto the

stack using push or call instructions. This register contains 8-bit stack top address. The stack may

be defined anywhere in the on-chip 128-byte RAM. After reset, the SP register is initialised to 07.

After each write to stack operation, the 8-bit contents of the operand are stored onto the stack,

after incrementing the SP register by one. Thus if SP contains 07 H, the forthcoming PUSH

operation will store the data at address 08H in the internal RAM. The SP content will be

incremented to 08.

Data Pointer (DTPR): This 16-bit register contains a higher byte (DPH) and the lower byte

(DPL) of a 16-bit external data RAM address. It is accessed as a 16-bit register or two 8-bit

registers as specified above.

Port 0 to 3 Latches and Drivers: These four latches and driver pairs are allotted to each of the

four on-chip I/O ports. Using the allotted addresses, the user can communicate with these ports.

These are identified as P0, PI, P2 and P3.

Serial Data Buffer: The serial data buffer internally contains two independent registers. One of

them is a transmit buffer which is necessarily a parallel-in serial-out register. The other is called

receive buffer which is a serial-in parallel-out register. The serial data buffer is identified as

SBUF.

 Timer Registers: These two 16-bit registers can be accessed as their lower and upper bytes. For

example, TL0 represents the lower byte of the timing register 0, while TH0 represents higher

bytes of the timing register 0. Similarly, TL1 and TH1 represent lower and higher bytes of timing

register 1.

Control Registers: The special function registers IP, IE, TMOD, TCON, SCON and PCON

contain control and status information for interrupts, timers/counters and serial port.

Timing and Control Unit: This unit derives all the necessary timing and control signals required

for the internal operation of the circuit. It also derives control signals required for controlling the

external system bus.

Oscillator: This circuit generates the basic timing clock signal for the operation of the circuit

using crystal oscillator.

Instruction Register: This register decodes the opcode of an instruction to be executed and gives

information to the timing and control unit to generate necessary signals for the execution of the

instruction.

EPROM and Program Address Register: These blocks provide an on-chip EPROM/PROM

and a mechanism to internally address it. Note that EPROM is not available in all 8051 versions.

RAM and RAM Address Register: These blocks provide internal 128 bytes of RAM and a

mechanism to address it internally.

 ALU: The arithmetic and logic unit performs 8-bit arithmetic and logical operations over the

operands held by the temporary registers TMP1 and TMP2. Users cannot access these temporary

registers.

SFR Register Bank: This is a set of special function registers, which can be addressed using

their respective addresses which lie in the range 80H to FFH.

 Finally, the interrupt, serial port and timer units control and perform their specific

functions under the control of the timing and control unit.

6.3 PIN DESCRIPTIONS OF 8051

 8051 is available in a 40-pin plastic and ceramic DIP packages. The pin diagram of 8051

is shown in Fig. 17.3 followed by description of each pin.

6.4 REGISTER SET OF 8051

8051 has two 8-bit registers, registers A and B, which can be used to store operands, as

allowed by the instruction set. Internal temporary registers of 8051 are not user accessible.

Including these A and B registers, 8051 has a family of special purpose registers known as,

Special Function Registers (SFRs). There are, in total, 21-bit addressable, 8-bit registers. ACC

(A), B, PSW, PO, PI, P2, P3, IP, IE, TCON and SCON are all 8-bit, bit-addressable registers. The

remaining registers, namely, SP, DPH, DPL, TMOD, TH0, TL0, TH1, TL1, SBUF and PCON

registers are to be addressed as bytes, i.e. they are not bit-addressable. The registers DPH and

DPL are the higher and lower bytes of a 16-bit register DPTR, i.e. data pointer, which is used for

accessing external data memory. Starting 32-bytes of on-chip RAM may be used as general

purpose registers. They have been allotted addresses in the range from 0000H to 001FH. These

32, 8-bit registers are divided into four groups of 8 registers each, called register banks.

At a time only one of these four groups, i.e. banks can be accessed. The register bank to be

accessed can be selected using the RS1 and RS0 bits of an internal register called program status

word.

 The registers TH0 and TL0 form a 16-bit counter/timer register with H indicating the

upper byte and L indicating the lower byte of the 16-bit timer register T0. Similarly, TH1 and TLl

form the 16-bit count for the timer Tl. The four port latches are represented by P0, P1, P2 and P3.

Any communication with these ports is established using the SFR addresses to these registers.

Register SP is a stack pointer register. Register PSW is a flag register and contains status

information. Register IP can be programmed to control the interrupt priority. Register IE can be

programmed to control interrupts, i.e. enable or disable the interrupts. TCON is called

timer/counter control register. Some of the bits of this register are used to turn the timers on or

off. This register also contains interrupt control flags for external interrupts 0INT and 1INT . The

register TMOD is used for programming the modes of operation of the timers/counters. The

SCON register is a serial port mode control register and is used to control the operation of the

serial port. The SBUF register acts as a serial data buffer for transmit and receive operations. The

PCON register is called power control register. This register contains power down bit and idle bit

which activate the power down mode and idle mode in 80C51BH. There are two power saving

modes of operation provided in the CHMOS version, namely, idle mode and power down mode.

 In the idle mode, the oscillator continues to run and the interrupt, serial port and timer

blocks are active but the clock to the CPU is disabled. The CPU status is preserved. This mode

can be terminated with a hardware interrupt or hardware reset signal. After this, the CPU resumes

program execution from where it left off.

 In power down mode, the on-chip oscillator is stopped. All the functions of the controller

are held maintaining the contents of RAM. The only way to terminate this mode is hardware

reset. The reset redefines all the SFRs but the RAM contents are left unchanged. Both of these

modes can be entered by setting the respective bit in an internal register called PCON register

using software.

 All these registers are listed in Table 17.3 along with their SFR addresses and contents

after reset.

IMPORTANT OPERATIONAL FEATURES OF 8051

This section describes the critical special function register formats of 8051.

1. Program Status Word (PSW)

 This bit-addressable register has the following format as shown in Fig. 17.4. The bit

descriptions are presented along with the format.

2. Timer Mode Control Register (TMOD)

 Format of this 8-bit non-bit-addressable register is shown along with its bit descriptions in

Fig. 5.

3. Timer Control Register (TCON)

This bit-addressable register format along with its bit definitions is shown in Fig..

4. Serial Ports Control Register (SCON)

 This 8-bit, bit-addressable register format is shown in Fig.

6.5.5 Power Control Register (PCON)

The format of this non-bit-addressable register is shown in Fig. 17.8.

INTERRUPTS OF 8051

8051 provides five sources of interrupts. 0INT and 1INT are the two external interrupt

inputs. These can either be edge-sensitive or level-sensitive, as programmed with bits IT0 and IT1

register TCON. These interrupts are processed internally by the flags IE0 and IE1. If the interrupts

are programmed as edge-sensitive, these flags are automatically cleared after the control is

transferred to the respective vector. On the other hand, if the interrupts are programmed level-

sensitive, these flags are controlled by the external interrupts sources themselves. Both timers can

be used in timer or counter mode. In counter mode, it counts the pulses at T0 or T1 pin. In timer

mode, oscillator clock is divided by a pre-scalar (1/32) and then given to the timer. So clock

frequency for timer is 1/32th of the controller operating frequency. The timer is an up-counter and

generates an interrupt when the count has reached FFFFH. It can be operated in four different

modes that can be set by TMOD register.

 The timer 0 and timer 1 interrupt sources are generated by TF0 and TF1 bits of the register

TCON, which are set, if a rollover takes place in their respective timer registers, except timer 0 in

mode 3. When these interrupts are generated, the respective flags are automatically cleared after

the control is transferred to the respective interrupt service routines.

 The serial port interrupt is generated, if at least one of the two bits RI and TI is set.

Neither of the flags is cleared, after the control is transferred to the interrupt service routine. The

RI and TI flags need to be cleared using software, after deciding, which one of these two caused

the interrupt? This is accomplished in the interrupt service routine.

 In addition to these five interrupts, 8051 also allows single step interrupts to be generated

with help of software. The external interrupts, if programmed level-sensitive, should remain high

for at least two machine cycles for being sensed. If the external interrupts are programmed edge-

sensitive, they should remain high for at least one machine cycle and low for at least one machine

cycle, for being sensed.

 The interrupt structure of 8051 provides two levels of the interrupt priorities for its sources

of interrupt. Each interrupt source can be programmed to have one of these two levels using the

interrupt priority register IP. The different sources of interrupts programmed to have the same

level of priority, further follow a sequence of priority under that level as shown:

 All these interrupts are enabled using a special function register called interrupt enable

register (IE) and their priorities are programmed using another special function register called

interrupt priority register (IP). Formats of both of these registers are shown in Fig. 17.13 and

Fig. 17.14.

INTERRUPTS

 Interrupt is an input to a processor that indicates the occurrence of an event. In case of

external events, the status of a microprocessor pin is altered. Interrupts are also generated due to

the events occurring inside the machine like timer overflow or transmission/reception of a byte

through the serial port, etc. The processor responds to an interrupt by saving the current machine

status and branching to execute a subprogram called 'interrupt service subroutine'. When an

interrupt occurs, the CPU jumps to the location associated with that interrupt, in the program

memory and starts executing from there. This location is called 'vector' and the interrupt is called

vectored interrupt. After serving the interrupt, the processor restores the original machine status

and continues with the original program.

INTERRUPTS IN MCS-51

Initializing 8051 Interrupts

 The interrupt enable (IE) register allows the programmer to enable interrupts as needed.

This register IE is bit addressable and is shown in Fig. 6.1. Enable All (EA) bit allows disabling

the whole interrupt operation, if cleared. Thus, it acts as a master control bit for any of the

interrupts. For any particular interrupt to occur, bit EA and the corresponding bit must be set. For

example, in case of serial interrupt, bit EA and bit ES must be set. ES is the serial port interrupt,

useful in serial transmission, if set, enables the serial interrupts TI or RI Similarly, bits ET1, ET0

are for timer 1 and timer 0 interrupts, respectively. EX1 and EX0 are external interrupt enable bits

for external interrupts 1 and 0, respectively. Programming Example #6.1 shows initialization of

external interrupt 1.

 This instruction will enable the external interrupt 1. If now this is followed by CLR EA

instruction, whole interrupt operation is disabled. To initialize the serial interrupt, one may load

the IE register with 10010000B.

Interrupt Priorities

 Let us consider the case, when more than one interrupts are enabled. User can program the

interrupt priority levels by setting or clearing the bits in SFR called interrupt priority (IP) register.

IP register is also bit addressable. If the bit is set, that particular interrupt will have high priority.

MODULE – II

INSTRUCTION SET AND

PROGRAMMING OF 8051

MEMORY AND I/O ADDRESSING BY 8051

1. Memory Addressing

The total memory of an 8051 system is logically divided into program memory and data

memory. Program memory stores the programs to be executed, while data memory stores the data

like intermediate results, variables and constants required for the execution of the program.

Program memory is invariably implemented using EPROM, because it stores only program code

which is to be executed and thus it need not be written into. However, the data memory may be

read from or written to and thus it is implemented using RAM.

 Further, the program memory and data memory both may be categorized as on-chip

(internal) and external memory, depending upon whether the memory physically exists on the

chip or it is externally interfaced. The 8051 can address 4 Kbytes on-chip program memory

whose map starts from 0000H and ends at 0FFFH. It can address 64 Kbytes of external program

memory under the control of PSEN signal, whose address map is from 0000H to FFFFH. Here,

one may note that the map of internal program memory overlaps with that of the external program

memory. However, these two memory spaces can be distinguished using the PSEN signal. In case

of ROM-less versions of 8051, the PSEN signal is used to access the external program memory.

Conceptually this is shown in Fig. 17.9.

 8051 supports 64 Kbytes of external data memory whose map starts at 0000H and ends at

FFFFH. This external data memory can be accessed under the control of register DPTR, which

stores the addresses for external data memory accesses. 8051 generates RD and WR signals

during external data memory accesses. The chip select line of the external data memory may be

derived from the address lines as in the case of other microprocessors. Internal data memory of

8051 consists of two parts; the first is the RAM block of 128 bytes (256 bytes in case of some

versions of 8051) and the second is the set of addresses from 80H to FFH, which includes the

addresses allotted to the special function registers.

 The address map of the 8051 internal RAM (128 bytes) starts from 00 and ends at 7FH.

This RAM can be addressed by using direct or indirect mode of addressing. However, the special

function register address map, i.e. from 80H to FFH is accessible only with direct addressing

mode.

 In case of 8051 versions with 256 bytes on-chip RAM, the map starts from 00H and ends

at FFH. In this case, it may be noted that the address map of special function registers, i.e. 80H to

FFH overlaps with the upper 128 bytes of RAM. However, the way of addressing, i.e. addressing

mode, differentiates between these two memory spaces. The upper 128 bytes of the 256 byte on-

chip RAM can be accessed only using indirect addressing, while the lower 128 bytes can be

accessed using direct or indirect mode of addressing. The special function register address space

can only be accessed using direct addressing. The address map of the internal RAM and SFR is

shown in Fig. 17.10.

The lower 128 bytes of RAM whose address map is from 00 to 7FH is functionally

organized in three sections. The address block from 00 to 1FH, i.e. the lowest 32 bytes which

form the first section, is divided into four banks of 8-bit registers, denoted as bank 00, 01, 10 and

11. Each of these banks contains eight 8-bit registers. The stack pointer gets initialized at address

07H, i.e. the last address of the bank 00, after reset operation. After reset bank 0 is selected by

default but the actual stack data is stored from 08H onwards, i.e. bank 01, 10 and 11. These bank

addressing bits of the register banks are present in PSW, to select one of these banks at a time.

The second section extends from 20H to 2FH, i.e. 16 bytes, which is a bit-addressable block of

memory, containing 16 x 8 = 128 bits. Each of these bits can be addressed using the addresses 00

to 7FH. Any of these bits can be accessed in two ways. In the first, its bit number is directly

mentioned in the instruction while in the second the bit is mentioned with its position in the

respective register byte. For example, the bits 0 to 7 can be referred directly by their numbers, i.e.

0 to 7 or using the notations 20.0 to 20.7 respectively. Note that 20 is the address of the first byte

of the on-chip RAM. The third block of internal memory occupies addresses from 30H to 7FH.

This block of memory is a byte addressable memory space. In general, this third block of memory

is used as stack memory. All the internal data memory locations are accessed using 8-bit

addresses under appropriate modes of addressing. Figure 17.11 shows the categorization of 128

bytes of internal RAM into the different sections.

2. I/O Addressing

Internally, 8051 has two timers, one serial input/output port and four 8-bit, bit-addressable

ports. Some complex applications may require additional I/O devices to be interfaced with 8051.

Such external I/O devices are interfaced with 8051 as external memory-mapped devices. In other

words, the devices are treated as external memory locations, and they consume external memory

addresses. Figure 17.12 shows a system that has external RAM memory of 16 Kbytes, ROM of

16 Kbytes and one chip of 8255 interfaced externally to an 8051 family microcontroller.

Note that, the maps of external program and data memory may overlap, as the memory

spaces are logically separated in an 8051 system. As the 8255 is interfaced in external data

memory space its addresses are of 16-bits.

UNIT – 3

ADRESSING MODES OF 8051

ACCESSING MEMORY USING VARIOUS ADDRESSING MODES

We can use direct or register indirect addressing modes to access data stored either in

RAM or registers of the 8051. This topic will be discussed thoroughly in this section. We will

also show how to access on-chip ROM containing data using indexed addressing mode.

Direct addressing mode

As mentioned in Chapter 2, there are 128 bytes of RAM in the 8051. The RAM has been assigned

addresses 00 to 7FH. The following is a summary of the allocation of these 128 bytes.

1. RAM locations 00 - 1FH are assigned to the register banks and stack.

1. RAM locations 20 - 2FH are set aside as bit-addressable space to save single-

bit data. This is discussed in Section 5.3.

http://www.the-crankshaft.info/2009/08/accessing-memory-using-various.html

2. RAM locations 30 - 7FH are available as a place to save byte-sized data.

Although the entire 128 bytes of RAM can be accessed using direct addressing mode, it is

most often used to access RAM locations 30 - 7FH. This is due to the fact that register bank

locations are accessed by the register names of RO - R7, but there is no such name for other RAM

locations. In the direct addressing mode, the data is in a RAM memory location whose address is

known, and this address is given as a part of the instruction. Contrast this with immediate

addressing mode, in which the operand itself is provided with the instruction. The "#" sign

distinguishes between the two modes. See the examples below, and note the absence of the "#"

sign.

The above examples should reinforce the importance of the "#" sign in 8051 instructions. See the

following code.

Although it is easier to use the names RQ - R7 than their memory addresses, RAM

locations 3 OH to 7FH cannot be accessed in any way other than by their addresses since they

have no names.

SFR registers and their addresses

Among the registers we have discussed so far, we have seen that RO - R7 are part of the

128 bytes of RAM memory. What about registers A, B, PSW, and DPTR? Do they also have

addresses? The answer is yes. In the 8051, registers A, B, PSW, and DPTR are part of the group

of registers commonly referred to as SFR (special function registers). There are many special

function registers and they are widely used, as we will discuss in future chapters. The SFR can be

accessed by their names (which is much easier) or by their addresses. For example, register A has

address EOH, and register B has been designated the address FOH, as shown in Table 5-1. Notice

how the following pairs of instructions mean the same thing.

Table lists the 8051 special function registers (SFR) and their addresses. The following two

points should be noted about the SFR addresses.

1. The special function registers have addresses between 80H and FFH. These

addresses are above 80H, since the addresses 00 to 7FH are addresses of RAM

memory inside the 8051.

2. Not all the address space of 80 to FF is used by the SFR. The unused locations

80H to FFH are reserved and must not be used by the 8051 programmer.

Regarding direct addressing mode, notice the following two points: (a) the address value

is limited to one byte, 00 - FFH, which means this addressing mode is limited to accessing RAM

locations and registers located inside the 8051. (b) if you examine the 1st file for an Assembly

language program, you will see that the SFR registers' names are replaced with their addresses as

listed in Table 5-1.

Table : 8051 Special Function Register (SFR) Addresses

Example 1

Stack and direct addressing mode

Another major use of direct addressing mode is the stack. In the 8051 family, only direct

addressing mode is allowed for pushing onto the stack. Therefore, an instruction such as "PUSH

A" is invalid. Pushing the accumulator onto the stack must be coded as "PUSH OEOH" where

OEOH is the address of register A. Similarly, pushing R3 of bank 0 is coded as "PUSH 03".

Direct addressing mode must be used for the POP instruction as well. For example, "POP 04" will

pop the top of the stack into R4 of bank 0.

Example 2

Show the code to push R5, R6, and A onto the stack and then pop them back them into R2, R3,

and B, where register B = register A, R2 = R6, and R3 = R5.

Register indirect addressing mode

In the register indirect addressing mode, a register is used as a pointer to the data. If the

data is inside the CPU, only registers RO and Rl are used for this purpose. In other words, R2 -

R7 cannot be used to hold the address of an operand located in RAM when using this addressing

mode. When RO and Rl are used as pointers, that is, when they hold the addresses of RAM

locations, they must be preceded by the "@" sign, as shown below.

Notice that RO (as well as Rl) is preceded by the "@" sign. In the absence of the "@" sign,

MOV will be interpreted as an instruction moving the contents of register RO to A, instead

of the contents of the memory location pointed to by RO.

Example 3

Advantage of register indirect addressing mode

One of the advantages of register indirect addressing mode is that it makes accessing data

dynamic rather than static as in the case of direct addressing mode. Example 5-3 shows two cases

of copying 55H into RAM locations 40H to 45H. Notice in solution (b) that there are two

instructions that are repeated numerous times. We can create a loop with those two instructions as

shown in solution (c). Solution (c) is the most efficient and is possible only because of register

indirect addressing mode. Looping is not possible in direct addressing mode. This is the main

difference between the direct and register indirect addressing modes.

An example of how to use both RO and Rl in the register indirect addressing mode in a block

transfer is given in Example 5.

Limitation of register indirect addressing mode in the 8051

As stated earlier, RO and Rl are the only registers that can be used for pointers in register

indirect addressing mode. Since RO and Rl are 8 bits wide, their use is limited to accessing any

information in the internal RAM (scratch pad memory of 30H - 7FH, or SFR). However, there are

times when we need to access data stored in external RAM or in the code space of on-chip ROM.

Whether accessing externally connected RAM or on-chip ROM, we need a 16-bit pointer. In such

cases, the DPTR register is used, as shown next.

Indexed addressing mode and on-chip ROM access

Indexed addressing mode is widely used in accessing data elements of look-up table

entries located in the program ROM space of the 8051. The instruction used for this purpose is

"MOVC A, @A+DPTR". The 16-bit register DPTR and register A are used to form the address of

the data element stored in on-chip ROM. Because the data elements are stored in the program

(code) space ROM of the 8051, the instruction MOVC is used instead of MOV. The "C" means

code. In this instruction the contents of A are added to the 16-bit register DPTR to form the 16-bit

address of the needed data. See Example 5-6.

Example 6

In this program, assume that the word "USA" is burned into ROM locations starting at

200H, and that the program is burned into ROM locations starting at 0. Analyze how the

program works and state where "USA" is stored after this program is run.

In the above program ROM locations 200H - 202H have the following contents. 200=('U')

201=('S') 202=('A'')

We start with DPTR = 200H, and A = 0. The instruction "MOVC A, @A+DPTR" moves

the contents of ROM location 200H (200H + 0 = 200H) to register A. Register A contains 55H,

the ASCII value for "U". This is moved to RO. Next, DPTR is incremented to make DPTR =

201H. A is set to 0 again to get the contents of the next ROM location 201H, which holds

character "S". After this program is run, we have RO = 55H, Rl = 53H, and R2 = 41H, the ASCII

values for the characters "U", "S" and "A".

Example 7

Assuming that ROM space starting at 250H contains "America", write a program to

transfer the bytes into RAM locations starting at 40H.

Look-up table and the MOVC instruction

The look-up table is a widely used concept in microprocessor programming. It allows

access to elements of a frequently used table with minimum operations.

Example 8

Write a program to get the x value from PI and send x2 to P2, continuously.

In addition to being used to access program ROM, DPTR can be used to access memory

externally connected to the 8051. Another register used in indexed addressing mode is the

program counter.

In many of the examples above, the MOV instruction was used for the sake of clarity,

even though one can use any instruction as long as that instruction supports the addressing mode.

For example, the instruction "ADD A, @RO" would add the contents of the memory location

pointed to by RO to the contents of register A. We will see more examples of using addressing

modes with various instructions in the next few chapters.

Indexed addressing mode and MOVX instruction

As we have stated earlier, the 8051 has 64K bytes of code space under the direct control of

the Program Counter register. We just showed how to use the MOVC instruction to access a

portion of this 64K-byte code space as data memory space. In many applications the size of

program code does not leave any room to share the 64K-byte code space with data. For this

reason the 8051 has another 64K bytes of memory space set aside exclusively for data storage.

This data memory space is referred to as external memory and it is accessed only by the MOVX

instruction. In other words, the 8051 has a total of 128K bytes of memory space since 64K bytes

of code added to 64K bytes of data space gives us 128K bytes. One major difference between the

code space and data space is that, unlike code space, the data space cannot be shared between

code and data. This is such an important topic that we have dedicated an entire chapter to it:

Chapter 14.

Accessing RAM Locations 30 - 7FH as scratch pad

As we have seen so far, in accessing registers RO - R7 of various banks, it is much easier

to refer to them by their RO - R7 names than by their RAM locations. The only problem is that

we have only 4 banks and very often the task of bank switching and keeping track of register bank

usage is tedious and prone to errors. For this reason in many applications we use RAM locations

30 - 7FH as scratch pad and leave addresses 8 - 1FH for stack usage. That means that we use RO -

R7 of bank 0, and if we need more registers we simply use RAM locations 30-7FH. Look at

Example 5-10.

Example 10

TIMERS AND COUNTERS

Configure timer/counters as a timer or counter. As seen from Fig. 6.4, the TMOD bit C/ T , defines

this operation.

A). Mode 0

 In mode 0, the timer is 13-bit wide. This mode is same for timer 0 and timer 1. When the

count overflows, it sets the timer interrupt flag (TF1 for timer 1 and TF0 for timer 0). To start

timer 0, TR0 bit in TCON is required to be set. Using the upper byte TH1 (or TH0) and the lower

5 bits of TL1 (or TL0) forms the 13 bits. This is shown in Fig. 6.5 and Fig. 6.6.

B). Mode 1

 Mode 1 is same as mode 0, except the timers are 16 bits wide. Mode 1 is again the same

for timer 0 and timer 1. The maximum count in this mode is FFFFH. To initialize timer 1 in mode

1, see Programming Example #6.5.

 If initialized, the timer overflow can generate an interrupt. Consider one such program

segment (Programming Example #6.6) to initialize the timer 1 interrupt. Note that it is always

advisable to initialize the stack pointer before going for a main program, because the default value

of SP 07H may not be suitable in general. This is also the address of register R7, and if any

register bank switching is done, it can overwrite some useful register contents.

 Note that simply setting only ET1 bit in IE register will not enable the timer interrupt. In

addition, it is necessary to set the EA bit in IE. This program will start timer 1, and when it

overflows, timer 1 interrupt is generated, which will cause the program counter to jump to the

vector location 001B H.

C). Mode 2

This operation is again the same for timer 0 and timer 1. Consider timer 1 in mode 2.

Timer register is configured as an 8-bit counter TL1. Overflow from TL1 sets the flag TF1, and it

loads TL1 with the contents of TH1. The software can preload TH1. This mode of timer 1 or

timer 0 thus supports the automatic reload operation. Mode 2 auto-reload mechanism is shown in

Fig. 6.8. Timer control logic is again the same as that of mode 0 or 1.

 Let us now write the initialization program for timer 0 in mode 2 as shown in the

Programming Example #6.7. The program must load TMOD and then the auto-reload value must

be written in the timer high byte. Further, the starting count will also be the same as that of the

reload value in general, but it is not so strict since this is applicable for the very first overflow.

 However, it is very essential to load the timer high byte with the auto-reload value,

otherwise the timer after each overflow will start from 00H.

 Mode 2 is very commonly used for baud rate generation for serial port operation, or where

a constant frequency square wave output is needed. The frequency or baud rate can be controlled

using the preloaded value in THx register. The maximum delay generated using mode 2 will be

corresponding to the auto-reload value of 00H. Thus, at 12 MHz clock, this would generate the

maximum delay of 256 μs. If one can write an instruction to toggle any of the port pins, a square

wave output on that pin can be seen on the oscilloscope. Consider this program to generate a 2

kHz (0.5 ms period) square waveform on pin Pl.0 (Pin 1), as shown in Programming Example

#6.8. The reload count will be corresponding to 0.25mS. At 12 MHz, this will be (256-250) equal

to 06H.

 The same program could be written using timer interrupt also. Let us see how to do it!

Note that timer 0 interrupt has been enabled at the time of starting the timer. The timer 0 is

initialized in mode 2 or auto-reload mode. TH0 and TL0 both are initialized to the count 06H

corresponding to the 2 kHz frequency of square waves. The main program is over once timer 0 is

started. But notice the instruction SJMP $. This instruction is to jump at the same address and

generate an infinite loop. The effect is same as the instruction "LABEL: SJMP LABEL". This

program is shown in the Programming Example #6.9.

 Further, we have written an interrupt service routine (ISR) in which we just complement

the bit Pl.0. The ISR ends with RETI instruction. After the execution of this instruction, the CPU

will again be in the infinite loop, from where it was interrupted. Note that timer 0, once started, is

not made off or on afterwards, which is not needed also due to auto-reload feature.

D). Mode 3

 In this mode, timer 1 has a passive role of holding its count. In effect, it looks like as the

one who keeps TR1 = 0. Now, timer 0 bytes TH0 and TL0 are used as two separate timers.

Because of this, mode 3 is also called as split timer mode. TH0 is locked into timer operation and

simply counts the machine cycles. After overflowing, it sets the flag TF1.

 TL0 can be configured and controlled by using C/ T , GATE, TR0, INT0, and TF0. Note

that TR1 controls the operation of TH0 timer, now the question remains how to control timer 1?

Timer 1 can be used in a different manner, for any application that does not require the interrupt

operation; like for generating the baud rate for serial port operation. When timer 0 is in mode 3,

one can just control its operation by switching it out or into its mode 3 using TMOD settings.

Thus, in mode 3 it resembles like 8051 having 3 timer/counters.

 Note that in timer mode 3, timer 1 is a 16-bit timer and TH0, TL0 two 8-bit timers.

SERIAL COMMUNICATION

Serial data transmission is very commonly used for digital data communication. Its main

advantage is that the number of wires needed is reduced as compared to that in parallel

communication. 8051 supports a full duplex serial port. Full duplex means, it can transmit and

receive a byte simultaneously. 8051 has TXD and RXD pins for transmission and reception of

serial data respectively. The 8051 serial communication is supported by RS232 standard. The

term "RS" stands for Recommended Standard. Communication between two microcontrollers and

multiprocessor communication is also possible. The start and stop bits are used to synchronize the

serial receivers. The data byte is always transmitted with least-significant-bit first. For error

checking purpose, it is possible to include a parity bit as well, just prior to the stop bit. Thus, the

bits are transmitted at specific time intervals determined by the baud rate. For error-free serial

communication, it is necessary that the baud rate, the number of data bits, the number of stop bits,

and the presence or absence of a parity bit along with its status be the same at the transmitter and

receiver ends.

 The basic mechanism of serial transmission is that a data byte in parallel form is converted

into serial data stream. Along with some more bits like start, stop and parity bits, a serial data

frame is sent over a line. There are four modes of serial data transmission in 8051. In each of

these modes, it is important to decide the baud rate, the way in which serial data frame is sent and

any other information, etc.

 What is common in all these modes is the use of the SFR called "SBUF", for transmission

as well as reception. The data to be transmitted must be transferred to SBUF. One more SFR that

controls the serial communication operation is the serial control register SCON. Details of SCON

are shown in Fig. 6.10. Bits SM0 and SM1 in SCON define serial port mode. Bit SM2 enables the

multiprocessor communication in modes 2 and 3. Transmission is initiated by the execution of

any instruction that uses SBUF as the destination.

Serial Communication Modes

 There are four modes in which 8051 serial port can be configured.

A. Mode 0

 This is also called as shift register mode. Only RXD is the pin through which data enter or

exits. TXD pin outputs the shift clock only. Eight data bits are transmitted or received. The baud

rate is fixed and is totally determined by the system clock frequency. If fosc is the clock frequency,

then fosc/12 will be the baud rate.

 To see exactly how the operation of serial data transfer takes place in mode 0, see

Programming Example #6.11.

B. Mode 1

 In mode 1, 10 bits are transmitted through TXD pin or received through RXD pin. There

is a start bit (0), then 8 data bits (LSB first) and a stop bit (1). This is shown in Fig. 6.12. On

receiving, the stop bit goes into RB8 in SCON. The baud rate is variable and is determined by the

timer 1 overflow rate. Therefore, before using this mode, one has to initialize timer 1. A simple

program to initialize serial port in mode 1 is given in Programming Example #6.12. The baud rate

is calculated using the formula:

 Baud rate = 2SMOD/32 x (Timer 1 overflow rate) (6.1)

 If timer 1 is configured in auto-reload mode (or mode 2), with reload value in TH1, after

each overflow, contents of TH1 will be loaded into TL1. This is convenient for generating baud

rate. In this mode, TMOD high nibble will be 0010B. At 12 MHz oscillator frequency, the timer

clocking time is 1μs. Now, the baud rate formula is simplified to

 Baud rate = [2SMOD/32] x (oscillator frequency) / [12 x (256 - (TH1)] (6.2)

 For example, if TH1 contents are 230D, and SMOD bit in PCON is 0, then the baud rate

at 12 MHz is 1201 baud or 1.2K approximately. To get exactly 1200 baud, the oscillator

frequency must be 11.059 MHz This shows the degree of dependency of the baud rate on the

operating frequency. Thus, to be precise, the actual oscillator frequency must be measured on the

oscilloscope.

 To receive a byte in mode 1, the RI bit in SCON is tested for 1. Similarly, the REN bit in

SCON must be'1'.

 The following Programming Example #6.13 will receive a byte through pin RXD.

C. Mode 2

 In mode 2, 11 bits are transmitted, with a low start bit, then 8 data bits, a 9th bit and a stop

bit T. This is shown in Fig. 6.13.

 The 9th bit is programmable. User program can define 9th bit as TB8 in SCON. It may be

the parity of data byte. On reception, this 9th data bit goes into RB8 in SCON. In mode 2, the bit

SMOD in PCON and the oscillator frequency defines the baud rate and is given by

 Baud rate = [2SMOD/64] x (oscillator frequency) (6.3)

 Now consider Programming Example #6.14 to initialize the serial port in mode 2. At 12

MHz oscillator frequency, if SMD bit is 1, then the baud rate will be 375,000 or 375K.

D. Mode3

Again 11 bits are transmitted as shown in Fig. 6.13, this is almost same as mode 2, except that the

baud rate is defined by the timer 1 overflow rate. The baud rate calculations are exactly same as

that of mode 1.

MODULE – III

8051 MICRO CONTROLLER DESIGN

TIMERS AND COUNTERS

Configure timer/counters as a timer or counter. As seen from Fig. 6.4, the TMOD bit C/ T , defines

this operation.

A). Mode 0

 In mode 0, the timer is 13-bit wide. This mode is same for timer 0 and timer 1. When the

count overflows, it sets the timer interrupt flag (TF1 for timer 1 and TF0 for timer 0). To start

timer 0, TR0 bit in TCON is required to be set. Using the upper byte TH1 (or TH0) and the lower

5 bits of TL1 (or TL0) forms the 13 bits. This is shown in Fig. 6.5 and Fig. 6.6.

B). Mode 1

 Mode 1 is same as mode 0, except the timers are 16 bits wide. Mode 1 is again the same

for timer 0 and timer 1. The maximum count in this mode is FFFFH. To initialize timer 1 in mode

1, see Programming Example #6.5.

 If initialized, the timer overflow can generate an interrupt. Consider one such program

segment (Programming Example #6.6) to initialize the timer 1 interrupt. Note that it is always

advisable to initialize the stack pointer before going for a main program, because the default value

of SP 07H may not be suitable in general. This is also the address of register R7, and if any

register bank switching is done, it can overwrite some useful register contents.

 Note that simply setting only ET1 bit in IE register will not enable the timer interrupt. In

addition, it is necessary to set the EA bit in IE. This program will start timer 1, and when it

overflows, timer 1 interrupt is generated, which will cause the program counter to jump to the

vector location 001B H.

C). Mode 2

This operation is again the same for timer 0 and timer 1. Consider timer 1 in mode 2.

Timer register is configured as an 8-bit counter TL1. Overflow from TL1 sets the flag TF1, and it

loads TL1 with the contents of TH1. The software can preload TH1. This mode of timer 1 or

timer 0 thus supports the automatic reload operation. Mode 2 auto-reload mechanism is shown in

Fig. 6.8. Timer control logic is again the same as that of mode 0 or 1.

 Let us now write the initialization program for timer 0 in mode 2 as shown in the

Programming Example #6.7. The program must load TMOD and then the auto-reload value must

be written in the timer high byte. Further, the starting count will also be the same as that of the

reload value in general, but it is not so strict since this is applicable for the very first overflow.

 However, it is very essential to load the timer high byte with the auto-reload value,

otherwise the timer after each overflow will start from 00H.

 Mode 2 is very commonly used for baud rate generation for serial port operation, or where

a constant frequency square wave output is needed. The frequency or baud rate can be controlled

using the preloaded value in THx register. The maximum delay generated using mode 2 will be

corresponding to the auto-reload value of 00H. Thus, at 12 MHz clock, this would generate the

maximum delay of 256 μs. If one can write an instruction to toggle any of the port pins, a square

wave output on that pin can be seen on the oscilloscope. Consider this program to generate a 2

kHz (0.5 ms period) square waveform on pin Pl.0 (Pin 1), as shown in Programming Example

#6.8. The reload count will be corresponding to 0.25mS. At 12 MHz, this will be (256-250) equal

to 06H.

 The same program could be written using timer interrupt also. Let us see how to do it!

Note that timer 0 interrupt has been enabled at the time of starting the timer. The timer 0 is

initialized in mode 2 or auto-reload mode. TH0 and TL0 both are initialized to the count 06H

corresponding to the 2 kHz frequency of square waves. The main program is over once timer 0 is

started. But notice the instruction SJMP $. This instruction is to jump at the same address and

generate an infinite loop. The effect is same as the instruction "LABEL: SJMP LABEL". This

program is shown in the Programming Example #6.9.

 Further, we have written an interrupt service routine (ISR) in which we just complement

the bit Pl.0. The ISR ends with RETI instruction. After the execution of this instruction, the CPU

will again be in the infinite loop, from where it was interrupted. Note that timer 0, once started, is

not made off or on afterwards, which is not needed also due to auto-reload feature.

D). Mode 3

 In this mode, timer 1 has a passive role of holding its count. In effect, it looks like as the

one who keeps TR1 = 0. Now, timer 0 bytes TH0 and TL0 are used as two separate timers.

Because of this, mode 3 is also called as split timer mode. TH0 is locked into timer operation and

simply counts the machine cycles. After overflowing, it sets the flag TF1.

 TL0 can be configured and controlled by using C/ T , GATE, TR0, INT0, and TF0. Note

that TR1 controls the operation of TH0 timer, now the question remains how to control timer 1?

Timer 1 can be used in a different manner, for any application that does not require the interrupt

operation; like for generating the baud rate for serial port operation. When timer 0 is in mode 3,

one can just control its operation by switching it out or into its mode 3 using TMOD settings.

Thus, in mode 3 it resembles like 8051 having 3 timer/counters.

 Note that in timer mode 3, timer 1 is a 16-bit timer and TH0, TL0 two 8-bit timers.

SERIAL COMMUNICATION

Serial data transmission is very commonly used for digital data communication. Its main

advantage is that the number of wires needed is reduced as compared to that in parallel

communication. 8051 supports a full duplex serial port. Full duplex means, it can transmit and

receive a byte simultaneously. 8051 has TXD and RXD pins for transmission and reception of

serial data respectively. The 8051 serial communication is supported by RS232 standard. The

term "RS" stands for Recommended Standard. Communication between two microcontrollers and

multiprocessor communication is also possible. The start and stop bits are used to synchronize the

serial receivers. The data byte is always transmitted with least-significant-bit first. For error

checking purpose, it is possible to include a parity bit as well, just prior to the stop bit. Thus, the

bits are transmitted at specific time intervals determined by the baud rate. For error-free serial

communication, it is necessary that the baud rate, the number of data bits, the number of stop bits,

and the presence or absence of a parity bit along with its status be the same at the transmitter and

receiver ends.

 The basic mechanism of serial transmission is that a data byte in parallel form is converted

into serial data stream. Along with some more bits like start, stop and parity bits, a serial data

frame is sent over a line. There are four modes of serial data transmission in 8051. In each of

these modes, it is important to decide the baud rate, the way in which serial data frame is sent and

any other information, etc.

 What is common in all these modes is the use of the SFR called "SBUF", for transmission

as well as reception. The data to be transmitted must be transferred to SBUF. One more SFR that

controls the serial communication operation is the serial control register SCON. Details of SCON

are shown in Fig. 6.10. Bits SM0 and SM1 in SCON define serial port mode. Bit SM2 enables the

multiprocessor communication in modes 2 and 3. Transmission is initiated by the execution of

any instruction that uses SBUF as the destination.

Serial Communication Modes

 There are four modes in which 8051 serial port can be configured.

E. Mode 0

 This is also called as shift register mode. Only RXD is the pin through which data enter or

exits. TXD pin outputs the shift clock only. Eight data bits are transmitted or received. The baud

rate is fixed and is totally determined by the system clock frequency. If fosc is the clock frequency,

then fosc/12 will be the baud rate.

 To see exactly how the operation of serial data transfer takes place in mode 0, see

Programming Example #6.11.

F. Mode 1

 In mode 1, 10 bits are transmitted through TXD pin or received through RXD pin. There

is a start bit (0), then 8 data bits (LSB first) and a stop bit (1). This is shown in Fig. 6.12. On

receiving, the stop bit goes into RB8 in SCON. The baud rate is variable and is determined by the

timer 1 overflow rate. Therefore, before using this mode, one has to initialize timer 1. A simple

program to initialize serial port in mode 1 is given in Programming Example #6.12. The baud rate

is calculated using the formula:

 Baud rate = 2SMOD/32 x (Timer 1 overflow rate) (6.1)

 If timer 1 is configured in auto-reload mode (or mode 2), with reload value in TH1, after

each overflow, contents of TH1 will be loaded into TL1. This is convenient for generating baud

rate. In this mode, TMOD high nibble will be 0010B. At 12 MHz oscillator frequency, the timer

clocking time is 1μs. Now, the baud rate formula is simplified to

 Baud rate = [2SMOD/32] x (oscillator frequency) / [12 x (256 - (TH1)] (6.2)

 For example, if TH1 contents are 230D, and SMOD bit in PCON is 0, then the baud rate

at 12 MHz is 1201 baud or 1.2K approximately. To get exactly 1200 baud, the oscillator

frequency must be 11.059 MHz This shows the degree of dependency of the baud rate on the

operating frequency. Thus, to be precise, the actual oscillator frequency must be measured on the

oscilloscope.

 To receive a byte in mode 1, the RI bit in SCON is tested for 1. Similarly, the REN bit in

SCON must be'1'.

 The following Programming Example #6.13 will receive a byte through pin RXD.

G. Mode 2

 In mode 2, 11 bits are transmitted, with a low start bit, then 8 data bits, a 9th bit and a stop

bit T. This is shown in Fig. 6.13.

 The 9th bit is programmable. User program can define 9th bit as TB8 in SCON. It may be

the parity of data byte. On reception, this 9th data bit goes into RB8 in SCON. In mode 2, the bit

SMOD in PCON and the oscillator frequency defines the baud rate and is given by

 Baud rate = [2SMOD/64] x (oscillator frequency) (6.3)

 Now consider Programming Example #6.14 to initialize the serial port in mode 2. At 12

MHz oscillator frequency, if SMD bit is 1, then the baud rate will be 375,000 or 375K.

H. Mode3

Again 11 bits are transmitted as shown in Fig. 6.13, this is almost same as mode 2, except that the

baud rate is defined by the timer 1 overflow rate. The baud rate calculations are exactly same as

that of mode 1.

Keyboard interfacing

KEYBOARD INTERFACING

Keyboards and LCDs are the most widely used input/output devices of the 8051, and a basic

understanding of them is essential. In this section, we first discuss keyboard fundamentals, along

with key press and key detection mechanisms. Then we show how a keyboard is interfaced to an

8051.

Interfacing the keyboard to the 8051

At the lowest level, keyboards are organized in a matrix of rows and columns. The CPU accesses

both rows and columns through ports; therefore, with two 8-bit ports, an 8 x 8 matrix of keys can

be connected to a microprocessor. When a key is pressed, a row and a column make a contact;

otherwise, there is no connection between rows and columns. In IBM PC keyboards, a single

microcontroller (consisting of a microprocessor, RAM and EPROM, and several ports all on a

single chip) takes care of hardware and software interfacing of the keyboard. In such systems, it is

the function of programs stored in the EPROM of the microcontroller to scan the keys

continuously, identify which one has been activated, and present it to the motherboard. In this

section we look at the mechanism by which the 8051 scans and identifies the key.

Scanning and identifying the key

Figure 12-6 shows a 4 x 4 matrix connected to two ports. The rows are connected to an output

port and the columns are connected to an input port. If no key has been pressed, reading the input

port will yield 1 s for all columns since they are all connected to high (Vcc). If all the rows are

grounded and a key is pressed, one of the columns will have 0 since the key pressed provides the

path to ground. It is the function of the microcontroller to scan the keyboard continuously to

detect and identify the key pressed. How it is done is explained next.

LCD INTERFACING USING 8051

ADC is the Analog to Digital converter, which converts analog data into digital format; usually

it is used to convert analog voltage into digital format. Analog signal has infinite no of values

like a sine wave or our speech, ADC converts them into particular levels or states, which can be

measured in numbers as a physical quantity. Instead of continuous conversion, ADC converts

data periodically, which is usually known as sampling rate. Telephone modem is one of the

examples of ADC, which is used for internet, it converts analog data into digital data, so that

computer can understand, because computer can only understand Digital data. The major

advantage, of using ADC is that, we noise can be efficiently eliminated from the original signal

and digital signal can travel more efficiently than analog one. That’s the reason that digital audio

is very clear, while listening.

ADC0808/0809 is a monolithic CMOS device and microprocessor compatible control logic and

has 28 pin which gives 8-bit value in output and 8- channel ADC input pins (IN0-IN7). Its

resolution is 8 so it can encode the analog data into one of the 256 levels (28). This device has

three channel address line namely: ADDA, ADDB and ADDC for selecting channel. Below is the

Pin Diagram for ADC0808:

ADC0808/0809 requires a clock pulse for conversion. We can provide it by using oscillator or

by using microcontroller. In this project we have applied frequency by using microcontroller.

We can select the any input channel by using the Address lines, like we can select the input line

IN0 by keeping all three address lines (ADDA, ADDB and ADDC) Low. If we want to select

input channel IN2 then we need to keep ADDA, ADDB low and ADDC high. For selecting all

the other input channels, have a look on the given table:

ADC Channel Name ADDC PIN ADDB PIN ADDA PIN

IN0 LOW LOW LOW

IN1 LOW LOW HIGH

IN2 LOW HIGH LOW

IN3 LOW HIGH HIGH

IN4 HIGH LOW LOW

IN5 HIGH LOW HIGH

IN6 HIGH HIGH LOW

IN7 HIGH HIGH HIGH

include<reg51.h>

#include<stdio.h>

sbit ale=P3^3;

sbit oe=P3^6;

sbit sc=P3^4;

sbit eoc=P3^5;

sbit clk=P3^7;

sbit ADDA=P3^0; //Address pins for selecting input channels.

sbit ADDB=P3^1;

sbit ADDC=P3^2;

#define lcdport P2 //lcd

sbit rs=P2^0;

sbit rw=P2^2;

sbit en=P2^1;

#define input_port P1 //ADC

int result[3],number;

include<reg51.h>

#include<stdio.h>

sbit ale=P3^3;

sbit oe=P3^6;

sbit sc=P3^4;

sbit eoc=P3^5;

sbit clk=P3^7;

sbit ADDA=P3^0; //Address pins for selecting input channels.

sbit ADDB=P3^1;

sbit ADDC=P3^2;

#define lcdport P2 //lcd

sbit rs=P2^0;

sbit rw=P2^2;

sbit en=P2^1;

#define input_port P1 //ADC

int result[3],number;

void timer0() interrupt 1 // Function to generate clock of frequency 500KHZ using Timer 0 interrupt.

{

clk=~clk;

}

void delay(unsigned int count)

{

int i,j;

for(i=0;i<count;i++)

 for(j=0;j<100;j++);

}

void daten()

{

 rs=1;

 rw=0;

 en=1;

 delay(1);

 en=0;

}

void lcd_data(unsigned char ch)

{

 lcdport=ch & 0xF0;

 daten();

 lcdport=ch<<4 & 0xF0;

 daten();

}

void cmden(void)

{

 rs=0;

 en=1;

 delay(1);

 en=0;

}

void lcdcmd(unsigned char ch)

{

 lcdport=ch & 0xf0;

 cmden();

 lcdport=ch<<4 & 0xF0;

 cmden();

}

lcdprint(unsigned char *str) //Function to send string data to LCD.

{

 while(*str)

 {

 lcd_data(*str);

 str++;

 }

}

void lcd_ini() //Function to inisialize the LCD

{

 lcdcmd(0x02);

 lcdcmd(0x28);

 lcdcmd(0x0e);

 lcdcmd(0x01);

}

void show()

{

 sprintf(result,"%d",number);

 lcdprint(result);

 lcdprint(" ");

}

void read_adc()

{

 number=0;

 ale=1;

 sc=1;

 delay(1);

 ale=0;

 sc=0;

 while(eoc==1);

 while(eoc==0);

 oe=1;

 number=input_port;

 delay(1);

 oe=0;

}

void adc(int i) //Function to drive ADC

{

switch(i)

 {

 case 0:

 ADDC=0; // Selecting input channel IN0 using address lines

 ADDB=0;

 ADDA=0;

 lcdcmd(0xc0);

 read_adc();

 show();

 break;

 case 1:

 ADDC=0; // Selecting input channel IN1 using address lines

 ADDB=0;

 ADDA=1;

 lcdcmd(0xc6);

 read_adc();

 show();

 break;

 case 2:

 ADDC=0; // Selecting input channel IN2 using address lines

 ADDB=1;

 ADDA=0;

 lcdcmd(0xcc);

 read_adc();

 show();

 break;

 }

}

void main()

{

 int i=0;

 eoc=1;

 ale=0;

 oe=0;

 sc=0;

 TMOD=0x02;

 TH0=0xFD;

lcd_ini();

lcdprint(" ADC 0808/0809 ");

lcdcmd(192);

lcdprint(" Interfacing ");

delay(500);

lcdcmd(1);

lcdprint("Circuit Digest ");

lcdcmd(192);

lcdprint("System Ready... ");

delay(500);

lcdcmd(1);

lcdprint("Ch1 Ch2 Ch3 ");

 IE=0x82;

 TR0=1;

while(1)

{

 for(i=0;i<3;i++)

 {

 adc(i);

 number=0;

 }

}

}

Digital-to-analog (DAC) converter

The digital-to-analog converter (DAC) is a device widely used to convert digital pulses to analog signals.

In this section we discuss the basics of interfacing a DAC to the 8051.

Recall from your digital electronics book the two methods of creating a DAC: binary weighted and R/2R

ladder. The vast majority of integrated circuit DACs, including the MC1408 (DAC0808) used in this

section, use the R/2R method since it can achieve a much higher degree of precision. The first criterion for

judging a DAC is its resolution, which is a function of the number of binary inputs. The common ones are

8, 10, and 12 bits. The number of data bit inputs decides the resolution of the DAC since the number of

analog output levels is equal to 2″, where n is the number of data bit inputs. Therefore, an 8-input DAC.

such as the DAC0808 provides 256 discrete voltage (or current) levels of output.

Similarly, the 12-bit DAC provides 4096 discrete voltage levels. There are also

16-bit DACs, but they are more expensive.

MC1408 DAC (or DAC0808)

In the MC1408 (DAC0808), the digital inputs are converted to current (Iout), and by connecting a resistor

to the Ioutpin, we convert the result to voltage.

The total current provided by the Iout pin is a function of the binary numbers at the DO – D7 inputs of the

DAC0808 and the reference current (Iref), and is as follows:

where DO is the LSB, D7 is the MSB for the inputs, and Iref is the input current that must be applied to pin

14. The Iref current is generally set to 2.0 mA. Figure 13-18 shows the generation of current reference

(setting Iref = 2 mA) by using the

standard 5-V power supply and IK and 1.5K-ohm standard resistors. Some DACs also use the zener diode

(LM336), which overcomes any fluctuation associated

To find the value sent to the DAC for various angles, we simply multiply the Vout voltage by 25.60 because

there are 256 steps and full-scale Vout is 10 volts. Therefore, 256 steps /10 V = 25.6 steps per volt. To

further clarify this, look at the following code. This program sends the values to the DAC continuously (in

an infinite loop) to produce a crude sine wave. See Figure 13-19.

MODULE –IV

INTRODUCTION TO DSP AND FFT

REVIEW OF DISCRETE TIME

SIGNALS AND SYSTEMS

Signals-Definition

Anything that carries information can be called as signal. It can also be defined as a physical quantity that

varies with time, temperature, pressure or with any independent variables such as speech signal or video
signal.

The process of operation in which the characteristics of a signal (Amplitude, shape, phase, frequency, etc.)
undergoes a change is known as signal processing.

Note − Any unwanted signal interfering with the main signal is termed as noise. So, noise is also a signal
but unwanted.

Discrete Time signals

The signals, which are defined at discrete times are known as discrete signals. Therefore, every
independent variable has distinct value. Thus, they are represented as sequence of numbers.

Although speech and video signals have the privilege to be represented in both continuous and discrete

time format; under certain circumstances, they are identical. Amplitudes also show discrete characteristics.
Perfect example of this is a digital signal; whose amplitude and time both are discrete.

The figure above depicts a discrete signal’s discrete amplitude characteristic over a period of time.
Mathematically, these types of signals can be formularized as;

x={x[n]}, −∞<n<∞

Where, n is an integer.

It is a sequence of numbers x, where nth number in the sequence is represented as x[n].

Basic DT Signals

Let us see how the basic signals can be represented in Discrete Time Domain.

Unit Impulse Sequence

It is denoted as δ(n) in discrete time domain and can be defined as;

Unit Step Signal

Discrete time unit step signal is defined as;

The figure above shows the graphical representation of a discrete step function.

Unit Ramp Function

A discrete unit ramp function can be defined as −

The figure given above shows the graphical representation of a discrete ramp signal.

Sinusoidal Signal

All continuous-time signals are periodic. The discrete-time sinusoidal sequences may or may not

be periodic. They depend on the value of ω. For a discrete time signal to be periodic, the angular

frequency ω must be a rational multiple of 2π.

A discrete sinusoidal signal is shown in the figure above.

Discrete form of a sinusoidal signal can be represented in the format −

x(n)=Asin(ωn+ϕ)

Here A,ω and φ have their usual meaning and n is the integer. Time period of the discrete

sinusoidal signal is given by −

Where, N and m are integers.

Classification of DT Signals

Discrete time signals can be classified according to the conditions or operations on the signals.

Even and Odd Signals

Even Signal

A signal is said to be even or symmetric if it satisfies the following condition;

x(−n) = x(n)

Here, we can see that x(-1) = x(1), x(-2) = x(2) and x(-n) = x(n). Thus, it is an even signal.

Odd Signal

A signal is said to be odd if it satisfies the following condition;

x(−n) = −x(n)

From the figure, we can see that x(1) = -x(-1), x(2) = -x(2) and x(n) = -x(-n). Hence, it is an odd

as well as anti-symmetric signal.

Periodic and Non-Periodic Signals

A discrete time signal is periodic if and only if, it satisfies the following condition −

x(n+N)=x(n)

Here, x(n) signal repeats itself after N period. This can be best understood by considering a cosine

signal −

x(n)=Acos(2πf0n+θ)

x(n+N)=Acos(2πf0(n+N)+θ)=Acos(2πf0n+2πf0N+θ)

For the signal to become periodic, following condition should be satisfied;

x(n+N)=x(n)

⇒Acos(2πf0n+2πf0N+θ)=Acos(2πf0n+θ)

i.e. 2πf0N is an integral multiple of 2π

2πf0N=2πK

⇒ N=K/f0

Frequencies of discrete sinusoidal signals are separated by integral multiple of 2π.

Energy and Power Signals

Energy Signal

Energy of a discrete time signal is denoted as E. Mathematically, it can be written as;

If each individual values of x(n) are squared and added, we get the energy signal. Here x(n) is the

energy signal and its energy is finite over time i.e 0<E<∞

Power Signal

Average power of a discrete signal is represented as P. Mathematically, this can be written as;

Here, power is finite i.e. 0<P<∞. However, there are some signals, which belong to neither energy

nor power type signal.

Operations on Signals

 The basic signal operations which manipulate the signal characteristics by acting on the

independent variable(s) which are used to represent them. This means that instead of performing

operations like addition, subtraction, and multiplication between signals, we will perform them on

the independent variable. In our case, this variable is time (t).

 1. Time Shifting

Suppose that we have a signal x(n) and we define a new signal by adding/subtracting a finite time

value to/from it. We now have a new signal, y(n). The mathematical expression for this would

be x(n± n0).

Graphically, this kind of signal operation results in a positive or negative “shift” of the signal

along its time axis. However, note that while doing so, none of its characteristics are altered. This

means that the time-shifting operation results in the change of just the positioning of the signal

without affecting its amplitude or span.

Let's consider the examples of the signals in the following figures in order to gain better insight

into the above information.

Figure 1. Original signal and its time-delayed version

Here the original signal, x[n], spans from n = -3 to n = 3 and has the values -2, 0, 1, -3, 2, -1, and

3, as shown in Figure 1(a).

Time-Delayed Signals

Suppose that we want to move this signal right by three units (i.e., we want a new signal whose

amplitudes are the same but are shifted right three times).

This means that we desire our output signal y[n] to span from n = 0to n = 6. Such a signal is

shown as Figure 1(b) and can be mathematically written as y[n] = x[n-3].

This kind of signal is referred to as time-delayed because we have made the signal arrive three

units late.

Time-Advanced Signals

On the other hand, let's say that we want the same signal to arrive early. Consider a case where

we want our output signal to be advanced by, say, two units. This objective can be accomplished

by shifting the signal to the left by two time units, i.e., y[n] = x[n+2].

The corresponding input and output signals are shown in Figure 2(a) and 2(b), respectively. Our

output signal has the same values as the original signal but spans from n = -5 to n = 1 instead

of n = -3 to n = 3. The signal shown in Figure 2(b) is aptly referred to as a time-advanced signal.

Figure 2. Original signal and its time-advanced version

For both of the above examples, note that the time-shifting operation performed over the signals

affects not the amplitudes themselves but rather the amplitudes with respect to the time axis. We

have used discrete-time signals in these examples, but the same applies to continuous-time

signals.

Practical Applications

Time-shifting is an important operation that is used in many signal-processing applications. For

example, a time-delayed version of the signal is used when performing autocorrelation. (You can

learn more about autocorrelation in my previous article, Understanding Correlation.)

Another field that involves the concept of time delay is artificial intelligence, such as in systems

that use Time Delay Neural Networks.

2. Time Scaling

Now that we understand more about performing addition and subtraction on the independent

variable representing the signal, we'll move on to multiplication.

For this, let's consider our input signal to be a continuous-time signal x(t) as shown by the red

curve in Figure 3.

Now suppose that we multiply the independent variable (t) by a number greater than one. That is,

let's make t in the signal into, say, 2t. The resultant signal will be the one shown by the blue

curve in Figure 3.

https://www.allaboutcircuits.com/technical-articles/understanding-correlation/
https://en.wikipedia.org/wiki/Time_delay_neural_network

From the figure, it's clear that the time-scaled signal is contracted with respect to the original one.

For example, we can see that the value of the original signal present at t = -3 is present at t = -1.5

and those at t= -2 and at t = -1 are found at t = -1 and at t = -0.5 (shown by green dotted-line

curved arrows in the figure).

This means that, if we multiply the time variable by a factor of 2, then we will get our output

signal contracted by a factor of 2 along the time axis. Thus, it can be concluded that the

multiplication of the signal by a factor of n leads to the compression of the signal by an

equivalent factor.

Now, does this mean that dividing the variable t by a number greater than 1 will cause the signal

to become expanded? That is, if we divide the variable t by a factor of n, will we get a signal

which is stretched by an equivalent factor?

Figure 3. Original signal with its time-scaled versions

Let's check it out.

For this, let's consider our signal to be the same as the one in Figure 3 (the red curve in the

figure). Now let's multiply its time-variable t by ½ instead of 2. The resultant signal is shown by

the blue curve in Figure 3(b). You can see that, in this time-scaled signal indicated by the green

dotted-line arrows in Figure 3(b), we have the values of the original signal present at the time

instants t = 1, 2, and 3 to be found at t = 2, 4, and 6.

This means that our time-scaled signal is a stretched-by-a-factor-of-n version of the original

signal. So the answer to the question posed above is "yes."

Although we have analyzed the time-scaling operation with respect to a continuous-time signal,

this information applies to discrete-time signals as well. However, in the case of discrete-time

signals, time-scaling operations are manifested in the form of decimation and interpolation.

Practical Applications

Basically, when we perform time scaling, we change the rate at which the signal is sampled.

Changing the sampling rate of a signal is employed in the field of speech processing. A particular

example of this would be a time-scaling-algorithm-based system developed to read text to the

visually impaired.

Next, the technique of interpolation is used in Geodesic applications (PDF). This is because, in

most of these applications, one will be required to find out or predict an unknown parameter from

a limited amount of available data.

3. Time Reversal

Until now, we have assumed our independent variable representing the signal to be positive. Why

should this be the case? Can't it be negative?

It can be negative. In fact, one can make it negative just by multiplying it by -1. This causes the

original signal to flip along its y-axis. That is, it results in the reflection of the signal along its

vertical axis of reference. As a result, the operation is aptly known as the time reversal or time

reflection of the signal.

For example, let's consider our input signal to be x[n], shown in Figure 4(a). The effect of

substituting –n in the place of n results in the signal y[n] as shown in Figure 4(b).

Figure 4. A signal with its reflection

http://der.topo.auth.gr/dermanis/pdfs/erice.pdf

Analog frequency and Digital frequency

The fundamental relation between the analog frequency, Ω , and the digital frequency, ω , is given

by the following relation:

or alternately,

where T is the sampling period, in sec., and fs =1/T is the sampling frequency in Hz.

Note, however, the following interesting points:

 • The unit of Ω is radian/sec., whereas the unit of ω is just radians.

• The analog frequency, Ω , represents the actual physical frequency of the basic analog signal ,

for example, an audio signal (0 to 4 kHz) or a video signal (0 to 4 MHz). The digital frequency, ω

, is the transformed frequency from Equation 3.3a or Equation 3.3b and can be considered as a

mathematical frequency, corresponding to the digital signal.

(a)

(b)

FIGURE 3.1 Analog frequency response and (b) digital frequency response

Definition of Discrete time system

System can be considered as a physical entity which manipulates one or more input signals

applied to it. For example a microphone is a system which converts the input acoustic (voice or

sound) signal into an electric signal. A system is defined mathematically as a unique operator or

transformation that maps an input signal in to an output signal. This is defined as y(n) = T[x(n)]

where x(n) is input signal, y(n) is output signal, T[] is transformation that characterizes the system

behavior.

y(n) = T [x(n)]

Where, T is the general rule or algorithm which is implemented on x(n) or the excitation to get

the response y(n). For example, a few systems are represented as,

y(n) = -2x(n)

or, y(n) = x(n-1) + x(n) + x(n+1)

Block Diagram representation of Discrete-time systems

Digital Systems are represented with blocks of different elements or entities connected with

arrows which also fulfills the purpose of showing the direction of signal flow,

Some common elements of Discrete-time systems are:-

Adder: It performs the addition or summation of two signals or excitation to have a response. An

adder is represented as,

Constant Multiplier: This entity multiplies the signal with a constant integer or fraction. And is

represented as, in this example the signal x(n) is multiplied with a constant “a” to have the

response of the system as y(n).

Signal Multiplier: This element multiplies two signals to obtain one.

Unit-delay element: This element delays the signal by one sample i.e. the response of the system

is the excitation of previous sample. This can element is said to have a memory which stores the

excitation at time n-1 and recalls this excitation at the time n form the memory. This element is

represented as,

Unit-advance element: This element advances the signal by one sample i.e. the response of the

current excitation is the excitation of future sample. Although, as we can see this element is not

physically realizable unless the response and the excitation are already in stored or recorded

form.

Now that we have understood the basic elements of the Discrete-time systems we can now

represent any discrete-time system with the help of block diagram. For example,

 y(n) = y(n-1) + x (n-1) + 2x(n)

The above system is an example of Discrete-time system involving the unit delay of current

excitation and also one unit delay of the current response of the system.

Classification of Discrete-time Systems

Discrete-time systems are classified on different principles to have a better idea about a particular

system, their behavior and ultimately to study the response of the system.

Relaxed system: If y(no -1) is the initial condition of a system with response y(n) and y(no -1)=0,

then the system is said to be initially relaxed i.e. if the system has no excitation prior to no .

Static and Dynamic systems: A system is said to be a Static discrete-time system if the response

of the system depends at most on the current or present excitation and not on the past or future

excitation. If there is any other scenario then the system is said to be a Dynamic discrete-

time system. The static systems are also said to be memory-less systems and on the other hand

dynamic systems have either finite or infinite memory depending on the nature of the system.

Examples below will clear any arising doubts regarding static and dynamic systems.

The last example is the case of in-finite memory and the others are specified about their type

depending on their characteristics.

Time-variant and Time-invariant system: A discrete-time system is said to be time invariant if

the input-output characteristics do not change with time, i.e. if the excitation is delayed by k units

then the response of the system is also delayed by k units. Let there be a system,

 x(n) ----> y(n) ∀ x(n)

Then the relaxed system T is time-invariant if and only if,

 x(n-k) ----> y(n-k) ∀ x(n) and k.

Otherwise, the system is said to be time-variant system if it does not follows the above specified

set of rules. For example,

 y(n) = ax(n) { time-invariant }

 y(n) = x(n) + x(n-3) { time-invariant }

 y(n) = nx(n) { time-variant }

Note:- In order to check whether the system is time-invariant or time-variant the system must

satisfy the “T[x(n-k)]=y(n-k)” condition, i.e. first delay the excitation by k units, then replace n

with (n-k) in the response and then equate L.H.S. and R.H.S. if they are equal then the system is

time invariant otherwise not. For example in the last system above,

 L.H.S. = T[x(n-k)] =nx(n-k)

{not (n-k)x(n-k) which is a general misconfusion}

 R.H.S. = y(n-k)= (n-k) x(n-k)

So, the L.H.S. and R.H.S. are not equal hence the system is time-varient.

Note:- What about Folder, is it a time-variant or time-invariant system, let’s see,

 y(n) = x(-n)

 L.H.S. = y(n-k) = x[-(n-k)]=x(-n+k)

 R.H.S. = T[x(n-k)] = x(-n-k)

Thus, R.H.S. is not equal to L.H.S. so the system is time-variant.

Linear and non-Linear systems: A system is said to be a linear system if it follows the

superposition principle i.e. the sum of responses (output) of weighted individual excitations

(input) is equal to the response of sum of the weighted excitations. Pay attention to the above

specified rule, according to the rule the following condition must be fulfilled by the system in

order to be classified as a Linear system,

 If, y1(n) = T[ax1(n)]

 y2(n) = T[bx2(n)]

 and, y(n) = T[ax1(n) + bx2(n)]

 Then, the system is said to be linear if ,

 T[ax1(n) + bx2(n)] = T[ax1(n)] + T[bx2(n)]

So, if y’(n) = y’’(n) then the system is said to be linear. I the system does not fulfills this property

then the system is a non-Linear system. For example,

y(n) = x (n2) { linear }

y(n) = Ax(n) + B {non – linear }

y(n) = nx(n) { linear }

The explanation of the above specified examples is left as an exercise for the reader.

Causal and non-Causal systems: A discrete-time system is said to be a causal system if the

response or the output of the system at any time depends only on the present or past excitation or

input and not on the future inputs. If the system T follows the following relation then the system

is said to be causal otherwise it is a non-causal system.

y(n) = F [x(n), x(n-1), x(n-2),…….]

Where F[] is any arbitrary function. A non-causal system has its response dependent on future

inputs also which is not physically realizable in a real-time system but can be realized in a

recorded system. For example,

Stable and Unstable systems: A system is said to be stable if the bounded input produces a

bounded output i.e. the system is BIBO stable. If,

Then the system is said to be bounded system and if this is not the case then the system is

unbounded or unstable

ANALYSIS OF DISCRETE-TIME LINEAR TIME-INVARIANT SYSTEMS

Systems are characterized in the time domain simply by their response to a unit sample

sequence. Any arbitrary input signal can be decomposed and represented as a weighted sum of

unit sample sequences.

Our motivation for the emphasis on the study of LTI systems is twofold. First there is a large

collection of mathematical techniques that can be applied to the analysis of LTI systems. Second,

many practical systems are either LTI systems or can be approximated by LTI systems.

As a consequence of the linearity and time-invariance properties of the system, the

response of the system to any arbitrary input signal can be expressed in terms of the unit sample

response of the system. The general form of the expression that relates the unit sample response

of the system and the arbitrary input signal to the output signal, called the convolution sum

Thus we are able to determine the output of any linear, time-invariant system to any arbitrary

input signal.

 There are two basic methods for analyzing the behavior or response of a linear system to a

given input signal.

 The first method for analyzing the behavior of a linear system to a given input signal is

first to decompose or resolve the input signal into a sum of elementary signals. The elementary

signals are selected so that the response of the system to each signal component is easily

determined. Then, using the linearity property of the system, the responses of the system to the

elementary signals are added to obtain the total response of the system to the given input signal.

 Suppose that the input signal x(n) is resolved into a weighted sum of elementary signal

components { xk(n)) so that

where the {ck} is the set of amplitudes (weighting coefficients) in the decomposition of the signal

x(n) . Now suppose that the response of the system to the elementary signal component xk(n) is

yk(n). Thus

assuming that the system is relaxed and that the response to ckxk(n) is ckvk(n) as a consequence of

the scaling property of the linear system.

Finally, the total response to the input x (n) is

In the above equation we used the additivity property of the linear system.

Resolution of a Discrete-Time Signal into Impulses

Suppose we have an arbitrary signal x(n) that we wish to resolve into a sum of unit sample

sequences. we

select the elementary signals xk(n) to be

where k represents the delay of the unit sample sequence. To handle an arbitrary signal x(n) that

may have nonzero values over an infinite duration, the set of unit impulses must also be infinite,

to encompass the infinite number of delays.

Now suppose that we multiply the two sequences x(n) and (n - k) . Since (n - k) is zero

everywhere except at n = k . where its value is unity, the result of this multiplication is another

sequence that is zero everywhere except at n = k. where its value is x (k) , as illustrated in Fig.

below. Thus

Multiplication of a signal x(n) with a shifted unit sample sequence.

If we repeat this multiplication over all possible delays, - < k < , and sum all the product

sequences, the result will be a sequence equal to the sequence x(n) , that is,

Example .

Consider the special case of a finite-duration sequence given as

Resolve the sequence x (n) into a sum of weighted impulse sequences.

Solution: Since the sequence x (n) is nonzero for the time instants n = -1, 0. 2, we

need three impulses at delays k = - 1. 0, 2. Following (2.3.10) we find that

Response of LTI Systems to Arbitrary Inputs: The Convolution Sum

 we denote the response y(n,k) of the system to the input unit sample sequence at n= k by

the special symbol h(n. k), - < k < . That is,

n is the time index and k is a parameter showing the location of the input impulse. If the impulse

at the input is scaled by an amount ckx(k) the response of the system is the correspondingly

scaled output, that is,

Finally, if the input is the arbitrary signal x(n) that is expressed as a sum of

weighted impulses. that is.

Then the response of the system to x(n) is the corresponding sum of weighted outputs, that

is.

The above equation follows from the superposition property of linear systems, and is

known as the superposition summation.

 In the above equation we used the linearity property of the system bur nor its time invariance

property.

Then by the time-invariance property, the response of the system to the delayed unit

sample sequence (n - k) is

The formula above gives the response y(n) of the LTI system as a function of the input signal x(n

) and the unit sample (impulse) response h(n) is called a convolution sum.

The process of computing the convolution between x(k) and h(k) involves the following

four steps.

1. Folding. Fold h(k) about k = 0 to obtain h (- k).

2. Shifting. Shift h (- k) by no to the right (left) if no is positive (negative), to obtain h(no - k) .

3, Multiplication. Multiply x(k) by h(no - k) to obtain the product sequence

vno(k) = x(k)h(no - k).

4. Summation. Sum all the values of the product sequence vno(k) to obtain the

value of the output at time n = no.

Example .

The impulse response of a linear time-invariant system is

Determine the response of the system to the input signal

Filtering using Overlap-save and Overlap-add methods

In many applications one of the signals of a convolution is much longer than the other. For

instance when filtering a speech signal xL[k] of length L with a room impulse response hN[k] of

length N ≪ L. In order to perform the convolution various techniques have been developed that

perform the filtering on limited portions of the signals. These portions are known as partitions,

segments or blocks. The respective algorithms are termed as segmented or block-

based algorithms. The following section introduces two techniques for the block-based

convolution of signals. The basic concept of these is to divide the convolution y[k]=xL[k] * hN[k]

into multiple convolutions operating on (overlapping) segments of the signal xL[k].

Overlap-Add Algorithm

The overlap-add algorithm is based on splitting the signal xL[k] into non-overlapping

segments xp[k] of length P.

where the segments xp[k] are defined as

Note that xL[k] might have to be zero-padded so that its total length is a multiple of the

segment length P. Introducing the segmentation of xL[k] into the convolution yields

where yp[k]=xp[k] * hN[k]. This result states that the convolution of xL[k]*hN[k] can be split into

a series of convolutions yp[k] operating on the samples of one segment(block) only. The length

of yp[k] is N+P−1. The result of the overall convolution is given by summing up the results from

the segments shifted by multiples of the segment length P. This can be interpreted as an

overlapped superposition of the results from the segments, as illustrated in the following diagram.

Overlap-Save Algorithm

The overlap-save algorithm, also known as overlap-discard algorithm, follows a different

strategy as the overlap-add technique introduced above. It is based on an overlapping

segmentation of the input xL[k] and application of the periodic convolution for the individual

segments.

https://en.wikipedia.org/wiki/Overlap%E2%80%93add_method
https://en.wikipedia.org/wiki/Overlap%E2%80%93save_method

Lets take a closer look at the result of the periodic convolution xp[k]*hN[k], where xp[k]

denotes a segment of length P of the input signal and hN[k] the impulse response of length N. The

result of a linear convolution xp[k]*hN[k] would be of length P+N−1. The result of the periodic

convolution of period P for P>N would suffer from a circular shift (time aliasing) and

superposition of the last N−1 samples to the beginning. Hence, the first N−1 samples are not

equal to the result of the linear convolution. However, the remaining P−N+1 do so.

This motivates to split the input signal xL[k] into overlapping segments of length P where

the p-th segment overlaps its preceding (p−1)-th segment by N−1 samples.

The part of the circular convolution xp[k]*hN[k] of one segment xp[k] with the impulse

response hN[k] that is equal to the linear convolution of both is given as

The output y[k] is simply the concatenation of the yp[k]

The overlap-save algorithm is illustrated in the following diagram.

For the first segment x0[k], N−1 zeros have to be appended to the beginning of the input

signal xL[k] for the overlapped segmentation. From the result of the periodic

convolution xp[k]*hN[k] the first N−1 samples are discarded, the remaining P−N+1 are copied to

the output y[k]. This is indicated by the alternative notation overlap-discard used for the

technique

Causal Linear Time-Invariant Systems

In the case of a linear time-invariant system, causality can be translated to a condition on

the impulse response. To determine this relationship, let us consider a linear time-invariant

system having an output at time n = no given by the convolution formula

Suppose that we subdivide the sum into two sets of terms, one set involving present and past

values of the input [i.e.. x (n) for n ≤ no] and one set involving future values of the input

[i.e., x (n) . n > no]. Thus we obtain

We observe that the terms in the first sum involve x(n0), x(no - 1) , which are the present

and past values of the input signal. On the other hand, the terms in the second sum involve the

input signal components x(no + 1), x(no +2). Now, if the output at time n = no is depend

only on the present and past inputs, then, clearly. the impulse response of the system must satisfy

the condition

Since h(n) is the response of the relaxed linear time-invariant system to a unit impulse applied at

n = 0, it follows that h(n) = 0 for n < 0 is both a necessary and a sufficient condition for causality.

Hence an LTI system is causal if and only if its impulse response is zero for negative values of

n.

Since for a causal system, h(n) = 0 for n < 0. the limits on the summation of the convolution

formula may be modified to reflect this restriction. Thus we have the two equivalent forms

Up to this point we have treated linear and time-invariant systems that are characterized by their

unit sample response h(n). In turn h(n) allows us to determine the output y(n) of the system for

any given input sequence x(n) by means of the convolution summation.

 In the case of FIR systems, such a realization involves additions, Multiplications, and a

finite number of memory locations. Consequently, an FIR system is readily implemented directly,

as implied by the convolution summation.

 If the system is IIR. however, its practical implementation as implied by convolution is

clearly impossible. since it requires an infinite number of memory locations, multiplications, and

additions. A question that naturally arises, then, is whether or not it is possible to realize IIR

systems other than in the form suggested by the convolution summation. Fortunately, the answer

is yes.

There is a practical and computationally efficient means for implementing a family of IIR

systems, as will be demonstrated in this section, Within the general class of IIR systems. this

family of discrete-time systems is more conveniently described by difference equations. This

family or subclass of IIR systems is very useful in a variety of practical applications, including

the implementation of digital filters, and the modeling of physical phenomena and physical

systems.

Recursive and Nonrecursive Discrete-Time Systems

As indicated above, the convolution summation formula expresses the output of the linear time-

invariant system explicitly and only in terms of the input signal.

However, this need not be the case, as is shown here. There are many systems where it is either

necessary or desirable to express the output of the system not only in terms of the present and past

values of the input, but also in terms of the already available past output values. The following

problem illustrates this point.

Suppose that we wish to compute the cumulative average of a signal x (n) in the interval 0≤

k ≤ n, defined as

the computation of y(n) requires the storage of all the input samples x (k) for 0 ≤ k ≤ n. Since n

is increasing, our memory requirements grow linearly with time.

Our intuition suggests, however, that y(n) can be computed more efficiently

by utilizing the previous output value y(n - I) . Indeed, by a simple algebraic rearrangement , we

obtain

This is an example of a recursive system.

Difference Equations in Discrete Time Systems

Here a treatment of linear difference equations with constant coefficients and it is confined to

first- and second-order difference equations and their solution. Higher-order difference equations

of this type and their solution is facilitated with the Z transform

1-Recursive Method for Solving Difference Equations

 In mathematics, a recursion is an expression, such as a polynomial, each term of which is

determined by application of a formula to preceding terms. The solution of a difference equation

is often obtained by recursive methods. An example of a recursive method is Newton’s method

for solving non-linear equations. While recursive methods yield a desired result, they do not

provide a closed-form solution. If a closed-form solution is desired, we can solve difference

equations using the Method of Undetermined Coefficients, and this method is similar to the

classical method of solving linear differential equations with constant coefficients.

2-Method of Undetermined Coefficients

 A second-order difference equation has the form

Where a1d a2 are constants and the right side is some function of n. This differenc equation

expresses the output y(n) at time n as the linear combination of two previous outputs y(n-1) and

y(n-2). The right side of relation (A.1) is referred to as the forcing function The general (closed-

form) solution of relation (A.1) is the same as that used for solving second-order differential

equations. The three steps are as follows:

1. Obtain the natural response (complementary solution) in terms of two arbitrary real constants

k1 and k2 , where a1 and a2 are also real constants, that is,

2. Obtain the forced response (particular solution) in terms of an arbitrary real constant k3 , that is,

where the right side of (A.3) is chosen with reference to Table A.1.

3. Add the natural response (complementary solution) yc(n) and the forced response (particular

solution) yp(n)to obtain the total solution, that is,

4. Solve for k1 and k2 in (A.4) using the given initial conditions. It is important to remember that

the constants k1 and k2 must be evaluated from the total solution of (A.4), not from the

complementary solution yc(n).

Example 1

 Find the total solution for the second−order difference equation

Solution:

1. We assume that the complementary solution yc(n) has the form

The homogeneous equation of (A.5) is

Substitution of

into (A.7) yields

Division of (A.8) by

Yields

The roots of (A.9) are

and by substitution into (A.6) we obtain

2. Since the forcing function is

, we assume that the particular solution is

and by substitution into (A.5),

Division of both sides by

Yields

Or k=1 and thus

The total solution is the addition of (A.11) and (A.13), that is,

IMPLEMENTATION OF DISCRETE-TIME SYSTEMS

In practice, system design and implementation are usuaHy treated jointly rather than

separately. Often, the system design is driven by the method of implementation and by

implementation constraints, such as cost. hardware limitations, size limitations, and power

requirements. At this point, we have not as yet developed the necessary analysis and design tools

to treat such complex issues. However, we have developed sufficient background to consider

some basic implementation methods for realizations of LTI systems described by linear constant-

coefficient difference equations.

Structures for the Realization of Linear Time-Invariant Systems

In this subsection we describe structures for the realization of systems described by linear

constant-coefficient difference equations.

As a beginning, let us consider the first-order system

which is realized as in Fig. a. This realization uses separate delays (memory) for both the input

and output signal samples and it is called a direct form I structure.

Note that this system can be viewed as two linear time-invariant systems in cascade.

The first is a nonrecursive, system described by the equation

whereas the second is a recursive system described by the equation

Thus if we interchange the order of the recursive and nonrecursive systems, we obtain an

alternative structure for the realization of the system described above. The resulting system is

shown in Fig. b. From this figyre we obtain

the two difference equations

which provide an alternative algorithm for computing the output of the system described by the

single difference equation given first. In other words. The last two difference equations are

equivalent to the single difference equation .

A close observation of Fig. a,b reveals that the two delay elements contain the same input w(n)

and hence the same output w(n-1). Consequently. these

two elements can be merged into one delay, as shown in Fig. c. In contrast

to the direct form I structure, this new realization requires only one delay for the auxiliary

quantity w(n), and hence it is more efficient in terms of memory requirements. It is called the

direct form 11 structure and it is used extensively in practical applications. These structures can

readily be generalized for the general linear time-invariant recursive system described by the

difference equation

Figure below illustrates the direct form I structure for this system. This structure requires M + N

delays and N + M + 1 multiplications. It can be viewed as the cascade of a nonrecursive system

and a recursive system

By reversing the order of these two systems as was previously done for the first-order system, we

obtain the direct form I1 structure shown in Fig. below for N > M. This structure is the cascade of

a recursive system

followed by a nonrecursive system

We observe that if N M, this structure requires a number of delays equal to the order N of the

system. However, if M > N, the required memory is specified by M. Figure above can easily by

modified to handle this case. Thus the direct form I1 structure requires M + N + 1 multiplications

and max(M, N} delays. Because it requires the minimum number of delays for the realization of

the system described by given difference equation.

 MODULE – V

IIR FILTER AND FIR FILTERS

Introduction

Filters are used in a wide variety of applications. Most of the time, the final aim of using a filter is

to achieve a better frequency selectivity on the spectrum of the input signal. At this point of time,

it is required to reviewing the frequency response of a practical filter. The below Figure (A)

shows an example of a practical low pass filter.

 In this example, frequency components in the pass band, from DC to ωP will pass through the

filter almost with no attenuation. The components in the stop band, above ωS will experience

significant attenuation. Note that the frequency response of a practical filter cannot be

absolutely flat in the pass band or in the stop band. As shown in Figure (A), some ripples will

be unavoidable and the transition band, ωp<ω<ωs cannot be infinitely sharp in practice.

Digital filter design involves four steps:

1) Determining specifications

First, we need to determine what specifications are required. This step completely depends on

the application. This information is necessary to find the filter with minimum order for this

application.

2) Finding a transfer function

With design specifications known, we need to find a transfer function which will provide the

required filtering. The rational transfer function of a digital filter is as given below.

3) Choosing a realization structure

Now that H(z) is known, we should choose the realization structure. In other words, there are

many systems which can give the obtained transfer function and we must choose the

appropriate one. For example, any of the direct form I, II, cascade, parallel, transposed, or

lattice forms can be used to realize a particular transfer function. The main difference between

the aforementioned realization structures is their sensitivity to using a finite length of bits. Note

that in the final digital system, we will use a finite length of bits to represent a signal or a filter

coefficient. Some realizations, such as direct forms, are very sensitive to quantization of the

coefficients. However, cascade and parallel structures show smaller sensitivity and are

preferred.

4) Implementing the filter

After deciding on what realization structure to use, we should implement the filter. You have a

couple of options for this step: a software implementation (such as a MATLAB or C code) or a

hardware implementation (such as a DSP, a microcontroller, or an ASIC).

 it is necessary to take into account all fundamental characteristics of a signal to be

filtered as these are very important when deciding which filter to use. In most cases, it is only

one characteristic that really matters and it is whether it is necessary that filter has linear phase

characteristic or not. it is necessary that a filter has linear phase characteristic to prevent

loosing important information.When a signal to be filtered is analysed in this way, it is easy to

decide which type of digital filter is best to use. Accordingly, if the phase characteristic is of

the essence, FIR filters should be used as they have linear phase characteristic. Such filters are

of higher order and more complex, therefore. The FIR Filters can be easily designed to have

perfectly linear Phase. These filters can be realized recursively and Non-recursively. There are

greater flexibility to control the Shape of their Magnitude response. Errors due to round off

noise are less severe in FIR Filters, mainly because Feed back is not used

An FIR digital filter of order M may be implemented by programming the signal-flow-graph

shown below. Its difference equation is:

y[n] = a0x[n] + a1x[n-1] + a2x[n-2] + ... + aMx[n-M]

 Fig. 4.1

Its impulse-response is {..., 0, ..., a0, a1, a2,..., aM, 0, ...} and its frequency-response is the

DTFT of the impulse-response, i.e.

z-

1

z-

1

z-1 z-1
x[n

]

y[n]

a0 a1

.

.

.

aM-

1

a

M

M

n

nj

n

n

njj eaenheH
0

][)(

Now consider the problem of choosing the multiplier coefficients. a0, a1,..., aM such that H(

ej) is close to some desired or target frequency-response H(ej) say. The inverse DTFT of

H’(ej) gives the required impulse-response :

deeHnh njj)(

2

1
][

The methodology is to use the inverse DTFT to get an impulse-response {h[n]} & then realise

some approximation to it Note that the DTFT formula is an integral, it has complex numbers

and the range of integration is from - to , so it involves negative frequencies.

What about the negative frequencies?

Examine the DTFT formula for H(ej).

If h[n] real then h[n]ej is complex-conjugate of h[n]e-j. Adding up terms gives H(e-j) as

complex conj of H(ej).

 G() = G(-) since G() = |H(ej)| & G(-) = H(e-j)|

Because of the range of integration (- to) of the DTFT formula, it is common to plot graphs

of G() and () over the frequency range - to rather than 0 to . As G() = G(-) for a

real filter the gain-response will always be symmetric about =0.

4.2 Features of FIR Filter

 1. FIR filter always provides linear phase response. This specifies that the signals in the pass

band will suffer no dispersion Hence when the user wants no phase distortion, then FIR filters

are preferable over IIR. Phase distortion always degrade the system performance. In various

applications like speech processing, data transmission over long distance FIR filters are more

preferable due to this characteristic.

2. FIR filters are most stable as compared with IIR filters due to its non feedback nature.

3. Quantization Noise can be made negligible in FIR filters. Due to this sharp cutoff FIR filters

can be easily designed.

4. Disadvantage of FIR filters is that they need higher ordered for similar magnitude response

of IIR filters.

Difference equation of FIR filter of length M is given as

 (1)

And the coefficient bk are related to unit sample response as H(n) = bn for 0 ≤ n ≤ M-1,

 = 0 otherwise

n

njj enheH][)(

n

njj enheH][)(

We can expand this equation as Y(n)= b0 x(n) + b1 x(n-1) + …….. + bM-1 x(n-M+1)

(2)

 System is stable only if system produces bounded output for every bounded input. This is

stability definition for any system. Here h(n)={b0, b1, b2, } of the FIR filter are stable. Thus

y(n) is bounded if input x(n) is bounded. This means FIR system produces bounded output for

every bounded input. Hence FIR systems are always stable.

The main features of FIR filter are,

• They are inherently stable

• Filters with linear phase characteristics can be designed

• Simple implementation – both recursive and non-recursive structures possible

 • Free of limit cycle oscillations when implemented on a finite-word length digital system

Disadvantages:

• Sharp cutoff at the cost of higher order

 • Higher order leading to more delay, more memory and higher cost of implementation

4.3 Symmetric and Anti-symmetric FIR filters

Unit sample response of FIR filters is symmetric if it satisfies following condition.

h(n)= h(M-1-n), for n=0,1,2…………….M-1 2.

Unit sample response of FIR filters is Anti-symmetric if it satisfies following condition

 h(n)= -h(M-1-n) for n=0,1,2.

FIR filters giving out Linear Phase characteristics: Symmetry in filter impulse response will

ensure linear phase An FIR filter of length M with i/p x(n) & o/p y(n) is described by the

difference_equation

Alternatively. it can be expressed in convolution form

i.e b k = h(k), k=0,1,….M-1

Choice of Symmetric and anti-symmetric unit sample response

When we have a choice between different symmetric properties, the particular one is picked up

based on application for which the filter is used. The following points give an insight to this issue.

• If h(n)=-h(M-1-n) and M is odd, Hr(w) implies that Hr(0)=0 & Hr(π)=0, consequently not suited

for low pass and high pass filter. This condition is suited in Band Pass filter design.

 • Similarly if M is even Hr(0)=0 hence not used for low pass filter

• Symmetry condition h(n)=h(M-1-n) yields a linear-phase FIR filter with non zero response at w

= 0 if desired. Looking at these points, anti-symmetric properties are not generally preferred

Poles & Zeros of linear phase sequences:

The poles of any finite-length sequence must lie at z=0. The zeros of linear phase sequence must

occur in conjugate reciprocal pairs. Real zeros at z=1 or z=-1 need not be paired (they form their

own reciprocals), but all other real zeros must be paired with their reciprocals. Complex zeros on

the unit circle must be paired with their conjugate (that form their reciprocals) and complex zeros

anywhere else must occur in conjugate reciprocal quadruples. To identify the type of sequence

from its pole-zero plot, all we need to do is check for the presence of zeros at z= and count

their number. A type-2 seq must have an odd number of zeros at z=-1, a type-3 seq must have an

odd number of zeros at z=-1 and z=1, and type-4 seq must have an odd number of zeros at z=1.

The no. of other zeros if present (at z=1 for type=1 and type-2 or z=-1 for type-1 or type-4) must

be even.

Zeros of Linear Phase FIR Filters:

Consider the filter system function

This shows that if z = z1 is a zero then z=z1-1 is also a zero

The different possibilities: 1. If z1 = 1 then z1 = z1-1 =1 is also a zero implying it is one zero

 2. If the zero is real and |z|<1 then we have pair of zeros

3. If zero is complex and |z|=1then and we again have pair of complex zeros.

4. If zero is complex and |z|≠1 then and we have two pairs of complex zeros

4.4 FIR Filter Design Methods

The various method used for FIR Filer design are as follows

1. Fourier Series method

2. Windowing Method

3. DFT method

4. Frequency sampling Method. (IFT Method)

4.4.1. Design of an FIR low-pass digital filter

Assume we require a low-pass filter whose gain-response approximates the ideal 'brick-wall'

gain-response in Figure 4.2.

If we take the phase-response () to be zero for all , the required frequency-response is:-

<</3 : 0

3/ : 1
)()()(jj eGeH

And by the inverse DTFT,

0n :

0=n :

)3/sin()/1(

3/1
 1

2

1
][

3/

3/

 nn
denh nj

 = (1/3)sinc(n/3) for all n.

 where

0:1

0:
)sin(

)(sinc

x

x
x

x

x

A graph of sinc(x) against x is shown below:

Fig. 4.2

G()

/3 /3 0 -

1

 Fig 4.3a

The ideal impulse-response {h[n]} with each sample h[n] = (1/3) sinc(n/3) is therefore as

follows:

In Fourier series method, limits of summation index is -∞ to ∞. But filter must have finite

terms.

Hence limit of summation index change to -Q to Q where Q is some finite integer. But this type

of truncation may result in poor convergence of the series. Abrupt truncation of infinite series is

equivalent

to multiplying infinite series with rectangular sequence. i.e at the point of discontinuity some

oscillation may be observed in resultant series.

x

1 2 -1 -2 -3 3

1
sinc(x)

-4

Main ‘lobe’

‘Zero-crossings’ at x =1, 2, 3, etc.

‘Ripples’

Fig. 4.3b

Ideal impulse response for

low-pass filter cut-off n

3 6 -3 -6 -9 9

1/3
h[n]

-12

2. Consider the example of LPF having desired frequency response Hd (ω) as shown

in figure. The oscillations or ringing takes place near band-edge of the filter.

3. This oscillation or ringing is generated because of side lobes in the frequency response

W(ω) of the window function. This oscillatory behavior is called "Gibbs Phenomenon".

Reading from the graph, or evaluating the formula, we get:

{h[n]} = { ..., -0.055, -0.07, 0, 0.14, 0.28, 0.33, 0.28, 0.14, 0, -0.07, -0.055, ... }

A digital filter with this impulse-response would have exactly the ideal frequency-response we

applied to the inverse-DTFT i.e. a ‘brick-wall’ low-pass gain response & phase = 0 for all .

But {h[n]} has non-zero samples extending from n = - to , It is not a finite impulse-response.

It is also not causal since h[n] is not zero for all n < 0. It is therefore not realizable in practice.

To produce a realizable impulse-response of even order M:

(2) Delay resulting sequence by M/2 samples to ensure that the first non-zero sample occurs at n

= 0.

The resulting causal impulse response may be realised by setting an = h[n] for n=0,1,2,...,M.

Taking M=4, for example, the finite impulse response obtained for the /3 cut-off low-pass

specification is : {..,0,..,0, 0.14, 0.28, 0.33 , 0.28 , 0.14 , 0 ,..,0,..}

The resulting FIR filter is as shown in Figure 4.1 with a0=0.14, a1=0.28, a2=0.33, a3=0.28,

a4=0.14. (Note: a 4th order FIR filter has 4 delays & 5 multiplier coefficients).

The gain & phase responses of this FIR filter are sketched below.

Clearly, the effect of the truncation of {h[n]} to M/2 and the M/2 samples delay is to produce

gain and phase responses which are different from those originally specified.

Considering the gain-response first, the cut-off rate is by no means sharp, and two ‘ripples’

appear in the stop-band, the peak of the first one being at about -21dB.

otherwise : 0
2

2

 :][
][Set (1)

M
n

M
nh

nh

G(
dB

0
-

10

-

20

-

30
/3

-6 dB

The phase-response is not zero for all values of as was originally specified, but is linear phase (

i.e. a straight line graph through the origin) in the pass-band of the low-pass filter (-/3 to /3)

with slope arctan(M/2) with M = 4 in this case. This means that () = (M/2) for | |

/3; i.e. we get a linear phase-response (for | | /3) with a phase-delay of M/2 samples.

It may be shown that the phase-response is linear phase because the truncation was done

symmetrically about n=0.

Now let’s try to improve the low-pass filter by increasing the order to ten. Taking 11 terms of

{ (1 / 3) sinc (n / 3) } we get, after delaying by 5 samples:

 {...0,-0.055,-.069, 0,.138,.276,.333,.276,.138,0,-.069,-.055,0,...}.

The signal-flow graph of the resulting 10th order FIR filter is shown below:

Notice that the coefficients are again symmetric about the centre one (of value 0.33) and this

again ensures that the FIR filter is linear phase.

 ([-0.055, -0.069, 0, 0.138, 0.276, 0.333, 0.276, 0.138, 0, -0.069, -0.055]);

In may be seen in the gain-response, as reproduced below, that the cut-off rate for the 10th order

FIR filter is sharper than for the 4th order case, there are more stop-band ripples and, rather

disappointingly, the gain at the peak of the first ripple after the cut-off remains at about -21 dB.

This effect is due to a well known property of Fourier series approximations, known as Gibb's

phenomenon. The phase-response is linear phase in the pass band (-/3 to /3) with a phase

delay of 5 samples. As seen in fig 4.6, going to 20th order produces even faster cut-off rates and

more stop-band ripples, but the main stop-band ripple remains at about -21dB. This trend

continues with 40th and higher orders as may be easily verified. To improve matters we need to

discuss ‘windowing’.

z-1

-.07

z-1 z-1 z-1 z-1 z-1 z-1 z-1 z-1 z-1

+ + + + + + + + +

x[n]

-.055 -.07 0 0 0.14 .28 .33 0.1

4

.28

+

-

.055
y[n]

Fig 4.5: Gain response of tenth order low pass FIR filter with C = /3

Fig 4.6: Gain response of 20th order low pass FIR filter with C = /3.

Exercise Problems

Problem 1 : Design an ideal band pass filter with a frequency response:

H d (e j) 1 for

3

 4 4

 0 otherwise

Find the values of h(n) for M = 11 and plot the frequency response.

truncating to 11 samples we have h(n) hd (n)

 for | n | 5 0 otherwise

For n = 0 the value of h(n) is separately evaluated from the basic Integration, h(0) = 0.5

Other values of h(n) are evaluated from h(n) Expression

h(1)=h(-1)=0

h(2)=h(-2)=-0.3183

 h(3)=h(-3)=0

h(4)=h(-4)=0

h(5)=h(-5)=0

The transfer function of the filter is

 N 1) //2

H (z) h(0) [h(n){ z n z n }]

n 1

 0.5 0.3183(z 2 z 2)

the transfer function of the realizable filter is

H ' (z) z 5 [0.5 0.3183(z 2 z 2)]

0.3183z 3 0.5z 5 0.3183z 7

the filter coeffients are

h ' (0) h' (10) h' (1) h' (9) h' (2)

h' (8) h' (4) h' (6) 0

h' (3) h' (7) 0.3183

h' (5) 0.5

The magnitude response can be expressed as

(N 1) / 2

| H (e j) | a(n) cos n

n 1

comparing this exp with

5

| H (e j) | | z 5 [h(0) 2 h(n) cos n] |

n 1

We have a(0)=h(0)

a(1)=2h(1)=0

a(2)=2h(2)=-0.6366

a(3)=2h(3)=0

a(4)=2h(4)=0

a(5)=2h(5)=0

The magnitude response function is

|H(e jω)| = 0.5 – 0.6366 cos 2ω which can plotted for various values of

ω in degrees =[0 20 30 45 60 75 90 105 120 135 150 160 180];

H(e jω)| in dBs= [-17.3 -38.17 -14.8 -6.02 -1.74 0.4346 1.11 0.4346 -1.74 -6.02 -14.8 -38.17 -

17.3];

Problem 2: Design an ideal low pass filter with a freq response

H

(e j)

1 for

d

2 2

 0 for

 2

Find the values of h(n) for N =11. Find H(z). Plot the magnitude response

From the freq response we can determine hd(n),

 n

1 / 2

j n sin 2

hd (n)

e

d

 n and

n 0

2

 n

 /

2

Truncating hd(n) to 11 samples

h(0) = 1/2 h(1)=h(-1)=0.3183

h(2)=h(-2)=0

h(3)=h(-3)=0.106

h(4)=h(-4)=0

h(5)=h(-5)=0.06366

The realizable filter can be obtained by shifting h(n) by 5 samples to right h‟(n)=h(n-5)

h‟(n)= [0.06366, 0, -0.106, 0, 0.3183, 0.5, 0.3183, 0, -0.106, 0, 0.06366];

H '(z) 0.06366 0.106z 2 0.3183z 4 0.5z 5 0.3183z 6 0.106z 8

0.06366z 10

4.5 Windowing Technique:

FIR filter design using window functions

Windowing is the quickest method for designing an FIR filter. A windowing function simply

truncates the ideal impulse response to obtain a causal FIR approximation that is non- causal an

infinitely long. Smoother window functions provide higher out-of band rejection in the filter

response. However this smoothness comes at the cost of wider stop band transitions. Various

windowing method attempts to minimize the width of the main lobe (peak) of the frequency

response. In addition, it attempts to minimize the side lobes (ripple) of the frequency response.

 The FIR filter design process via window functions can be split into several steps:

 Defining filter specifications;

 Specifying a window function according to the filter specifications;

 Computing the filter order required for a given set of specifications;

 Computing the window function coefficients;

 Computing the ideal filter coefficients according to the filter order;

 Computing FIR filter coefficients according to the obtained window function and ideal

filter coefficients;

If the resulting filter has too wide or too narrow transition region, it is necessary to change the

filter order by increasing or decreasing it according to needs, and after that steps 4, 5 and 6 are

iterated as many times as needed.

The final objective of defining filter specifications is to find the desired normalized frequencies

(ωc, ωc1, ωc2), transition width and stop band attenuation. The window function and filter order

are both specified according to these parameters. Accordingly, the selected window function must

satisfy the given specifications. This point will be discussed in more detail in the next chapter

.After this step, that is, when the window function is known, we can compute the filter order

required for a given set of specifications. One of the techniques for computing is provided in

chapter 2.3.When both the window function and filter order are known, it is possible to calculate

the window function coefficients w[n] using the formula for the specified window function. This

issue is also covered in the next chapter.After estimating the window function coefficients, it is

necessary to find the ideal filter frequency samples. The expressions used for computing these

samples are discussed in section 2.2.3 under Ideal filter approximation. The final objective of this

step is to obtain the coefficients hd[n]. Two sequencies w[n] and hd[n] have the same number of

elements. The next step is to compute the frequency response of designed filter h[n] using the

following expression:

Lastly, the transfer function of designed filter will be found by

transforming impulse response via Fourier transform:

or via Z-transform If the transition region of designed filter is

wider than needed, it is necessary to increase the filter order, reestimate the window function

coefficients and ideal filter frequency samples, multiply them in order to obtain the frequency

response of designed filter and re estimate the transfer function as well. If the transition region is

narrower than needed, the filter order can be decreased for the purpose of optimizing hardware

and/or software resources. It is also necessary to re estimate the filter frequency coefficients after

that. For the sake of precise estimates, the filter order should be decreased or increased by 1.

Rectangular Window: Rectangular This is the most basic of windowing methods. It does not

require any operations because its values are either 1 or 0. It creates an abrupt discontinuity that

results in sharp roll-offs but large ripples.

Hamming Window:This windowing method generates a moderately sharp central peak. Its

ability to generate a maximally flat response makes it convenient for speech processing

filtering.

Hanning Window: This windowing method generates a maximum flat filter design.

Kaiser Window: This windowing method is designed to generate a sharp central peak. It has

reduced side lobes and transition band is also narrow. Thus commonly used in FIR filter design

Type of window Approx. Transition Peak

 width of the main lobe Side lobe (dB)

Rectangular 4π/M -13

Bartlett 8π/M -27

Hanning 8π/M -32

Hamming 8π/M -43

Blackman 12π/M -58

Looking at the above table we observe filters which are mathematically simple do not

offer best characteristics. Among the window functions discussed Kaiser is the most complex

one in terms of functional description whereas it is the one which offers maximum flexibility

in the design.

Procedure for designing linear-phase FIR filters using windows:

1. Obtain hd(n) from the desired freq response using inverse FT relation

2. Truncate the infinite length of the impulse response to finite length with

(assuming M odd) choosing proper window

h(n) hd (n)w(n) where

w(n) is the window function defined for (M 1) / 2 n (M 1) / 2

3. Introduce h(n) = h(-n) for linear phase characteristics

4. Write the expression for H(z); this is non-causal realization

5. To obtain causal realization H‟(z) = z -(M-1)/2 H(z)

4.6. Summary of ‘windowing’ design technique for FIR filters

To design an FIR digital filter of even order M, with gain response G() and linear phase, by the

windowing method,

1) Set H(ej) = G() the required gain-response. This assumes () = 0.

2) Inverse DTFT to produce the ideal impulse-response {h[n]}.

3) Window to M/2 using chosen window.

4) Delay windowed impulse-response by M/2 samples.

5) Realize by setting multipliers of FIR filter.

Instead of obtaining H(ej) = G(), we get e-jM/2G() with G() a distorted version of

G() the distortion being due to windowing.

The phase-response is therefore () = -M/2 which is a linear phase-response with phase-delay

M/2 samples at all frequencies in the range 0 to . This is because -() / = M/2 for all .

Notice that the filter coefficients, and hence the impulse-response of each of the digital filters we

have designed so far are symmetric in that h[n] = h[M-n] for all n in the range 0 to M where M is

the order. If M is even, this means that h[M/2 - n] = h[M/2 + n] for all n in the range 0 to M/2.

The impulse response is then said to be 'symmetric' about sample M/2. The following example

illustrates this for an example where M=6 and there are seven non-zero samples within {h[n]}:

{… 0, …, 0, 2, -3, 5, 7, 5, -3, 2, 0, …,0, … }

The most usual case is where M is even, but, for completeness, we should briefly consider the

case where M is odd. In this case, we can still say that {h[n]} is 'symmetric about M/2' even

though sample M/2 does not exist. The following example illustrates the point for an example

where M=5 and {h[n]} therefore has six non-zero sample:

 (…, 0,…, 0, 1, 3, 5, 5, 3, 1, 0, …, 0, …}

When M is odd, h[(M-1)/2 - n] = h[(M+1)/2 + n] for n = 0, 1, …, (M-1)/2.

It may be shown that FIR digital filters whose impulse-responses are symmetric in this way are

linear phase. We can easily illustrate this for either of the two examples just given. Take the

second. Its frequency-response is the DTFT of {h[n]} i.e.

It is also possible to design FIR filters which are not linear phase. The technique described in

this section is known as the ‘windowing’ technique or the ‘Fourier series approximation

technique’.

	 8085 is an 8 bit microprocessor, manufactured with N-MOS technology.
	 It has 16-bit address bus and hence can address up to 216 = 65536 bytes (64KB) memory locations through A0-A15.
	 The first 8 lines of address bus and 8 lines of data bus are multiplexed AD0 - AD7. Data bus is a group of 8 lines D0 - D7.
	 It supports external interrupt request.8085 consists of 16 bit program counter (PC) and stack pointer (SP).
	 Six 8-bit general purpose register arranged in pairs: BC, DE, HL.
	 It requires a signal +5V power supply and can operate at 3 MHz, 5 MHz and 6 MHz Serial in/Serial out Port.
	 It is enclosed with 40 pins DIP (Dual in line package).
	UNIT – 3
	ADRESSING MODES OF 8051
	ACCESSING MEMORY USING VARIOUS ADDRESSING MODES
	The FIR filter design process via window functions can be split into several steps:

