OUTCOME BASED EDUCATION
WITH
CHOICE BASED CREDIT SYSTEM

BACHELOR OF TECHNOLOGY
MECHANICAL ENGINEERING

ACADEMIC REGULATIONS, COURSE STRUCTURE AND SYLLABI
(Based on AICTE Model Curriculum)

IARE - R18

B.Tech Regular Four Year Degree Program
(for the batches admitted from the academic year 2018-2019)

&

B.Tech (Lateral Entry Scheme)
(for the batches admitted from the academic year 2019-2020)

FAILURE TO READ AND UNDERSTAND THE REGULATIONS
IS NOT AN EXCUSE
CONTENTS

<table>
<thead>
<tr>
<th>S. No</th>
<th>Preliminary Definitions and Nomenclatures</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Foreword</td>
<td>iii</td>
</tr>
<tr>
<td>1</td>
<td>Choice Based Credit System</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Medium of Instruction</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Programs Offered</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Semester Structure</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Registration / Dropping / Withdrawal</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Unique Course Identification Code</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>Curriculum and Course Structure</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>Evaluation Methodology</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>Make-up Examination</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>Supplementary Examinations</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>Attendance Requirements and Detention Policy</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>Conduct of Semester End Examinations and Evaluation</td>
<td>11</td>
</tr>
<tr>
<td>13</td>
<td>Scheme for the Award of Grade</td>
<td>11</td>
</tr>
<tr>
<td>14</td>
<td>Letter Grades and Grade Points</td>
<td>12</td>
</tr>
<tr>
<td>15</td>
<td>Computation of SGPA and CGPA</td>
<td>12</td>
</tr>
<tr>
<td>16</td>
<td>Illustration of Computation of SGPA and CGPA</td>
<td>13</td>
</tr>
<tr>
<td>17</td>
<td>Photocopy / Revaluation</td>
<td>13</td>
</tr>
<tr>
<td>18</td>
<td>Promotion Policies</td>
<td>14</td>
</tr>
<tr>
<td>19</td>
<td>Graduation Requirements</td>
<td>14</td>
</tr>
<tr>
<td>20</td>
<td>Betterment of Marks in the Courses Already Passed</td>
<td>15</td>
</tr>
<tr>
<td>21</td>
<td>Award of Degree</td>
<td>15</td>
</tr>
<tr>
<td>22</td>
<td>B.Tech with Honours or additional Minor in Engineering</td>
<td>16</td>
</tr>
<tr>
<td>23</td>
<td>Temporary Break of Study from the Program</td>
<td>18</td>
</tr>
<tr>
<td>24</td>
<td>Termination from the Program</td>
<td>19</td>
</tr>
<tr>
<td>25</td>
<td>With-holding of Results</td>
<td>19</td>
</tr>
<tr>
<td>26</td>
<td>Graduation Day</td>
<td>19</td>
</tr>
<tr>
<td>27</td>
<td>Discipline</td>
<td>19</td>
</tr>
<tr>
<td>28</td>
<td>Grievance Redressal Committee</td>
<td>19</td>
</tr>
<tr>
<td>29</td>
<td>Transitory Regulations</td>
<td>19</td>
</tr>
<tr>
<td>30</td>
<td>Revision of Regulations and Curriculum</td>
<td>22</td>
</tr>
<tr>
<td>31</td>
<td>Course Structure of Mechanical Engineering</td>
<td>23</td>
</tr>
<tr>
<td>32</td>
<td>Syllabus</td>
<td>29</td>
</tr>
<tr>
<td>33</td>
<td>Vision and Mission of the Institute</td>
<td>223</td>
</tr>
<tr>
<td>34</td>
<td>B.Tech - Program Outcomes (POs)</td>
<td>223</td>
</tr>
<tr>
<td>35</td>
<td>Frequently asked Questions and Answers about autonomy</td>
<td>225</td>
</tr>
<tr>
<td>36</td>
<td>Malpractice Rules</td>
<td>229</td>
</tr>
<tr>
<td>37</td>
<td>Undertaking by Student / Parent</td>
<td>232</td>
</tr>
</tbody>
</table>

“Take up one idea.
Make that one idea your life-think of it, dream of it, live on that idea. Let the brain muscles, nerves, every part of your body be full of that idea and just leave every other idea alone.
This is the way to success”

Swami Vivekananda
PRELIMINARY DEFINITIONS AND NOMENCLATURES

AICTE: Means All India Council for Technical Education, New Delhi.

Autonomous Institute: Means an institute designated as Autonomous by University Grants Commission (UGC), New Delhi in concurrence with affiliating University (Jawaharlal Nehru Technological University, Hyderabad) and State Government.

Academic Autonomy: Means freedom to an institute in all aspects of conducting its academic programs, granted by UGC for Promoting Excellence.

Academic Council: The Academic Council is the highest academic body of the institute and is responsible for the maintenance of standards of instruction, education and examination within the institute. Academic Council is an authority as per UGC regulations and it has the right to take decisions on all academic matters including academic research.

Academic Year: It is the period necessary to complete an actual course of study within a year. It comprises two main semesters i.e., (one odd + one even) and one supplementary semester.

Branch: Means specialization in a program like B.Tech degree program in Aeronautical Engineering, B.Tech degree program in Computer Science and Engineering etc.

Board of Studies (BOS): BOS is an authority as defined in UGC regulations, constituted by Head of the Organization for each of the departments separately. They are responsible for curriculum design and updation in respect of all the programs offered by a department.

Backlog Course: A course is considered to be a backlog course, if the student has obtained a failure grade (F) in that course.

Basic Sciences: The courses offered in the areas of Mathematics, Physics, Chemistry etc., are considered to be foundational in nature.

Betterment: Betterment is a way that contributes towards improvement of the students’ grade in any course(s). It can be done by either (a) re-appearing or (b) re-registering for the course.

Commission: Means University Grants Commission (UGC), New Delhi.

Choice Based Credit System: The credit based semester system is one which provides flexibility in designing curriculum and assigning credits based on the course content and hours of teaching along with provision of choice for the student in the course selection.

Certificate Course: It is a course that makes a student to have hands-on expertise and skills required for holistic development in a specific area/field.

Compulsory course: Course required to be undertaken for the award of the degree as per the program.

Continuous Internal Examination: It is an examination conducted towards sessional assessment.

Core: The courses that are essential constituents of each engineering discipline are categorized as professional core courses for that discipline.

Course: A course is a subject offered by a department for learning in a particular semester.

Course Outcomes: The essential skills that need to be acquired by every student through a course.

Credit: A credit is a unit that gives weight to the value, level or time requirements of an academic course. The number of ‘Contact Hours’ in a week of a particular course determines its credit value. One credit is equivalent to one lecture/tutorial hour per week.

Credit point: It is the product of grade point and number of credits for a course.
Cumulative Grade Point Average (CGPA): It is a measure of cumulative performance of a student over all the completed semesters. The CGPA is the ratio of total credit points secured by a student in various courses in all semesters and the sum of the total credits of all courses in all the semesters. It is expressed up to two decimal places.

Curriculum: Curriculum incorporates the planned interaction of students with instructional content, materials, resources, and processes for evaluating the attainment of Program Educational Objectives.

Department: An academic entity that conducts relevant curricular and co-curricular activities, involving both teaching and non-teaching staff, and other resources in the process of study for a degree.

Detention in a Course: Student who does not obtain minimum prescribed attendance in a course shall be detained in that particular course.

Dropping from Semester: Student who doesn’t want to register for any semester can apply in writing in prescribed format before the commencement of that semester.

Elective Course: A course that can be chosen from a set of courses. An elective can be Professional Elective and/or Open Elective.

Evaluation: Evaluation is the process of judging the academic performance of the student in her/his courses. It is done through a combination of continuous internal assessment and semester end examinations.

Grade: It is an index of the performance of the students in a said course. Grades are indicated by alphabets.

Grade Point: It is a numerical weight allotted to each letter grade on a 10-point scale.

Honours: An Honours degree typically refers to a higher level of academic achievement at an undergraduate level.

Institute: Means Institute of Aeronautical Engineering, Hyderabad unless indicated otherwise by the context.

Massive Open Online Courses (MOOC): MOOC courses inculcate the habit of self-learning. MOOC courses would be additional choices in all the elective group courses.

Minor: Minor are coherent sequences of courses which may be taken in addition to the courses required for the B.Tech degree.

Pre-requisite: A specific course or subject, the knowledge of which is required to complete before student register another course at the next grade level.

Professional Elective: It indicates a course that is discipline centric. An appropriate choice of minimum number of such electives as specified in the program will lead to a degree with specialization.

Program: Means, UG degree program: Bachelor of Technology (B.Tech); PG degree program: Master of Technology (M.Tech) / Master of Business Administration (MBA).

Program Educational Objectives: The broad career, professional and personal goals that every student will achieve through a strategic and sequential action plan.

Project work: It is a design or research based work to be taken up by a student during his/her final year to achieve a particular aim. It is a credit based course and is to be planned carefully by the student.

Re-Appearing: A student can reappear only in the semester end examination for theory component of a course, subject to the regulations contained herein.

Registration: Process of enrolling into a set of courses in a semester of a program.
Regulations: The regulations, common to all B.Tech programs offered by Institute, are designated as “IARE Regulations - R18” and are binding on all the stakeholders.

Semester: It is a period of study consisting of 15 to 18 weeks of academic work equivalent to normally 90 working days. Odd semester commences usually in July and even semester in December of every year.

Semester End Examinations: It is an examination conducted for all courses offered in a semester at the end of the semester.

S/he: Means “she” and “he” both.

Student Outcomes: The essential skill sets that need to be acquired by every student during her/his program of study. These skill sets are in the areas of employability, entrepreneurial, social and behavioral.

University: Means Jawaharlal Nehru Technological University Hyderabad (JNTUH), Hyderabad, is an affiliating University.

Withdraw from a Course: Withdrawing from a course means that a student can drop from a course within the first two weeks of odd or even semester (deadlines are different for summer sessions). However, s/he can choose a substitute course in place of it, by exercising the option within 5 working days from the date of withdrawal.
FOREWORD

The autonomy is conferred to Institute of Aeronautical Engineering (IARE), Hyderabad by University Grants Commission (UGC), New Delhi based on its performance as well as future commitment and competency to impart quality education. It is a mark of its ability to function independently in accordance with the set norms of the monitoring bodies including J N T University Hyderabad (JNTUH), Hyderabad and AICTE, New Delhi. It reflects the confidence of the affiliating University in the autonomous institution to uphold and maintain standards it expects to deliver on its own behalf. Thus, an autonomous institution is given the freedom to have its own curriculum, examination system and monitoring mechanism, independent of the affiliating University but under its observance.

IARE is proud to win the credence of all the above bodies monitoring the quality in education and has gladly accepted the responsibility of sustaining, if not improving upon the standards and ethics for which it has been striving for more than a decade in reaching its present standing in the arena of contemporary technical education. As a follow up, statutory bodies such as Academic Council and Board of Studies (BOS) are constituted with the guidance of the Governing Body of the institute and recommendations of the JNTUH to frame the regulations, course structure, and syllabi under autonomous status.

The autonomous regulations, course structure, and syllabi have been prepared after prolonged and detailed interaction with several expertise solicited from academics, industry and research, in accordance with the vision and mission of the institute in order to produce a quality engineering graduate to the society.

All the faculty, parents, and students are requested to go through all the rules and regulations carefully. Any clarifications needed are to be sought at appropriate time and from the principal of the institute, without presumptions, to avoid unwanted subsequent inconveniences and embarrassments. The cooperation of all the stake holders is requested for the successful implementation of the autonomous system in the larger interests of the institute and brighter prospects of engineering graduates.

PRINCIPAL
INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

ACADEMIC REGULATIONS

B.Tech. Regular Four Year Degree Program
(for the batches admitted from the academic year 2018 - 19)

&

B.Tech. (Lateral Entry Scheme)
(for the batches admitted from the academic year 2019 - 20)

For pursuing four year undergraduate Bachelor of Technology degree program of study in Engineering (B.Tech) offered by Institute of Aeronautical Engineering under Autonomous status and herein after referred to as IARE.

Preamble:

All India Council for Technical Education (AICTE) has introduced Model Curriculum for Bachelor of Technology program with 160 credits in the entire program of 4 years, and additional 20 credits can be acquired for the degree of B.Tech with Honours or additional Minor in Engineering. These additional 20 credits will have to be acquired with online courses (MOOCs), perhaps for the first time in the country, to tap the zeal and excitement of learning beyond the classrooms. So, the students will have to complete additional 20 credits through MOOCs within 4 years of time. This creates an excellent opportunity for students to acquire the necessary skill set for employability through massive open online courses where the rare expertise of world famous experts from academics and industry are available.

Separate certificate will be issued in addition to regular degree program mentioning that the student has cleared Honours / Minor specialization in respective courses in addition to scheduled courses for B.Tech programs.

1. CHOICE BASED CREDIT SYSTEM

The Indian Higher Education Institutions (HEIs) are changing from the conventional course structure to Choice Based Credit System (CBCS) along with introduction to semester system in the first year itself. The semester system helps in accelerating the teaching-learning process and enables vertical and horizontal mobility in learning.

The credit based semester system provides flexibility in designing curriculum and assigning credits based on the course content and hours of teaching. The choice based credit system provides a ‘cafeteria’ type approach in which the students can take courses of their choice, learn at their own pace, undergo additional courses and acquire more than the required credits, and adopt an interdisciplinary approach to learning.

Choice Based Credit System (CBCS) is a flexible system of learning and provides choice for students to select from the prescribed elective courses. A course defines learning objectives and learning outcomes and comprises lectures / tutorials / laboratory work / field work / project work / comprehensive Examination / seminars / assignments / MOOCs / alternative assessment tools / presentations / self-study etc., or a combination of some of these.

Under the CBCS, the requirement for awarding a degree is prescribed in terms of number of credits to be completed by the students.
The CBCS permits students to:
1. Choose electives from a wide range of elective courses offered by the departments.
2. Undergo additional courses of interest.
3. Adopt an interdisciplinary approach in learning.
4. Make the best use of expertise of the available faculty.

2. MEDIUM OF INSTRUCTION
The medium of instruction shall be English for all courses, examinations, seminar presentations and project work. The curriculum will comprise courses of study as given in course structure, in accordance with the prescribed syllabi.

3. PROGRAMS OFFERED
Presently, the institute is offering Bachelor of Technology (B.Tech) degree programs in the following disciplines:
1. Aeronautical Engineering
2. Computer Science and Engineering
3. Information Technology
4. Electronics and Communication Engineering
5. Electrical and Electronics Engineering
6. Mechanical Engineering
7. Civil Engineering

4. SEMESTER STRUCTURE
Each academic year is divided into three semesters, TWO being MAIN SEMESTERS (one odd + one even) and ONE being a SUPPLEMENTARY SEMESTER. Main semesters are for regular class work. Supplementary Semester is primarily for failed students i.e. registration for a course for the first time is generally not permitted in the supplementary semester.

4.1 Each main semester shall be of 21 weeks (Table 1) duration and this period includes time for registration of courses, course work, examination preparation, and conduct of examinations.

4.2 Each main semester shall have a minimum of 90 working days; out of which 75 days are for teaching / practical and 15 days for conduct of exams and preparation.

4.3 The supplementary semester shall be a fast track semester consisting of eight weeks and this period includes time for registration of courses, course work, and examination preparation, conduct of examinations, assessment, and declaration of final results.

4.4 All subjects may not be offered in the supplementary semester. The student has to pay a stipulated fee prescribed by the institute to register for a course in the supplementary semester. The supplementary semester is provided to help the student in not losing an academic year. It is optional for a student to make use of supplementary semester. Supplementary semester is a special semester and the student cannot demand it as a matter of right and will be offered based on availability of faculty and other institute resources.

4.5 The institute may use supplementary semester to arrange add-on courses for regular students and / or for deputing them for practical training / FSI model. A student can register for a maximum number of 15 credits during a supplementary semester.

4.5.1 The registration for the supplementary semester (during May – July, every year) provides an opportunity to students to clear their backlogs (‘F’ grade) or who are prevented from appearing for SEE examinations due to shortage of attendance less than 65% in each course (‘SA’ Grade) in the earlier semesters or the courses which he / she could not register (Drop / Withdraw) due to any reason.
Students will not be permitted to register for more than 15 credits (both I and II semester) in the supplementary semester. Students required to register for supplementary semester courses are to pay a nominal fee within the stipulated time. A separate circular shall be issued at the time of supplementary semester.

It will be optional for a student to get registered in the course(s) of supplementary semester; otherwise, he / she can opt to appear directly in supplementary examination. However, if a student gets registered in a course of supplementary semester, then it will be compulsory for a student to fulfill attendance criterion (≥90%) of supplementary semester and he / she will lose option to appear in immediate supplementary examination.

The students who have earlier taken SEE examination and register afresh for the supplementary semester may revoke the CIA marks secured by them in their regular/earlier attempts in the same course. Once revoked, the students shall not seek restoration of the CIA marks.

Supplementary semester will be at an accelerated pace e.g. one credit of a course shall require two hours/week so that the total number of contact hours can be maintained same as in normal semester.

Instructions and guidelines for the supplementary semester course:

- A minimum of 36 to 40 hours will be taught by the faculty for every course.
- Only the students registered and having sufficient percentage of attendance for the course will be permitted to write the examination.
- The assessment procedure in a supplementary semester course will be similar to the procedure for a regular semester course.
- Student shall register for the supplementary semester as per the schedule given in academic calendar.
- Once registered, students will not be allowed to withdraw from supplementary semester.

4.5.2 The academic calendar shown in Table 1 is declared at the beginning of the academic year.

Table 1: Academic Calendar

<table>
<thead>
<tr>
<th>Semester</th>
<th>Spell I Instruction Period</th>
<th>Spell II Instruction Period</th>
<th>Mid Examinations</th>
<th>Practicals</th>
<th>Semester End Examinations</th>
<th>Supplementary Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRST SEMESTER (21 weeks)</td>
<td>8 weeks</td>
<td>8 weeks</td>
<td>1 week</td>
<td>1 week</td>
<td>2 weeks</td>
<td>2 weeks</td>
</tr>
<tr>
<td>I Spell Instruction Period</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I Mid Examinations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spell II Instruction Period</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II Mid Examinations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparation & Practical Examinations</td>
<td>1 week</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECOND SEMESTER (21 weeks)</th>
<th>Spell I Instruction Period</th>
<th>Spell II Instruction Period</th>
<th>Mid Examinations</th>
<th>Practicals</th>
<th>Semester End Examinations</th>
<th>Supplementary Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester Break and Supplementary Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II Spell Instruction Period</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II Mid Examinations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparation & Practical Examinations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester End Examinations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Semester Break and Supplementary Exams

| Summer Vacation, Supplementary Semester | Remedial Exams | 8 weeks |
4.6 Students admitted on transfer from JNTUH affiliated institutes, Universities and other institutes in the subjects in which they are required to earn credits so as to be on par with regular students as prescribed by concerned ‘Board of Studies’.

5.0 REGISTRATION / DROPPING / WITHDRAWAL

5.1. Each student has to compulsorily register for course work at the beginning of each semester as per the schedule mentioned in the Academic Calendar. It is compulsory for the student to register for courses in time. The registration will be organized departmentally under the supervision of the Head of the Department.

5.2. In ABSENTIA, registration will not be permitted under any circumstances.

5.3. At the time of registration, students should have cleared all the dues of Institute and Hostel for the previous semesters, paid the prescribed fees for the current semester and not been debarred from the institute for a specified period on disciplinary or any other ground.

5.4. The student has to normally register for a minimum of 17 credits and may register up to a maximum of 27 credits, in consultation with HOD/faculty mentor. On an average, a student is expected to register for 22 credits.

5.5. **Dropping of Courses:** Within one week after the last date of first internal assessment test or by the date notified in the academic calendar, the student may in consultation with his / her faculty mentor/adviser, drop one or more courses without prejudice to the minimum number of credits as specified in clause 5.4. The dropped courses are not recorded in the Grade Card. Student must complete the dropped subject by registering in the supplementary semester / forthcoming semester in order to earn the required credits. Student must complete the dropped subject by registering in the supplementary semester / forthcoming semester in order to earn the required credits.

5.6. **Withdrawal from Courses:** A student is permitted to withdraw from a course by the date notified in the academic calendar. Such withdrawals will be permitted without prejudice to the minimum number of credits as specified in clause 5.4. A student cannot withdraw a course more than once and withdrawal of reregistered subjects is not permitted.

5.7 After **Dropping and / or Withdrawal** of courses, minimum credits registered shall be 20.

6.0 UNIQUE COURSE IDENTIFICATION CODE

Every course of the B.Tech program will be placed in one of the seven groups of courses as listed in the Table 2. The various courses and their two-letter codes are given below;

Table 2: Group of Courses

<table>
<thead>
<tr>
<th>S. No</th>
<th>Branch</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aeronautical Engineering</td>
<td>AE</td>
</tr>
<tr>
<td>2</td>
<td>Computer Science and Engineering</td>
<td>CS</td>
</tr>
<tr>
<td>3</td>
<td>Information Technology</td>
<td>IT</td>
</tr>
<tr>
<td>4</td>
<td>Electronics and Communication Engineering</td>
<td>EC</td>
</tr>
<tr>
<td>5</td>
<td>Electrical and Electronics Engineering</td>
<td>EE</td>
</tr>
<tr>
<td>6</td>
<td>Mechanical Engineering</td>
<td>ME</td>
</tr>
<tr>
<td>7</td>
<td>Civil Engineering</td>
<td>CE</td>
</tr>
</tbody>
</table>
7.0 CURRICULUM AND COURSE STRUCTURE

The curriculum shall comprise Theory Courses, Elective Courses, Laboratory Courses, Audit Courses, Mandatory Courses, Mini Project, Internship and Project work. The list of elective courses may also include subjects from allied discipline.

Contact Periods: Depending on the complexity and volume of the course, the number of contact periods per week will be assigned. Each Theory and Laboratory course carries credits based on the number of hours/week as follows:

- Contact classes (Theory): 1 credit per lecture hour per week, 1 credit per tutorial hour per week.
- Laboratory Hours (Practical): 1 credit for 2 practical hours per week.
- Project Work: 1 credit for 2 hours of project work per week.
- Mini Project: 1 credit for 2 hours per week

7.1 TYPES OF COURSES

Courses in a program may be of three kinds: Foundation / Skill, Core and Elective Courses.

7.1.0 Foundation / Skill Course:
Foundation courses are the courses based upon the content leads to enhancement of skill and knowledge as well as value based and are aimed at man making education. Skill subjects are those areas in which one needs to develop a set of skills to learn anything at all. They are fundamental to learning any subject.

7.1.1 Professional Core Courses:
There may be a core course in every semester. This is the course which is to be compulsorily studied by a student as a core requirement to complete the requirement of a program in the said discipline of study.

7.1.2 Elective Course:
Electives provide breadth of experience in respective branch and application areas. Elective course is a course which can be chosen from a pool of courses. It may be:

- Supportive to the discipline of study
- Providing an expanded scope
- Enabling an exposure to some other discipline / domain
- Nurturing student’s proficiency / skill.

An elective may be Professional Elective, is a discipline centric focusing on those courses which add generic proficiency to the students or may be Open Elective, chosen from unrelated disciplines.

There are six professional elective tracks; students can choose not more than two courses from each track. Overall, students can opt for six professional elective courses which suit their project work in consultation with the faculty advisor/mentor. Nevertheless, one course from each of the four open electives has to be selected. A student may also opt for more elective courses in his/her area of interest.
7.1.3 Credit distribution for courses offered is given in Table 3.

Table 3: Credit distribution

<table>
<thead>
<tr>
<th>S. No</th>
<th>Course</th>
<th>Hours</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Theory Course</td>
<td>1 / 2 / 3 / 4</td>
<td>1 / 2 / 3 / 4</td>
</tr>
<tr>
<td>2</td>
<td>Elective Courses</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>MOOC Courses</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Laboratory Courses</td>
<td>2 / 3 / 4</td>
<td>1 / 1.5 / 2</td>
</tr>
<tr>
<td>5</td>
<td>Audit Course / Mandatory Course</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Project / Research based learning</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>Full Semester Internship (FSI) / Project Work</td>
<td>-</td>
<td>11</td>
</tr>
</tbody>
</table>

7.2 Course Structure

Every course of the B.Tech program will be placed in one of the eight categories with minimum credits as listed in the Table 4.

Table 4: Category Wise Distribution of Credits

<table>
<thead>
<tr>
<th>S. No</th>
<th>Category</th>
<th>Breakup of Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Humanities and Social Sciences (HSMC), including Management.</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>Basic Science Courses (BSC) including Mathematics, Physics and Chemistry.</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>Engineering Science Courses (ESC), including Workshop, Drawing, Basics of Electrical / Electronics / Mechanical / Computer Engineering.</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>Professional Core Courses (PCC), relevant to the chosen specialization / branch.</td>
<td>48</td>
</tr>
<tr>
<td>5</td>
<td>Professional Electives Courses (PEC), relevant to the chosen specialization / branch.</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>Open Elective Courses (OEC), from other technical and/or emerging subject areas.</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>Project Based Learning, Research Based Learning and Project Work (PROJ) / Full Semester Internship (FSI)</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>Mandatory Courses / Audit Courses.</td>
<td>Non-Credit</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>160</td>
</tr>
</tbody>
</table>

7.3 Semester wise course break-up

Following are the TWO models of course structure out of which any student shall choose or will be allotted with one model based on their academic performance.

i. Full Semester Internship (FSI) Model and
ii. Non Full Semester Internship (NFSI) Model – Project work.

7.4 For Four year regular program (FSI Model):

In the FSI Model, out of the selected students - half of students shall undergo Full Semester Internship in VII semester and the remaining students in VIII semester. In the Non FSI Model,
all the selected students shall carry out the course work and Project work as specified in the course structure. A student who secures a minimum CGPA of 7.5 up to IV semester with no current arrears and maintains the CGPA of 7.5 till VI Semester shall be eligible to opt for FSI.

8.0 EVALUATION METHODOLOGY

8.1 Theory Course:
Each theory course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

8.1.1 Semester End Examination (SEE):
The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each modules carries equal weightage in terms of marks distribution. The question paper pattern is as follows.

Two full questions with ‘either’ ‘or’ choice will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

<table>
<thead>
<tr>
<th>50 %</th>
<th>To test the objectiveness of the concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 %</td>
<td>To test the analytical skill of the concept OR to test the application skill of the concept</td>
</tr>
</tbody>
</table>

8.1.2 Continuous Internal Assessment (CIA):
For each theory course the CIA shall be conducted by the faculty / teacher handling the course as given in Table 5. CIA is conducted for a total of 30 marks, with 20 marks for Continuous Internal Examination (CIE), 05 marks for Quiz and 05 marks for Alternative Assessment Tool (AAT).

Table 5: Assessment pattern for Theory Courses

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>THEORY</th>
<th>TOTAL MARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Assessment</td>
<td>CIE Exam</td>
<td>Quiz</td>
</tr>
<tr>
<td>Max. CIA Marks</td>
<td>20</td>
<td>05</td>
</tr>
</tbody>
</table>

8.1.2.1 Continuous Internal Examination (CIE):
Two CIE exams shall be conducted at the end of the 8th and 16th week of the semester respectively. The CIE exam is conducted for 20 marks of 2 hours duration consisting of five descriptive type questions out of which four questions have to be answered where, each question carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams. The valuation and verification of answer scripts of CIE exams shall be completed within a week after the conduct of the Examination.

8.1.2.2 Quiz – Online Examination
Two Quiz exams shall be online examination consisting of 50 multiple choice questions and are to be answered by choosing the correct answer from a given set
of choices (commonly four). Such a question paper shall be useful in testing of knowledge, skills, application, analysis, evaluation and understanding of the students. Marks shall be awarded considering the average of two quiz examinations for every course.

8.1.2.3 Alternative Assessment Tool (AAT)

In order to encourage innovative methods while delivering a course, the faculty members are encouraged to use the Alternative Assessment Tool (AAT). This AAT enables faculty to design own assessment patterns during the CIA. The AAT enhances the autonomy (freedom and flexibility) of individual faculty and enables them to create innovative pedagogical practices. If properly applied, the AAT converts the classroom into an effective learning centre. The AAT may include tutorial hours/classes, seminars, assignments, term paper, open ended experiments, METE (Modeling and Experimental Tools in Engineering), five minutes video, MOOCs etc.

However, it is mandatory for a faculty to obtain prior permission from the concerned HOD and spell out the teaching/assessment pattern of the AAT prior to commencement of the classes.

8.2 Laboratory Course:

8.2.1 Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment. The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by the Chairman, BOS.

8.2.2 All the drawing related courses are evaluated in line with laboratory courses. The distribution shall be 30 marks for internal evaluation (20 marks for day–to–day work, and 10 marks for internal tests) and 70 marks for semester end lab examination. There shall be ONE internal test of 10 marks in each semester.

8.3 Mandatory Courses (MC):

These courses are among the compulsory courses but will not carry any credits. However, a pass in each such course during the program shall be necessary requirement for the student to qualify for the award of Degree. Its result shall be declared as “Satisfactory” or “Not Satisfactory” performance.

8.4 Value Added Courses:

The value added courses are audit courses offered through joint ventures with various organizations providing ample scope for the students as well as faculty to keep pace with the latest technologies pertaining to their chosen fields of study. A plenty of value added programs will be proposed by the departments one week before the commencement of class work. The students are given the option to choose the courses according to their desires and inclinations as they choose the desired items in a cafeteria. The expertise gained through the value added programs should enable them to face the formidable challenges of the future and also assist them in exploring new opportunities. Its result shall be declared with “Satisfactory” or “Not Satisfactory” performance.
8.5 Project / Research Based Learning

This gives students a platform to experience a research driven career in engineering, while developing a device / systems and publishing in reputed SCI / SCOPUS indexed journals and/or filing an Intellectual Property (IPR-Patent/Copyright) to aid communities around the world. Students should work individually as per the guidelines issued by head of the department concerned. The benefits to students of this mode of learning include increased engagement, fostering of critical thinking and greater independence.

The topic should be so selected that the students are enabled to complete the work in the stipulated time with the available resources in the respective laboratories. The scope of the work be handling part of the consultancy work, maintenance of the existing equipment, development of new experiment setup or can be a prelude to the main project with a specific outcome.

Project report will be evaluated for 100 marks in total. Assessment will be done for 100 marks out of which, the supervisor / guide will evaluate for 30 marks based on the work and presentation / execution of the work. Subdivision for the remaining 70 marks is based on publication, report, presentation, execution and viva-voce. Evaluation shall be done by a committee comprising the supervisor, Head of the department and an examiner nominated by the Principal from the panel of experts recommended by Chairman, BOS in consultation with Head of the department.

8.6 Project work

The project work shall be evaluated for 100 marks out of which 30 marks for internal evaluation and 70 marks for semester end evaluation. The project work shall be spread over in VII semester and in VIII semester. The project work shall be somewhat innovative in nature and explore the research bent of the mind of the student. A student shall carry out the project work under the supervision of a member of the faculty or may undertake to execute the project in collaboration with an Industry, R&D organization or another academic institution/University where sufficient facilities exist to carry out the project work.

At the end of VII semester, students should submit synopsis summarizing the work done in VII semester. The project is expected to be completed by the end of VIII semester. In VII semester, a first mid review is conducted by Project Review Committee (PRC) (on the progress) for 10 marks.

In VIII semester, a second mid review is conducted by PRC (on the progress) for 10 marks. On completion of the project, a third evaluation is conducted for award of internal marks of another 10 marks before the report is submitted, making the total internal marks 30.

The end semester examination shall be based on the report submitted and a viva-voce exam for 70 marks by a committee comprising the Head of the Department, the project supervisor and an external examiner nominated by the Principal. A minimum of 40% of maximum marks shall be obtained to earn the corresponding credits.

8.7 Full Semester Internship (FSI)

FSI is a full semester internship program carrying 11 credits. The FSI shall be opted in VII semester or in VIII semester. During the FSI, student has to spend one full semester in an identified industry / firm / R & D organization or another academic institution/University
where sufficient facilities exist to carry out the project work.

Following are the evaluation guidelines:
- Quizzes: 2 times
 - Quiz #1 - About the industry profile, weightage: 5%
 - Quiz #2 - Technical-project related, weightage: 5%
- Seminars - 2 times (once in six weeks), weightage: 7.5% + 7.5%
- Viva-voce: 2 times (once in six weeks), weightage: 7.5% + 7.5%
- Project Report, weightage: 15%
- Internship Diary, weightage: 5%
- Final Presentation, weightage: 40%

FSI shall be open to all the branches with a ceiling of maximum 10% distributed in both semesters. The selection procedure is:
- Choice of the students
- CGPA (> 7.5) up to IV semester
- Competency Mapping / Allotment

9.0 MAKEUP EXAMINATION

The make-up examination facility shall be available to students who may have missed to attend CIE exams in one or more courses in a semester for valid genuine reasons. The make-up examination shall have comprehensive online objective type questions. The syllabus for the make-up examination shall be the whole syllabus covered till the end of the semester under consideration and will be conducted at the end of the semester.

10.0 SUPPLEMENTARY EXAMINATIONS:

In addition to the Regular Semester End Examinations held at the end of each semester, Supplementary Semester End Examinations will be conducted within three weeks of the commencement of the teaching of the next semester. Candidates taking the Regular / Supplementary examinations as Supplementary candidates may have to take more than one Semester End Examination per day. A student can appear for any number of supplementary examinations till he/she clears all courses which he/she could not clear in the first attempt. However the maximum stipulated period for the course shall not be relaxed under any circumstances.

11.0 ATTENDANCE REQUIREMENTS AND DETENTION POLICY

11.1 It is desirable for a candidate to have 100% attendance in each course. In every course (theory/laboratory), student has to maintain a minimum of 75% attendance including the days of attendance in sports, games, NCC and NSS activities to be eligible for appearing in Semester End Examination of the course.

11.2 In case of medical issues, deficiency of attendance in each course to the extent of 10% may be condoned by the College Academic Committee (CAC) on the recommendation of the Head of the Department if the attendance is between 75% and 65% in every course, subjected to the submission of medical certificates, medical case file, and other needful documents to the concerned departments.

11.3 The basis for the calculation of the attendance shall be the period prescribed by the institute by its calendar of events. For late admission, attendance is reckoned from the date of admission to the program. However, in case of a student having less than 65%
attendance in any course, s/he shall be detained in the course and in no case such process will be relaxed.

11.4 A candidate shall put in a minimum required attendance in atleast 60% of (rounded to the next highest integer) theory courses for getting promoted to next higher class / semester. Otherwise, s/he shall be declared detained and has to repeat semester.

11.5 Students whose shortage of attendance is not condoned in any subject are not eligible to write their semester end examination of that courses and their registration shall stand cancelled.

11.6 A prescribed fee shall be payable towards condonation of shortage of attendance.

11.7 A student shall not be promoted to the next semester unless he satisfies the attendance requirement of the present semester, as applicable. They may seek readmission into that semester when offered next. If any candidate fails to fulfill the attendance requirement in the present semester, he shall not be eligible for readmission into the same class.

11.8 Any student against whom any disciplinary action by the institute is pending shall not be permitted to attend any SEE in that semester.

12.0 CONDUCT OF SEMESTER END EXAMINATIONS AND EVALUATION

12.1 Semester end examination shall be conducted by the Controller of Examinations (COE) by inviting Question Papers from the External Examiners.

12.2 Question papers may be moderated for the coverage of syllabus, pattern of questions by a Semester End Examination Committee chaired by Head of the Department one day before the commencement of semester end examinations. Internal Examiner shall prepare a detailed scheme of valuation.

12.3 The answer papers of semester end examination should be evaluated by the internal examiner immediately after the completion of exam and the award sheet should be submitted to COE in a sealed cover before the same papers are kept for second evaluation by external examiner.

12.4 In case of difference of more than 15% of marks, the answer paper shall be re-evaluated by a third examiner appointed by the Examination Committee and marks awarded by this examiner shall be taken as final.

12.5 COE shall invite 3 - 9 external examiners to evaluate all the end-semester answer scripts on a prescribed date(s). Practical laboratory exams are conducted involving external examiners.

12.6 Examinations Control Committee shall consolidate the marks awarded by internal and external examiners and award grades.

13.0 SCHEME FOR THE AWARD OF GRADE

13.1 A student shall be deemed to have satisfied the minimum academic requirements and earn the credits for each theory course, if s/he secures

i. Not less than 35% marks for each theory course in the semester end examination,

ii. A minimum of 40% marks for each theory course considering both internal and semester end examination.

13.2 A student shall be deemed to have satisfied the minimum academic requirements and earn the credits for each Lab / Project based learning / Research based learning / Project work / FSI, if s/he secures

i. Not less than 40% marks for each Lab / Project based learning / Research based learning / Project work / FSI course in the semester end examination,
ii. A minimum of 40% marks for each Lab / Project based learning / Research based learning / Project work / FSI course considering both internal and semester end examination.

13.3 If a candidate fails to secure a pass in a particular course, it is mandatory that s/he shall register and reappear for the examination in that course during the next semester when examination is conducted in that course. It is mandatory that s/he should continue to register and reappear for the examination till s/he secures a pass.

14.0 LETTER GRADES AND GRADE POINTS

14.1 Performances of students in each course are expressed in terms of marks as well as in Letter Grades based on absolute grading system. The UGC recommends a 10-point grading system with the following letter grades as given in the Table-6.

<table>
<thead>
<tr>
<th>Table-6: Grade Points Scale (Absolute Grading)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of Marks</td>
</tr>
<tr>
<td>100 – 90</td>
</tr>
<tr>
<td>89 – 80</td>
</tr>
<tr>
<td>79 – 70</td>
</tr>
<tr>
<td>69 – 60</td>
</tr>
<tr>
<td>59 – 50</td>
</tr>
<tr>
<td>49 – 40</td>
</tr>
<tr>
<td>Below 40</td>
</tr>
<tr>
<td>Absent</td>
</tr>
<tr>
<td>Authorized Break of Study</td>
</tr>
</tbody>
</table>

14.2 A student is deemed to have passed and acquired to correspondent credits in particular course if s/he obtains any one of the following grades: “S”, “A+”, “A”, “B+”, “B”, “C”.

14.3 A student obtaining Grade F shall be considered Failed and will be required to reappear in the examination.

14.4 For non credit courses, ‘Satisfactory’ or “Not Satisfactory” is indicated instead of the letter grade and this will not be counted for the computation of SGPA/CGPA.

14.5 “SA” denotes shortage of attendance (as per item 11) and hence prevention from writing Semester End Examination.

14.6 “W” denotes withdrawal from the exam for the particular course.

14.7 At the end of each semester, the institute issues grade sheet indicating the SGPA and CGPA of the student. However, grade sheet will not be issued to the student if s/he has any outstanding dues.

15.0 COMPUTATION OF SGPA AND CGPA

The UGC recommends to compute the Semester Grade Point Average (SGPA) and Cumulative Grade Point Average (CGPA). The credit points earned by a student are used for calculating the Semester Grade Point Average (SGPA) and the Cumulative Grade Point Average (CGPA), both of which are important performance indices of the student. SGPA is equal to the sum of all the total points earned by the student in a given semester divided by the number of credits registered by the student in that semester. CGPA gives the sum of all the total points earned in all the
previous semesters and the current semester divided by the number of credits registered in all these semesters. Thus,

\[
SGPA = \frac{\sum_{i=1}^{n} (C_i \times G_i)}{\sum_{i=1}^{n} C_i}
\]

Where, \(C_i\) is the number of credits of the \(i^{th}\) course and \(G_i\) is the grade point scored by the student in the \(i^{th}\) course and \(n\) represent the number of courses in which a student is registered in the concerned semester.

\[
CGPA = \frac{\sum_{j=1}^{m} (C_j \times S_j)}{\sum_{j=1}^{m} C_j}
\]

Where, \(S_j\) is the SGPA of the \(j^{th}\) semester and \(C_j\) is the total number of credits upto the semester and \(m\) represent the number of semesters completed in which a student registered upto the semester.

The SGPA and CGPA shall be rounded off to 2 decimal points and reported in the transcripts.

16.0 ILLUSTRATION OF COMPUTATION OF SGPA AND CGPA

16.1 Illustration for SGPA

<table>
<thead>
<tr>
<th>Course Name</th>
<th>Course Credits</th>
<th>Grade letter</th>
<th>Grade point</th>
<th>Credit Point (Credit x Grade)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course 1</td>
<td>3</td>
<td>A</td>
<td>8</td>
<td>(3 \times 8 = 24)</td>
</tr>
<tr>
<td>Course 2</td>
<td>4</td>
<td>B+</td>
<td>7</td>
<td>(4 \times 7 = 28)</td>
</tr>
<tr>
<td>Course 3</td>
<td>3</td>
<td>B</td>
<td>6</td>
<td>(3 \times 6 = 18)</td>
</tr>
<tr>
<td>Course 4</td>
<td>3</td>
<td>S</td>
<td>10</td>
<td>(3 \times 10 = 30)</td>
</tr>
<tr>
<td>Course 5</td>
<td>3</td>
<td>C</td>
<td>5</td>
<td>(3 \times 5 = 15)</td>
</tr>
<tr>
<td>Course 6</td>
<td>4</td>
<td>B</td>
<td>6</td>
<td>(4 \times 6 = 24)</td>
</tr>
</tbody>
</table>

\[20\] \[139\]

Thus, \(SGPA = \frac{139}{20} = 6.95\)

16.2 Illustration for CGPA

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Semester 2</th>
<th>Semester 3</th>
<th>Semester 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit: 20</td>
<td>Credit: 22</td>
<td>Credit: 25</td>
<td>Credit: 26</td>
</tr>
<tr>
<td>SGPA: 6.9</td>
<td>SGPA: 7.8</td>
<td>SGPA: 5.6</td>
<td>SGPA: 6.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 5</th>
<th>Semester 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit: 26</td>
<td>Credit: 25</td>
</tr>
<tr>
<td>SGPA: 6.3</td>
<td>SGPA: 8.0</td>
</tr>
</tbody>
</table>

\[\frac{20 \times 6.9 + 22 \times 7.8 + 25 \times 5.6 + 26 \times 6.0 + 26 \times 6.3 + 25 \times 8.0}{144} = 6.73\]

17.0 PHOTOCOPY / RE VALUATION

A student, who seeks the re-valuation of the answer script, is directed to apply for the photocopy of his/her semester examination answer paper(s) in the theory course(s), within 2 working days from the declaration of results in the prescribed format to the Controller of Examinations through
the Head of the department. On receiving the photocopy, the student can consult with a competent member of faculty and seek the opinion for revaluation. Based on the recommendations, the student can register for the revaluation with prescribed fee. The Controller of Examinations shall arrange for the revaluation and declare the results. Revaluation is not permitted to the courses other than theory courses.

18.0 **PROMOTION POLICIES**

The following academic requirements have to be satisfied in addition to the attendance requirements mentioned in item no. 11.

18.1 **For students admitted into B.Tech (Regular) program**

18.1.1 A student will not be promoted from II semester to III semester unless s/he fulfills the academic requirement of securing 50% of the total credits (rounded to the next lowest integer) from I and II semester examinations, whether the candidate takes the examination(s) or not.

18.1.2 A student will not be promoted from IV semester to V semester unless s/he fulfills the academic requirement of securing 50% of the total credits (rounded to the next lowest integer) up to III semester or 50% of the total credits (rounded to the next lowest integer) up to IV semester, from all the examinations, whether the candidate takes the examination(s) or not.

18.1.3 A student shall be promoted from VI semester to VII semester only if s/he fulfills the academic requirements of securing 50% of the total credits (rounded to the next lowest integer) up to V semester or 50% of the total credits (rounded to the next lowest integer) up to VI semester from all the examinations, whether the candidate takes the examination(s) or not.

18.1.4 A student shall register for all the 160 credits and earn all the 160 credits. Marks obtained in all the 160 credits shall be considered for the award of the Grade.

18.2 **For students admitted into B.Tech (lateral entry students)**

18.2.1 A student will not be promoted from IV semester to V semester unless s/he fulfills the academic requirement of securing 50% of the total credits (rounded to the next lowest integer) up to IV semester, from all the examinations, whether the candidate takes the examination(s) or not.

18.2.2 A student shall be promoted from VI semester to VII semester only if s/he fulfills the academic requirements of securing 50% of the total credits (rounded to the next lowest integer) up to V semester or 50% of the total credits (rounded to the next lowest integer) up to VI semester from all the examinations, whether the candidate takes the examination(s) or not.

18.2.3 A student shall register for all the 123 credits and earn all the 123 credits. Marks obtained in all the 123 credits shall be considered for the award of the Grade.

19.0 **GRADUATION REQUIREMENTS**

The following academic requirements shall be met for the award of the B.Tech degree.

19.1 Student shall register and acquire minimum attendance in all courses and secure 160 credits for regular program and 123 credits for lateral entry program.

19.2 A student of a regular program, who fails to earn 160 credits within eight consecutive academic years from the year of his/her admission with a minimum CGPA of 4.0, shall forfeit his/her degree and his/her admission stands cancelled.

19.3 A student of a lateral entry program who fails to earn 123 credits within six consecutive academic years from the year of his/her admission with a minimum CGPA of 4.0, shall forfeit his/her degree and his/her admission stands cancelled.
20.0 BETTERMENT OF MARKS IN THE COURSES ALREADY PASSED
Students who clear all the courses in their first attempt and wish to improve their CGPA shall register and appear for betterment of marks for one course of any theory courses within a period of subsequent two semesters. The improved marks shall be considered for classification / distinction but not for ranking. If there is no improvement, there shall not be any change in the original marks already awarded.

21.0 AWARD OF DEGREE

21.1 Classification of degree will be as follows:

<table>
<thead>
<tr>
<th>CGPA ≥ 7.5</th>
<th>CGPA ≥ 6.5 and < 7.5</th>
<th>CGPA ≥ 5.0 and < 6.5</th>
<th>CGPA ≥ 4.0 and < 5.0</th>
<th>CGPA < 4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Class with Distinction</td>
<td>First Class</td>
<td>Second Class</td>
<td>Pass Class</td>
<td>Fail</td>
</tr>
</tbody>
</table>

21.2 In order to extend the benefit to the students with one/two backlogs after either VI semester or VIII semester, GRAFTING option is provided to the students enabling their placements and fulfilling graduation requirements. Following are the guidelines for the Grafting:

a. Grafting will be done among the courses within the semester shall draw a maximum of 7 marks from the any one of the cleared courses in the semester and will be grafted to the failed course in the same semester.

b. Students shall be given a choice of grafting only once in the 4 years program, either after VI semester (Option #1) or after VIII semester (Option #2).

c. Option#1: Applicable to students who have maximum of TWO theory courses in V and / or VI semesters.

Option#2: Applicable to students who have maximum of TWO theory courses in VII and / or VIII semesters.

d. Eligibility for grafting:

i. Prior to the conduct of the supplementary examination after the declaration of VI or VIII semester results.

ii. S/he must appear in all regular or supplementary examinations as per the provisions laid down in regulations for the courses s/he appeals for grafting.

iii. The marks obtained by her/him in latest attempt shall be taken into account for grafting of marks in the failed course(s).

21.3 Student, who clears all the courses upto VII semester, shall have a chance to appear for Quick Supplementary Examination to clear the failed courses of VIII semester.

21.4 By the end of VI semester, all the students (regular and lateral entry students) shall complete one of the audit course and mandatory course with acceptable performance.

21.5 In case, a student takes more than one attempt in clearing a course, the final marks secured shall be indicated by * mark in the grade sheet.

All the candidates who register for the semester end examination will be issued grade sheet by the institute. Apart from the semester wise grade sheet, the institute will issue the provisional certificate and consolidated grade sheet subject to the fulfillment of all the academic requirements.
B.TECH WITH HONOURS OR ADDITIONAL MINORS IN ENGINEERING

Students acquiring 160 credits are eligible to get B.Tech degree in Engineering. A student will be eligible to get B.Tech degree with Honours or additional Minors in Engineering, if s/he completes an additional 20 credits (3/4 credits per course). These could be acquired through MOOCs from SWAYAM / NPTEL / edX / Coursera / Udacity /PurdueNext / Khan Academy / QEEE etc. The list for MOOCs will be a dynamic one, as new courses are added from time to time. Few essential skill sets required for employability are also identified year wise. Students interested in doing MOOC courses shall register the course title at their department office at the start of the semester against the courses that are announced by the department. Any expense incurred for the MOOC course / summer program should be met by the students.

Only students having no credit arrears and a CGPA of 7.5 or above at the end of the fourth semester are eligible to register for B.Tech (Honours / Minor). After registering for the B.Tech (Honours / Minor) program, if a student fails in any course, s/he will not be eligible for B.Tech (Honours / Minor).

Every Department to develop and submit a Honours / Minors – courses list of 5 - 6 theory courses.

Honours Certificate for Vertical in his/her OWN Branch for Research orientation; Minor in any OTHER branch for Improving Employability.

For the MOOCs platforms, where examination or assessment is absent (like SWAYAM) or where certification is costly (like Coursera or edX), faculty members of the institute prepare the examination question papers, for the courses undertaken by the students of respective Institutes, so that examinations Control Office (ECO) can conduct examination for the course. There shall be one Continuous Internal Examination (Quiz exam for 30 marks) after 8 weeks of the commencement of the course and semester end examination (Descriptive exam for 70 marks) shall be done along with the other regular courses.

A student can enroll for both Minor & Honours or for two Minors. The final grade sheet will only show the basic CGPA corresponding to the minimum requirement for the degree. The Minors/Honours will be indicated by a separate CGPA. The additional courses taken will also find separate mention in the grade sheet.

If a student drops (or terminated) from the Minor/Honours program, they cannot convert the earned credits into free or core electives; they will remain extra. These additional courses will find mention in the grade sheet (but not in the degree certificate). In such cases, the student may choose between the actual grade or a “Pass (P)” grade and also choose to omit the mention of the course as for the following:

- All the courses done under the dropped Minor/Honours will be shown in the grade sheet
- None of the courses done under the dropped Minor/Honours will be shown in the grade sheet.

Honours will be reflected in the degree certificate as “B.Tech (honours) in XYZ Engineering”. Similarly, Minor as “B.Tech in XYZ Engineering with Minor in ABC”. If a student has done both honours & minor, it will be acknowledged as “B.Tech (honours) in XYZ Engineering with Minor in ABC”. And two minors will be reflected as “B.Tech in XYZ Engineering with Minor in ABC and Minor in DEF”.

22.1. B.Tech with Honours

The total of 20 credits required to be attained for B.Tech Honours degree are distributed
from V semester to VII semester in the following way:

For V semester : 4 – 8 credits
For VI semester : 4 – 8 credits
For VII semester : 4 – 8 credits

Following are the details of such Honours which include some of the most interesting areas in the profession today:

<table>
<thead>
<tr>
<th>S. No</th>
<th>Department</th>
<th>Honours scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aeronautical Engineering</td>
<td>Aerospace Engineering / Space Science etc.</td>
</tr>
<tr>
<td>2</td>
<td>Computer Science and Engineering / Information Technology</td>
<td>Big data and Analytics / Cyber Physical Systems, Information Security / Cognitive Science / Internet of Things (IoT) etc.</td>
</tr>
<tr>
<td>4</td>
<td>Electrical and Electronics Engineering</td>
<td>Renewable Energy systems / Energy and Sustainability / IoT Applications in Green Energy Systems etc.</td>
</tr>
<tr>
<td>5</td>
<td>Mechanical Engineering</td>
<td>Industrial Automation and Robotics / Manufacturing Sciences and Computation Techniques etc.</td>
</tr>
<tr>
<td>6</td>
<td>Civil Engineering</td>
<td>Structural Engineering / Environmental Engineering etc.</td>
</tr>
</tbody>
</table>

22.2 B.Tech with additional Minor in Engineering

Every Department to develop and submit Minor Courses List of 5 - 6 Theory courses. Student from any department is eligible to apply for Minor from any other department. The total of 20 credits to complete the B.Tech (Minor) program by registering for MOOC courses each having a minimum of 3/4 credits offered by reputed institutions / organization with the approval of the department. Registration of the student for B.Tech (Minor), is from V Semester to VII Semester of the program in the following way:

For V semester : 4 – 8 credits
For VI semester : 4 – 8 credits
For VII semester : 4 – 8 credits

Only students having no credit arrears and a CGPA of 7.5 or above at the end of the fourth semester are eligible to register for B.Tech (Minor). After registering for the B.Tech (Minor) program, if a student fails in any course, s/he will not be eligible for B.Tech (Minor).

Every student shall also have the option to do a minor in engineering. A major is a primary focus of study and a minor is a secondary focus of study. The minor has to be a subject offered by a department other than the department that offers the major of the student or it can be a different major offered by the same department. For example, a student with the declared major in Computer Science and Engineering (CSE) may opt to do a minor in Physics; in which case, the student shall receive the degree B.Tech, Computer Science and Engineering with a minor in Physics. A student can do Majors in chosen filed as per the career goal, and a minor may be chosen to enhance the major thus adding the diversity, breadth and enhanced skills in the field.

Advantages of Minor in Engineering:

The minors mentioned above are having lots of advantages and a few are listed below:

1. To apply the inter-disciplinary knowledge gained through a Major (Stream) + Minor.
2. To enable students to pursue allied academic interest in contemporary areas.
3. To provide an academic mechanism for fulfilling multidisciplinary demands of industries.
4. To provide effective yet flexible options for students to achieve basic to intermediate level competence in the Minor area.
5. Provides an opportunity to students to become entrepreneurs and leaders by taking business/management minor.
6. Combination in the diverse fields of engineering e.g., CSE (Major) + Electronics (Minor) combination increases placement prospects in chip designing companies.
7. Provides an opportunity to Applicants to pursue higher studies in an inter-disciplinary field of study.
8. Provides opportunity to the Applicants to pursue interdisciplinary research.
9. To increase the overall scope of the undergraduate degrees.

Following are the details of such Minor / Honours which include some of the most interesting areas in the profession today:

1. Space Science
2. Information Security
3. Data Analytics
4. Cyber Physical Systems
5. Electronic System Design
6. Renewable Energy Sources
7. Energy and Sustainability
8. Industrial Automation and Robotics
9. Aerospace Engineering
10. Manufacturing Sciences and Computation Techniques
11. Structural Engineering
12. Environmental Engineering
13. Internet of Things
14. Computer Science and Engineering
15. Technological Entrepreneurship
16. Materials Engineering
17. Physics (Materials / Nuclear / Optical / Medical)
18. Mathematics (Combinatorics / Logic / Number theory / Dynamical systems and differential equations / Mathematical physics / Statistics and Probability).

23.0 TEMPORARY BREAK OF STUDY FROM THE PROGRAM

23.1 A candidate is normally not permitted to take a break from the study. However, if a candidate intends to temporarily discontinue the program in the middle for valid reasons (such as accident or hospitalization due to prolonged ill health) and to rejoin the program in a later respective semester, s/he shall seek the approval from the Principal in advance. Such application shall be submitted before the last date for payment of examination fee of the semester in question and forwarded through the Head of the Department stating the reasons for such withdrawal together with supporting documents and endorsement of his/her parent/guardian.
23.2 The institute shall examine such an application and if it finds the case to be genuine, it may permit the student to temporarily withdraw from the program. Such permission is accorded only to those who do not have any outstanding dues / demand at the College / University level including tuition fees, any other fees, library materials etc.

23.3 The candidate has to rejoin the program after the break from the commencement of the respective semester as and when it is offered.

23.4 The total period for completion of the program reckoned from the commencement of the semester to which the candidate was first admitted shall not exceed the maximum period specified in clause 19. The maximum period includes the break period.

23.5 If any candidate is detained for any reason, the period of detention shall not be considered as ‘Break of Study’.

24.0 TERMINATION FROM THE PROGRAM
The admission of a student to the program may be terminated and the student is asked to leave the institute in the following circumstances:

a. The student fails to satisfy the requirements of the program within the maximum period stipulated for that program.

b. A student shall not be permitted to study any semester more than three times during the entire program of study.

c. The student fails to satisfy the norms of discipline specified by the institute from time to time.

25.0 WITH-HOLDING OF RESULTS
If the candidate has not paid any dues to the institute / if any case of indiscipline / malpractice is pending against him, the results and the degree of the candidate will be withheld.

26.0 GRADUATION DAY
The institute shall have its own annual Graduation Day for the award of degrees to the students completing the prescribed academic requirements in each case, in consultation with the University and by following the provisions in the Statute. The college shall institute prizes and medals to meritorious students and award them annually at the Graduation Day. This will greatly encourage the students to strive for excellence in their academic work.

27.0 DISCIPLINE
Every student is required to observe discipline and decorum both inside and outside the institute and are expected not to indulge in any activity which will tend to bring down the honour of the institute. If a student indulges in malpractice in any of the theory / practical examination, continuous assessment examinations, he/she shall be liable for punitive action as prescribed by the institute from time to time.

28.0 GRIEVANCE REDRESSAL COMMITTEE
The institute shall form a Grievance Redressal Committee for each course in each department with the Course Teacher and the HOD as the members. This Committee shall solve all grievances related to the course under consideration.

29.0 TRANSITORY REGULATIONS
A candidate, who is detained or has discontinued a semester, on readmission shall be required to do all the courses in the curriculum prescribed for the batch of students in which the student joins
subsequently. However, exemption will be given to those candidates who have already passed such courses in the earlier semester(s) he was originally admitted into and substitute subjects are offered in place of them as decided by the Board of Studies. However, the decision of the Board of Studies will be final.

a) **Four Year B.Tech Regular course:**

A student who is following Jawaharlal Nehru Technological University (JNTUH) curriculum and detained due to the shortage of attendance at the end of the first semester shall join the autonomous batch of first semester. Such students shall study all the courses prescribed for the batch in which the student joins and considered on par with regular candidates of Autonomous stream and will be governed by the autonomous regulations.

A student who is following JNTUH curriculum, detained due to lack of credits or shortage of attendance at the end of the second semester or at the subsequent semesters shall join with the autonomous batch in the appropriate semester. Such candidates shall be required to pass in all the courses in the program prescribed by the Board of Studies concerned for that batch of students from that semester onwards to be eligible for the award of degree. However, exemption will be given in the courses of the semester(s) of the batch which he had passed earlier and substitute courses will be offered in place of them as decided by the Board of Studies. The student has to clear all his backlog courses up to previous semester by appearing for the supplementary examinations conducted by JNTUH for the award of degree. The total number of credits to be secured for the award of the degree will be sum of the credits up to previous semester under JNTUH regulations and the credits prescribed for the semester in which a candidate seeks readmission and subsequent semesters under the autonomous stream. The class will be awarded based on the academic performance of a student in the autonomous pattern.

b) **Three Year B.Tech program under Lateral Entry Scheme:**

A student who is following JNTUH curriculum and detained due to the shortage of attendance at the end of the second semester of second year shall join the autonomous batch of third semester. Such students shall study all the courses prescribed for the batch in which the student joins and considered on par with Lateral Entry regular candidates of Autonomous stream and will be governed by the autonomous regulations.

A student who is following JNTUH curriculum, if detained due to lack of credits or shortage of attendance at the end of the second semester of second year or at the subsequent semesters shall join with the autonomous batch in the appropriate semester. Such candidates shall be required to pass in all the courses in the program prescribed by the Board of Studies concerned for that batch of students from that semester onwards to be eligible for the award of degree. However, exemption will be given in the courses of the semester(s) of the batch which he had passed earlier and substitute courses are offered in place of them as decided by the Board of Studies. The student has to clear all his backlog courses up to previous semester by appearing for the supplementary examinations conducted by JNTUH for the award of degree. The total number of credits to be secured for the award of the degree will be sum of the credits up to previous semester under JNTUH regulations and the credits prescribed for the semester in which a candidate seeks readmission and subsequent semesters under the autonomous status. The class will be awarded based on the academic performance of a student in the autonomous pattern.

c) **Transfer candidates (from non-autonomous college affiliated to JNTUH):**

A student who is following JNTUH curriculum, transferred from other college to this institute in third semester or subsequent semesters shall join with the autonomous batch in the
appropriate semester. Such candidates shall be required to pass in all the courses in the program prescribed by the Board of Studies concerned for that batch of students from that semester onwards to be eligible for the award of degree. However, exemption will be given in the courses of the semester(s) of the batch which he had passed earlier and substitute courses are offered in their place as decided by the Board of Studies. The student has to clear all his backlog courses up to previous semester by appearing for the supplementary examinations conducted by JNTUH for the award of degree. The total number of credits to be secured for the award of the degree will be the sum of the credits up to the previous semester under JNTUH regulations and the credits prescribed for the semester in which a candidate joined after transfer and subsequent semesters under the autonomous status. The class will be awarded based on the academic performance of a student in the autonomous pattern.

d) Transfer candidates (from an autonomous college affiliated to JNTUH):

A student who has secured the required credits up to previous semesters as per the regulations of other autonomous institutions shall also be permitted to be transferred to this institute. A student who is transferred from the other autonomous colleges to this institute in third semester or subsequent semesters shall join with the autonomous batch in the appropriate semester. Such candidates shall be required to pass in all the courses in the program prescribed by the Board of Studies concerned for that batch of students from that semester onwards to be eligible for the award of degree. However, exemption will be given in the courses of the semester(s) of the batch which he had passed earlier and substitute subjects are offered in their place as decided by the Board of Studies. The total number of credits to be secured for the award of the degree will be the sum of the credits up to previous semester as per the regulations of the college from which he is transferred and the credits prescribed for the semester in which a candidate joined after transfer and subsequent semesters under the autonomous status. The class will be awarded based on the academic performance of a student in the autonomous pattern.

e) Readmission from IARE-R16 to IARE-R18 regulations

A student took admission in IARE-R16 Regulations, detained due to lack of required number of credits or percentage of attendance at the end of any semester is permitted to take re-admission at appropriate level under any regulations prevailing in the institute subject to the following rules and regulations.

1. Student shall pass all the courses in the earlier scheme of regulations (IARE - R16). However, in case of having backlog courses, they shall be cleared by appearing for supplementary examinations conducted under IARE - R16 regulations from time to time.
2. After rejoining, the student is required to study the courses as prescribed in the new regulations for the re-admitted program at that level and thereafter.
3. If the student has already passed any course(s) of readmitted program in the earlier regulation / semester of study, such courses are exempted in the new scheme to appear for the course(s).
4. The courses that are not done in the earlier regulations / semester as compared with readmitted program need to be cleared after readmission by appearing for the examinations conducted time to time under the new regulations.
5. In general, after transition, course composition and number of credits / semester shall be balanced between earlier and new regulations on case to case basis.
6. In case, the students who do not have option of acquiring required credits with the existing courses offered as per the new curriculum, credit balance can be achieved by clearing the additional courses offered by the respective departments (approved in Academic Council meeting). The additional courses that are offered can be of theory or laboratory courses and shall be offered during semester.

7. Students re-joined in III semester shall be treated on par with “Lateral Entry” students for credits and graduation requirements. However, the student shall clear all the courses in B.Tech I Semester and B.Tech II Semester as per IARE-R16 regulations.

30.0 REVISION OF REGULATIONS AND CURRICULUM

The Institute from time to time may revise, amend or change the regulations, scheme of examinations and syllabi if found necessary and on approval by the Academic Council and the Governing Body and shall be binding on the students, faculty, staff, all authorities of the Institute and others concerned.

FAILURE TO READ AND UNDERSTAND THE REGULATIONS IS NOT AN EXCUSE
MECHANICAL ENGINEERING
COURSE STRUCTURE
I SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Subject Area</th>
<th>Category</th>
<th>Periods per week</th>
<th>Credits</th>
<th>Scheme of Examination Max. Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHSB02</td>
<td>Linear Algebra and Calculus</td>
<td>BSC</td>
<td>Foundation</td>
<td>3 1 0</td>
<td>4</td>
<td>30 70 100</td>
</tr>
<tr>
<td>AHSB04</td>
<td>Waves and Optics</td>
<td>BSC</td>
<td>Foundation</td>
<td>3 1 0</td>
<td>4</td>
<td>30 70 100</td>
</tr>
<tr>
<td>ACSB01</td>
<td>Programming for Problem Solving</td>
<td>ESC</td>
<td>Foundation</td>
<td>3 0 0</td>
<td>3</td>
<td>30 70 100</td>
</tr>
</tbody>
</table>

PRACTICAL

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Subject Area</th>
<th>Category</th>
<th>Periods per week</th>
<th>Credits</th>
<th>Scheme of Examination Max. Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHSB10</td>
<td>Engineering Physics Laboratory</td>
<td>BSC</td>
<td>Foundation</td>
<td>0 0 3</td>
<td>1.5</td>
<td>30 70 100</td>
</tr>
<tr>
<td>ACSB02</td>
<td>Programming for Problem Solving Laboratory</td>
<td>ESC</td>
<td>Foundation</td>
<td>0 0 4</td>
<td>2</td>
<td>30 70 100</td>
</tr>
<tr>
<td>AMEB01</td>
<td>Workshop / Manufacturing Practices Laboratory</td>
<td>ESC</td>
<td>Foundation</td>
<td>0 0 3</td>
<td>1.5</td>
<td>30 70 100</td>
</tr>
</tbody>
</table>

Total: 09 02 10 16 180 420 600

II SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Subject Area</th>
<th>Category</th>
<th>Periods per week</th>
<th>Credits</th>
<th>Scheme of Examination Max. Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHSB01</td>
<td>English</td>
<td>HSMC</td>
<td>Foundation</td>
<td>2 0 0</td>
<td>2</td>
<td>30 70 100</td>
</tr>
<tr>
<td>AHSB11</td>
<td>Mathematical Transform Techniques</td>
<td>BSC</td>
<td>Foundation</td>
<td>3 1 0</td>
<td>4</td>
<td>30 70 100</td>
</tr>
<tr>
<td>AHSB03</td>
<td>Engineering Chemistry</td>
<td>BSC</td>
<td>Foundation</td>
<td>3 1 0</td>
<td>4</td>
<td>30 70 100</td>
</tr>
<tr>
<td>AEEB04</td>
<td>Basic Electrical and Electronics Engineering</td>
<td>ESC</td>
<td>Foundation</td>
<td>3 1 0</td>
<td>4</td>
<td>30 70 100</td>
</tr>
</tbody>
</table>

PRACTICAL

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Subject Area</th>
<th>Category</th>
<th>Periods per week</th>
<th>Credits</th>
<th>Scheme of Examination Max. Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHSB08</td>
<td>English Language and Communication Skills Laboratory</td>
<td>HSMC</td>
<td>Foundation</td>
<td>0 0 2</td>
<td>1</td>
<td>30 70 100</td>
</tr>
<tr>
<td>AHSB09</td>
<td>Engineering Chemistry Laboratory</td>
<td>BSC</td>
<td>Foundation</td>
<td>0 0 3</td>
<td>1.5</td>
<td>30 70 100</td>
</tr>
<tr>
<td>AMEB02</td>
<td>Engineering Graphics and Design Laboratory</td>
<td>ESC</td>
<td>Foundation</td>
<td>1 0 4</td>
<td>3</td>
<td>30 70 100</td>
</tr>
<tr>
<td>AEEB08</td>
<td>Basic Electrical and Electronics Engineering Laboratory</td>
<td>ESC</td>
<td>Foundation</td>
<td>0 0 3</td>
<td>1.5</td>
<td>30 70 100</td>
</tr>
</tbody>
</table>

Total: 12 03 12 21 240 560 800
III SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Subject Area</th>
<th>Category</th>
<th>Periods per week</th>
<th>Credits</th>
<th>Scheme of Examination</th>
<th>Max. Marks</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMEB03</td>
<td>Engineering Mechanics</td>
<td>ESC</td>
<td>Foundation</td>
<td>3 1 0</td>
<td>4</td>
<td>30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMEB04</td>
<td>Thermodynamics</td>
<td>PCC</td>
<td>Core</td>
<td>3 1 0</td>
<td>4</td>
<td>30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMEB05</td>
<td>Manufacturing Processes</td>
<td>PCC</td>
<td>Core</td>
<td>3 0 0</td>
<td>3</td>
<td>30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AHSB12</td>
<td>Probability and Statistics</td>
<td>BSC</td>
<td>Foundation</td>
<td>3 1 0</td>
<td>4</td>
<td>30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACSB03</td>
<td>Data Structures</td>
<td>PCC</td>
<td>Core</td>
<td>3 0 0</td>
<td>3</td>
<td>30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMEB06</td>
<td>Manufacturing Processes</td>
<td>PCC</td>
<td>Core</td>
<td>0 0 2</td>
<td>1</td>
<td>30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMEB07</td>
<td>Machine Drawing through CAD</td>
<td>PCC</td>
<td>Core</td>
<td>0 0 3</td>
<td>1.5</td>
<td>30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACSB05</td>
<td>Data Structures</td>
<td>PCC</td>
<td>Core</td>
<td>0 0 3</td>
<td>1.5</td>
<td>30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15 03 08</td>
<td>22</td>
<td>240 560 800</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IV SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Subject Area</th>
<th>Category</th>
<th>Periods per week</th>
<th>Credits</th>
<th>Scheme of Examination</th>
<th>Max. Marks</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMEB08</td>
<td>Fluid Mechanics and Machines</td>
<td>PCC</td>
<td>Core</td>
<td>3 1 0</td>
<td>4</td>
<td>30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMEB09</td>
<td>Applied Thermodynamics - I</td>
<td>PCC</td>
<td>Core</td>
<td>3 1 0</td>
<td>4</td>
<td>30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMEB10</td>
<td>Kinematics of Machines</td>
<td>PCC</td>
<td>Core</td>
<td>3 1 0</td>
<td>4</td>
<td>30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMEB11</td>
<td>Materials and Mechanics of Solids</td>
<td>PCC</td>
<td>Core</td>
<td>3 1 0</td>
<td>4</td>
<td>30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMEB12</td>
<td>Optimization Techniques</td>
<td>PCC</td>
<td>Core</td>
<td>3 0 0</td>
<td>3</td>
<td>30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AHSB07</td>
<td>Environmental Science</td>
<td>MC-II</td>
<td>---</td>
<td>0 0 0</td>
<td>0</td>
<td>30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMEB13</td>
<td>Fluid Machinery and I.C Engines Laboratory</td>
<td>PCC</td>
<td>Core</td>
<td>0 0 2</td>
<td>1</td>
<td>30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMEB14</td>
<td>Materials and Mechanics of Solids</td>
<td>PCC</td>
<td>Core</td>
<td>0 0 2</td>
<td>1</td>
<td>30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMEB15</td>
<td>Optimization Techniques</td>
<td>PCC</td>
<td>Core</td>
<td>0 0 2</td>
<td>1</td>
<td>30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>15 04 06</td>
<td>22</td>
<td>270 630 900</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
V SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Subject Area</th>
<th>Category</th>
<th>Periods per week</th>
<th>Credits</th>
<th>Scheme of Examination</th>
<th>Max. Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>CIA</td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMEB16</td>
<td>Manufacturing Technology</td>
<td>PCC</td>
<td>Core</td>
<td>3 0 0 3</td>
<td>30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMEB17</td>
<td>Dynamics of Machinery</td>
<td>PCC</td>
<td>Core</td>
<td>2 1 0 3</td>
<td>30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMEB18</td>
<td>Applied Thermodynamics-II</td>
<td>PCC</td>
<td>Core</td>
<td>2 1 0 3</td>
<td>30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AHSB14</td>
<td>Business Economics and Financial Analysis</td>
<td>PCC</td>
<td>Core</td>
<td>3 0 0 3</td>
<td>30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Professional Elective - I</td>
<td>PEC</td>
<td>Elective</td>
<td>3 0 0 3</td>
<td>30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Open Elective - I</td>
<td>OEC</td>
<td>Elective</td>
<td>3 0 0 3</td>
<td>30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AHSB15</td>
<td>Project Based Learning (Prototype / Design Building)</td>
<td>PCC</td>
<td>Core</td>
<td>2 0 0 2</td>
<td>30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMEB19</td>
<td>Manufacturing Technology Laboratory</td>
<td>PCC</td>
<td>Core</td>
<td>0 0 2 1</td>
<td>30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMEB20</td>
<td>Theory of Machines Laboratory</td>
<td>PCC</td>
<td>Core</td>
<td>0 0 2 1</td>
<td>30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18 02 04 22</td>
<td>270 630 900</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VI SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Subject Area</th>
<th>Category</th>
<th>Periods per week</th>
<th>Credits</th>
<th>Scheme of Examination</th>
<th>Max. Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>CIA</td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMEB21</td>
<td>Heat Transfer</td>
<td>PCC</td>
<td>Core</td>
<td>3 0 0 3</td>
<td>30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMEB22</td>
<td>Finite Element Methods</td>
<td>PCC</td>
<td>Core</td>
<td>2 1 0 3</td>
<td>30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMEB23</td>
<td>Design of Machine Elements</td>
<td>PCC</td>
<td>Core</td>
<td>2 1 0 3</td>
<td>30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Professional Elective - II</td>
<td>PEC</td>
<td>Elective</td>
<td>3 0 0 3</td>
<td>30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Professional Elective - III</td>
<td>PEC</td>
<td>Elective</td>
<td>3 0 0 3</td>
<td>30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Open Elective - II</td>
<td>OEC</td>
<td>Elective</td>
<td>3 0 0 3</td>
<td>30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AHSB16</td>
<td>Research Based Learning (Fabrication / Model Development)</td>
<td>PCC</td>
<td>Core</td>
<td>2 0 0 2</td>
<td>30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMEB24</td>
<td>Heat Transfer Laboratory</td>
<td>PCC</td>
<td>Core</td>
<td>0 0 2 1</td>
<td>30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMEB25</td>
<td>Fluid Thermal Modeling and Simulation Laboratory</td>
<td>PCC</td>
<td>Core</td>
<td>0 0 2 1</td>
<td>30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18 02 04 22</td>
<td>270 630 900</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
VII SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Subject Area</th>
<th>Category</th>
<th>Periods per week</th>
<th>Credits</th>
<th>Scheme of Examination</th>
<th>Max. Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
<td>CIA</td>
<td>SEE</td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMEB26</td>
<td>CAD/CAM</td>
<td>PCC</td>
<td>Core</td>
<td>3 0 0</td>
<td>3</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>AMEB27</td>
<td>Instrumentation and control</td>
<td>PCC</td>
<td>Core</td>
<td>3 0 0</td>
<td>3</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Professional Elective –IV</td>
<td>PEC</td>
<td>Elective</td>
<td>3 0 0</td>
<td>3</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Professional Elective - V</td>
<td>PEC</td>
<td>Elective</td>
<td>3 0 0</td>
<td>3</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Open Elective - III</td>
<td>OEC</td>
<td>Elective</td>
<td>3 0 0</td>
<td>3</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>AHSB17</td>
<td>Essence of Indian Traditional</td>
<td>MCC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMEB28</td>
<td>CAD/CAM Laboratory</td>
<td>PCC</td>
<td>Core</td>
<td>0 0 3</td>
<td>1.5</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>AMEB29</td>
<td>Instrumentation control Systems</td>
<td>PCC</td>
<td>Core</td>
<td>0 0 3</td>
<td>1.5</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>and PDP Laboratory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMEB58</td>
<td>Project work – I</td>
<td>PROJ</td>
<td>Project</td>
<td>0 0 10</td>
<td>5</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>15 00 16</td>
<td>23</td>
<td>270</td>
<td>630</td>
</tr>
</tbody>
</table>

VIII SEMESTER

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Subject Area</th>
<th>Category</th>
<th>Periods per week</th>
<th>Credits</th>
<th>Scheme of Examination</th>
<th>Max. Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td></td>
<td>CIA</td>
<td>SEE</td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Professional Elective -VI</td>
<td>PCC</td>
<td>Core</td>
<td>3 0 0</td>
<td>3</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Open Elective - IV</td>
<td>OEC</td>
<td>Elective</td>
<td>3 0 0</td>
<td>3</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>PRACTICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMEB59</td>
<td>Project Work – II / Full</td>
<td>PROJ</td>
<td>Project</td>
<td>0 0 12</td>
<td>6</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Semester Internship</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>06 00 12</td>
<td>12</td>
<td>90</td>
<td>210</td>
</tr>
</tbody>
</table>
PROFESSIONAL ELECTIVES COURSES

PROFESSIONAL ELECTIVE I: THERMAL ENGINEERING

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB30</td>
<td>Turbo Machines</td>
</tr>
<tr>
<td>AMEB31</td>
<td>Refrigeration and Air-Conditioning</td>
</tr>
<tr>
<td>AMEB32</td>
<td>Power Plant Engineering</td>
</tr>
<tr>
<td>AMEB33</td>
<td>Automobile Engineering</td>
</tr>
</tbody>
</table>

PROFESSIONAL ELECTIVE II: FLUID DYNAMICS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB34</td>
<td>Gas Dynamics</td>
</tr>
<tr>
<td>AMEB35</td>
<td>Computational Fluid Dynamics</td>
</tr>
<tr>
<td>AMEB36</td>
<td>Gas Turbines and Jet Propulsion Technology</td>
</tr>
<tr>
<td>AMEB37</td>
<td>Boundary Layer Theory</td>
</tr>
</tbody>
</table>

PROFESSIONAL ELECTIVE III: ENGINEERING MATERIALS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB38</td>
<td>Tribology</td>
</tr>
<tr>
<td>AMEB39</td>
<td>Additive Manufacturing Processes</td>
</tr>
<tr>
<td>AMEB40</td>
<td>Composite Materials</td>
</tr>
<tr>
<td>AMEB41</td>
<td>Nano Materials</td>
</tr>
</tbody>
</table>

PROFESSIONAL ELECTIVE IV: MACHINE DESIGN

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB42</td>
<td>Advanced Machine Design</td>
</tr>
<tr>
<td>AMEB43</td>
<td>Mechanical Vibrations</td>
</tr>
<tr>
<td>AMEB44</td>
<td>Tool Design</td>
</tr>
<tr>
<td>AMEB45</td>
<td>Experimental Stress Analysis</td>
</tr>
</tbody>
</table>

PROFESSIONAL ELECTIVE V: AUTOMATION AND MECHATRONICS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB46</td>
<td>Precision Engineering</td>
</tr>
<tr>
<td>AMEB47</td>
<td>Mechatronics</td>
</tr>
<tr>
<td>AMEB48</td>
<td>Design for Manufacturing</td>
</tr>
<tr>
<td>AMEB49</td>
<td>Robotics</td>
</tr>
</tbody>
</table>

PROFESSIONAL ELECTIVE VI: PRODUCTION AND INDUSTRIAL MANAGEMENT

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB50</td>
<td>Unconventional Machining Process</td>
</tr>
<tr>
<td>AMEB51</td>
<td>Operation Research</td>
</tr>
<tr>
<td>AMEB52</td>
<td>Production Planning and Control</td>
</tr>
<tr>
<td>AMEB53</td>
<td>Plant Layout and Material Handling</td>
</tr>
</tbody>
</table>
OPEN ELECTIVE - I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAEB53</td>
<td>Flight Control Theory</td>
</tr>
<tr>
<td>AAEB54</td>
<td>Airframe Structural Design</td>
</tr>
<tr>
<td>AMEB54</td>
<td>Mechanical Properties of Materials</td>
</tr>
<tr>
<td>AMEB55</td>
<td>Automation in Manufacturing</td>
</tr>
<tr>
<td>ACEB50</td>
<td>Remote Sensing and GIS</td>
</tr>
<tr>
<td>ACEB51</td>
<td>Project Safety Management</td>
</tr>
</tbody>
</table>

OPEN ELECTIVES – II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACsb32</td>
<td>Computer Architecture</td>
</tr>
<tr>
<td>ACsb33</td>
<td>Analysis of Algorithms and Design</td>
</tr>
<tr>
<td>ACsb34</td>
<td>Relational Database Management Systems</td>
</tr>
<tr>
<td>AITB30</td>
<td>Advanced Data Structures</td>
</tr>
<tr>
<td>AITB31</td>
<td>Data Communications and Networks</td>
</tr>
<tr>
<td>AITB32</td>
<td>Network Security</td>
</tr>
</tbody>
</table>

OPEN ELECTIVE - III

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHSB18</td>
<td>Soft Skills and Interpersonal Communication</td>
</tr>
<tr>
<td>AHSB19</td>
<td>Cyber Law and Ethics</td>
</tr>
<tr>
<td>AHSB20</td>
<td>Economic Policies in India</td>
</tr>
<tr>
<td>AHSB21</td>
<td>Global Warming and Climate Change</td>
</tr>
<tr>
<td>AHSB22</td>
<td>Intellectual Property Rights</td>
</tr>
<tr>
<td>AHSB23</td>
<td>Entrepreneurship</td>
</tr>
</tbody>
</table>

OPEN ELECTIVE - IV

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECB55</td>
<td>Microprocessors and Interfacing</td>
</tr>
<tr>
<td>AECB56</td>
<td>Principles of Communication</td>
</tr>
<tr>
<td>AECB57</td>
<td>Image Processing</td>
</tr>
<tr>
<td>AEEB55</td>
<td>Electrical Engineering Materials</td>
</tr>
<tr>
<td>AEEB56</td>
<td>Non Conventional Energy Sources</td>
</tr>
<tr>
<td>AEEB57</td>
<td>Nanotechnology</td>
</tr>
</tbody>
</table>

MANDATORY COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHSB07</td>
<td>Environmental Science</td>
</tr>
<tr>
<td>AHSB17</td>
<td>Essence of Indian Traditional Knowledge</td>
</tr>
</tbody>
</table>
LINEAR ALGEBRA AND CALCULUS

I Semester: AE / CSE / IT / ECE / EEE / ME / CE

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHSB02</td>
<td>Foundation</td>
<td>L T P C CIA SEE Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 1 - 4 30 70 100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: 45 **Tutorial Classes: 15** **Practical Classes: Nil** **Total Classes: 60**

OBJECTIVES:
The course should enable the students to:

I. Determine rank of a matrix and solve linear differential equations of second order.
II. Determine the characteristic roots and apply double integrals to evaluate area.
III. Apply mean value theorems and apply triple integrals to evaluate volume.
IV. Determine the functional dependence and extremum value of a function.
V. Analyze gradient, divergence, curl and evaluate line, surface, volume integrals over a vector field.

Module-I

THEORY OF MATRICES AND HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS

Classes: 09

THEORY OF MATRICES: Real matrices: Symmetric, skew-symmetric and orthogonal matrices; Complex matrices: Hermitian, Skew-Hermitian and unitary matrices; Elementary row and column transformations; Rank of a matrix: Echelon form and normal form; Inverse by Gauss-Jordan method.

HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS: Linear differential equations of second and higher order with constant coefficients, non-homogeneous term of the type $f(x) = e^{ax}, \sin ax, \cos ax$ and $f(x) = x^n, e^{ax}v(x), xv(x)$; Method of variation of parameters.

Module-II

LINEAR TRANSFORMATIONS AND DOUBLE INTEGRALS

Classes: 09

LINEAR TRANSFORMATIONS: Cayley-Hamilton theorem: Statement, verification, finding inverse and powers of a matrix; Linear dependence and independence of vectors; Eigen values and Eigen vectors of a matrix and Properties (without proof); Diagonalization of matrix by linear transformation.

DOUBLE INTEGRALS: Evaluation of double integrals in Cartesian coordinates and Polar coordinates; Change of order of integration; Area as a double integral; Transformation of coordinate system.

Module-III

FUNCTIONS OF SINGLE VARIABLES AND TRIPLE INTEGRALS

Classes: 09

FUNCTIONS OF SINGLE VARIABLES: Mean value theorems: Rolle’s theorem, Lagrange’s theorem, Cauchy’s theorem-without proof and geometrical interpretation.

TRIPLE INTEGRALS: Evaluation of triple integrals in Cartesian coordinates; volume of a region using triple integration.

Module-IV

FUNCTIONS OF SEVERAL VARIABLES AND EXTREMA OF A FUNCTION

Classes: 09

FUNCTIONS OF SEVERAL VARIABLES: Partial differentiation, functional dependence, Jacobian.

EXTREMA OF A FUNCTION: Maxima and minima of functions of two variables without constraints and with constraints; Method of Lagrange multipliers.
<table>
<thead>
<tr>
<th>Module-V</th>
<th>VECTOR DIFFERENTIAL AND INTEGRAL CALCULUS</th>
<th>Classes: 09</th>
</tr>
</thead>
<tbody>
<tr>
<td>VECTOR DIFFERENTIAL CALCULUS: Scalar and vector point functions; Definitions of Gradient, divergent and curl with examples; Solenoidal and irrotational vector point functions; Scalar potential function.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VECTOR INTEGRAL THEOREMS: Line integral, surface integral and volume integral, Green’s theorem in a plane, Stoke’s theorem and Gauss divergence theorem without proofs.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Text Books:

Reference Books:

Web References:

E-Text Books:

WAVES AND OPTICS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHSB04</td>
<td>Foundation</td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

Contact Classes: 45
Tutorial Classes: 15
Practical Classes: Nil
Total Classes: 60

OBJECTIVES:
The course should enable the students to:

I. Enrich knowledge in principals of quantum mechanics and semiconductors.

II. Correlate principles and applications of lasers and fiber optics.

III. Acquire skills allowing the student to identify and apply formulas of optics and wave physics using course literature.

IV. Develop strong fundamentals of transverse, longitudinal waves and harmonic waves.

MODULE - I QUANTUM MECHANICS
Classes: 08

Introduction to quantum physics, Black body radiation, Planck’s law, Photoelectric effect, Compton effect, De-Broglie’s hypothesis, Wave-particle duality, Davison and Germer experiment, Time-independent Schrodinger equation for wave function, Born interpretation of the wave function, Schrodinger equation for one dimensional problems—particle in a box.

MODULE - II INTRODUCTION TO SOLIDS AND SEMICONDUCTORS
Classes: 10

Bloch’s theorem for particles in a periodic potential, Kronig-Penney model (Qualitative treatment), Origin of energy bands. Types of electronic materials: metals, semiconductors, and insulators; Intrinsic and extrinsic semiconductors, Carrier concentration, Dependence of Fermi level on carrier-concentration and temperature, Carrier generation and recombination, Hall effect.

MODULE - III LASERS AND FIBER OPTICS
Classes: 10

Characteristics of lasers, Spontaneous and stimulated emission of radiation, Metastable state, Population inversion, Lasing action, Ruby laser, He-Ne laser and applications of lasers.

Principle and construction of an optical fiber, Acceptance angle, Numerical aperture, Types of optical fibers (Single mode, multimode, step index, graded index), Attenuation in optical fibers, Optical fiber communication system with block diagram.

MODULE - IV LIGHT AND OPTICS
Classes: 07

Huygens’ principle, Superposition of waves and interference of light by wavefront splitting and amplitude splitting; Young’s double slit experiment, Newton’s rings, Michelson interferometer; Fraunhofer diffraction from a single slit, circular aperture and diffraction grating.

MODULE - V HARMONIC OSCILLATIONS AND WAVES IN ONE DIMENSION
Classes: 10

Mechanical and electrical simple harmonic oscillators, Damped harmonic oscillator, Forced mechanical and electrical oscillators, Impedance, Steady state motion of forced damped harmonic oscillator; Transverse wave on a string, the wave equation on a string, Harmonic waves, Reflection and transmission of waves at a boundary, Longitudinal waves and the wave equation for them, acoustics waves.
Text Books:

Reference Books:

Web References:

2. http://www.thphys.physics.ox.ac.uk

E-Text Books:

1. http://www.peaceone.net/basic/Feynman/
PROGRAMMING FOR PROBLEM SOLVING

I Semester: AE / ME | II Semester: CSE / IT / ECE / EEE

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACSB01</td>
<td>Foundation</td>
<td>L T P C CIA SEE Total</td>
<td>3 - - 3 30 70 100</td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

OBJECTIVES:
The course should enable the students to:
I. Learn adequate knowledge by problem solving techniques.
II. Understand programming skills using the fundamentals and basics of C Language.
III. Improve problem solving skills using arrays, strings, and functions.
IV. Understand the dynamics of memory by pointers.
V. Study files creation process with access permissions.

MODULE - I INTRODUCTION Classes: 10

Introduction to Programming: Computer system, components of a computer system, computing environments, computer languages, creating and running programs, algorithms, flowcharts; Introduction to C language: Computer languages, History of C, basic structure of C programs, process of compiling and running a C program, C tokens, keywords, identifiers, constants, strings, special symbols, variables, data types; Operators and expressions.

MODULE - II CONTROL STRUCTURES Classes: 08

Conditional Control structures: Decision statements; Simple if, if-else, else if ladder, Nested if and Case Statement-switch statement; Loop control statements: while, for and do while loops, jump statements, break, continue, goto statements

MODULE - III ARRAYS AND FUNCTIONS Classes: 10

Arrays: Concepts, one dimensional arrays, declaration and initialization of one dimensional arrays, two dimensional arrays, initialization and accessing, multi-dimensional arrays; Strings: Arrays of characters, variable length character strings, inputting character strings, character library functions, string handling functions.

Functions: Need for user defined functions, function declaration, function prototype, category of functions, inter function communication, function calls, parameter passing mechanisms, recursion, passing arrays to functions, passing strings to functions, storage classes, preprocessor directive

MODULE - IV STRUCTURES, UNIONS AND POINTERS Classes: 09

Structures and unions: Structure definition, initialization, accessing structures, nested structures, arrays of structures, structures and functions, passing structures through pointers, self-referential structures, unions, bit fields, typedef, enumerations; Pointers: Pointer basics, pointer arithmetic, pointers to pointers, generic pointers, array of pointers, pointers and arrays, pointers as functions arguments, functions returning pointers. Dynamic memory allocation: Basic concepts, library functions

MODULE - V FILE HANDLING AND BASICALGORITHMS Classes: 08
Files: Streams, basic file operations, file types, file opening modes, input and output operations with files, special functions for working with files, file positioning functions, command line arguments. Searching, basic sorting algorithms (bubble, insertion, selection), algorithm complexity through example programs (no formal definitions required).

Text Books:

Reference Books:

Web References:

1. https://www.bfoit.org/itp/Programming.html
2. https://www.khanacademy.org/computing/computer-programming

E-Text Books:

MOOC Course

ENGINEERING PHYSICS LABORATORY

I Semester: AE / ECE / ME | II Semester: CSE / IT / CE / EEE

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHSB10</td>
<td>Foundation</td>
<td>L T P C CIA SEE Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- - 3 1.5</td>
<td>30</td>
<td>70</td>
</tr>
</tbody>
</table>

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 36 Total Classes: 36

OBJECTIVES:
The course should enable the students to:
I. Upgrade practical knowledge in optics.
II. Analyze the behavior and characteristics of various materials for its optimum utilization.
III. Enrich the knowledge of electric and magnetic properties.

LIST OF EXPERIMENTS

Week-1 INTRODUCTION TO PHYSICS LABORATORY
Do's and Don'ts in physics laboratory. Precautions to be taken in laboratory.

Week-2 HALL EFFECT (LORENTZ FORCE)
Determination of charge carrier density.

Week-3 MELDE’E EXPERIMENT
Determination of frequency of a given tuning fork.

Week-4 STEWART GEE’S APPARATUS
Magnetic field along the axis of current carrying coil-Stewart and Gee’s method.

Week-5 B-H CURVE WITH CRO
To determine the value of retentivity and coercivity of a given magnetic material.

Week-6 ENERGY GAP OF A SEMICONDUCTOR DIODE
Determination of energy gap of a semiconductor diode.

Week-7 PIN AND AVALANCHE DIODE
Studying V-I characteristics of PIN and Avalanche diode.

Week-8 OPTICAL FIBER
Evaluation of numerical aperture of a given optical fiber.

Week-9 WAVE LENGTH OF LASER LIGHT
Determination of wavelength of a given laser light using diffraction grating.
<table>
<thead>
<tr>
<th>Week-10</th>
<th>PLANK’S CONSTANT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Determination of Plank’s constant using LED.</td>
</tr>
<tr>
<td>Week-11</td>
<td>LIGHT EMITTING DIODE</td>
</tr>
<tr>
<td></td>
<td>Studying V-I characteristics of LED</td>
</tr>
<tr>
<td>Week-12</td>
<td>NEWTONS RINGS</td>
</tr>
<tr>
<td></td>
<td>Determination of radius of curvature of a given plano-convex lens.</td>
</tr>
<tr>
<td>Week-13</td>
<td>SINGLE SLIT DIFFRACTION</td>
</tr>
<tr>
<td></td>
<td>Determination of width of a given single slit.</td>
</tr>
</tbody>
</table>

Manuals:

Web Reference:
http://www.iare.ac.in
PROGRAMMING FOR PROBLEM SOLVING LABORATORY

I Semester: AE / ME | II Semester: CSE / IT / ECE / EEE / CE

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACSB02</td>
<td>Foundation</td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
</tbody>
</table>

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 48 Total Classes: 48

OBJECTIVES:
The course should enable the students to:
I. Formulate problems and implement algorithms using C programming language.
II. Develop programs using decision structures, loops and functions.
III. Learn memory allocation techniques using pointers.
IV. Use structured programming approach for solving of computing problems in real world.

LIST OF EXPERIMENTS

Week-1 OPERATORS AND EVALUATION OF EXPRESSIONS

a. Write a C program to check whether a number is even or odd using ternary operator.
b. Write a C program to perform the addition of two numbers without using +operator.
c. Write a C program to evaluate the arithmetic expression \((a + b / c * d - e) * (f - g)\). Read the values \(a, b, c, d, e, f, g\) from the standard input device.
d. Write a C program to find the sum of individual digits of a 3 digit number.
e. Write a C program to read the values of \(x\) and \(y\) and print the results of the following expressions in one line:
 i. \((x + y) / (x - y)\)
 ii. \((x + y)(x - y)\)

Week-2 CONTROL STRUCTURES

a. Write a C program to find the sum of individual digits of a positive integer.
b. A Fibonacci sequence is defined as follows: The first and second terms in the sequence are 0 and 1. Subsequent terms are found by adding the preceding two terms in the sequence. Write a C program to generate the first \(n\) terms of these sequences.
c. Write a C program to generate all the prime numbers between 1 and \(n\), where \(n\) is a value supplied by the user.
d. A character is entered through keyboard. Write a C program to determine whether the character entered is a capital letter, a small case letter, a digit or a special symbol using if-else and switch case. The following table shows the range of ASCII values for various characters.

<table>
<thead>
<tr>
<th>Characters</th>
<th>ASCII values</th>
</tr>
</thead>
<tbody>
<tr>
<td>A–Z</td>
<td>65 –90</td>
</tr>
<tr>
<td>a–z</td>
<td>97 –122</td>
</tr>
<tr>
<td>0–9</td>
<td>48 –57</td>
</tr>
<tr>
<td>Special symbols</td>
<td>0 – 47, 58 – 64, 91 – 96, 123 –127</td>
</tr>
</tbody>
</table>

e. If cost price and selling price of an item is input through the keyboard, write a program to determine whether the seller has made profit or incurred loss. Write a C program to determine how much profit or loss incurred in percentage.
Week-3 CONTROL STRUCTURES

a. Write a C program, which takes two integer operands and one operator from the user, performs the operation and then prints the result. (Consider the operators +, -, *, /, % and use switch statement).
b. Write a C program to calculate the following sum:
 \[\text{sum} = 1 - x^2 / 2! + x^4 / 4! - x^6 / 6! + x^8 / 8! - x^{10} / 10! \]
c. Write a C program to find the roots of a quadratic equation.
d. Write a C program to check whether a given 3 digit number is Armstrong number or not.
e. Write a C program to print the numbers in triangular form

\[
\begin{array}{c}
1 \\
1 2 \\
1 2 3 \\
1 2 3 4 \\
\end{array}
\]

Week-4 ARRAYS

a. Write a C program to find the second largest integer in a list of integers.
b. Write a C program to perform the following:
 i. Addition of two matrices
 ii. Multiplication of two matrices
c. Write a C program to count and display positive, negative, odd and even numbers in an array.
d. Write a C program to merge two sorted arrays into another array in a sorted order.
e. Write a C program to find the frequency of a particular number in a list of integers.

Week-5 STRINGS

a. Write a C program that uses functions to perform the following operations:
 i. To insert a sub string into a given main string from a given position.
 ii. To delete n characters from a given position in a given string.
b. Write a C program to determine if the given string is a palindrome or not.
c. Write a C program to find a string within a sentence and replace it with another string.
d. Write a C program that reads a line of text and counts all occurrence of a particular word.
e. Write a C program that displays the position or index in the string S where the string T begins, or 1 if S doesn’t contain T.

Week-6 FUNCTIONS

a. Write C programs that use both recursive and non-recursive functions
 i. To find the factorial of a given integer.
 ii. To find the greatest common divisor of two given integers.
b. Write C programs that use both recursive and non-recursive functions
 i. To print Fibonacci series.
 ii. To solve towers of Hanoi problem.
c. Write a C program to print the transpose of a given matrix using function.
d. Write a C program that uses a function to reverse a given string.

Week-7 POINTERS

a. Write a C program to concatenate two strings using pointers.
b. Write a C program to find the length of string using pointers.
c. Write a C program to compare two strings using pointers.
d. Write a C program to copy a string from source to destination using pointers.
e. Write a C program to reverse a string using pointers.
Week-8 STRUCTURES AND UNIONS

a. Write a C program that uses functions to perform the following operations:
 i. Reading a complex number
 ii. Writing a complex number
 iii. Addition and subtraction of two complex numbers
 iv. Multiplication of two complex numbers. Note: represent complex number using a structure.

b. Write a C program to compute the monthly pay of 100 employees using each employee’s name, basic pay. The DA is computed as 52% of the basic pay. Gross-salary (basic pay + DA). Print the employees name and gross salary.

c. Create a Book structure containing book_id, title, author name and price. Write a C program to pass a structure as a function argument and print the book details.

d. Create a union containing 6 strings: name, home_address, hostel_address, city, state and zip. Write a C program to display your present address.

e. Write a C program to define a structure named DOB, which contains name, day, month and year. Using the concept of nested structures display your name and date of birth.

Week-9 ADDITIONAL PROGRAMS

a. Write a C program to read in two numbers, x and n, and then compute the sum of this geometric progression: 1+x+x^2+x^3+………….+x^n. For example: if n is 3 and x is 5, then the program computes 1+5+25+125. Print x, n, the sum. Perform error checking. For example, the formula does not make sense for negative exponents – if n is less than 0. Have your program print an error message if n<0, then go back and read in the next pair of numbers of without computing the sum. Are any values of x also illegal? If so, test for them too.

b. 2’s complement of a number is obtained by scanning it from right to left and complementing all the bits after the first appearance of a 1. Thus 2’s complement of 11100 is 00100. Write a C program to find the 2’s complement of a binary number.

c. Write a C program to convert a Roman numeral to its decimal equivalent. E.g. Roman number CD is equivalent to 400.

Week-10 PREPROCESSOR DIRECTIVES

a. Define a macro with one parameter to compute the volume of a sphere. Write a C program using this macro to compute the volume for spheres of radius 5, 10 and 15meters.

b. Define a macro that receives an array and the number of elements in the array as arguments. Write a C program for using this macro to print the elements of the array.

c. Write symbolic constants for the binary arithmetic operators +, -, *, and /. Write a C program to illustrate the use of these symbolic constants.

Week-11 FILES

a. Write a C program to display the contents of a file.

b. Write a C program to copy the contents of one file to another.

c. Write a C program to reverse the first n characters in a file, where n is given by the user.

d. Two files DATA1 and DATA2 contain sorted lists of integers. Write a C program to merge the contents of two files into a third file DATA i.e., the contents of the first file followed by those of the second are put in the third file.

e. Write a C program to count the no. of characters present in the file.
Week-12
COMMAND LINE ARGUMENTS AND NUMERICAL METHODS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>Write a C program to read two numbers at the command line and perform arithmetic operations on it.</td>
</tr>
<tr>
<td>b.</td>
<td>Write a C program to read a file name at the command line and display its contents.</td>
</tr>
<tr>
<td>c.</td>
<td>Write a C program to solve numerical methods problems (root finding, numerical differentiation and numerical integration)</td>
</tr>
</tbody>
</table>

Reference Books:

Web References:

2. http://www.geeksforgeeks.org/c
OBJECTIVES:
The course should enable the students to:
I. Identify and use of tools, types of joints in carpentry, fitting, tin smithy and plumbing operations.
II. Understand of electrical wiring and components.
III. Observation of the function of lathe, shaper, drilling, boring, milling, grinding machines.

LIST OF EXPERIMENTS

Week-1 MACHINE SHOP-Turning and other machines
Batch I: Working on central lathe and shaping machine.
Batch II: Working on drilling, grinding machines.

Week-2 MACHINE SHOP-Milling and other machines
Batch I: Working on milling machine.
Batch II: Working on milling and shaping machine.

Week-3 ADVANCED MACHINE SHOP
Batch I: Working on CNC Turning machines.
Batch II: Working on CNC Vertical Drill Tap Center.

Week-4 FITTING
Batch I: Make a straight fit and straight fit for given dimensions.
Batch II: Make a square fit for straight fit for given sizes.

Week-5 CARPENTRY-I
Batch I: Preparation of lap joint as per given dimensions.
Batch II: Preparation of dove tail joint as per given taper angle.

Week-6 CARPENTRY-II
Batch I: Preparation of dove tail joint as per given taper angle.
Batch II: Preparation of lap joint as per given dimensions.

Week-7 ELECTRICAL AND ELECTRONICS
Batch I & II: Make an electrical connection to demonstrate domestic voltage and current sharing.
Make an electrical connection to control one bulb with two switches-stair case connection.
<table>
<thead>
<tr>
<th>Week-8</th>
<th>WELDING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch I: Arc welding & Gas Welding.</td>
<td></td>
</tr>
<tr>
<td>Batch II: Gas welding & Arc Welding.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-9</th>
<th>MOULD PREPARATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch I: Prepare a wheel flange mould using a given wooden pattern.</td>
<td></td>
</tr>
<tr>
<td>Batch II: Prepare a bearing housing using an aluminum pattern.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-10</th>
<th>MOULD PREPARATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch I: Prepare a bearing housing using an aluminum pattern.</td>
<td></td>
</tr>
<tr>
<td>Batch II: Prepare a wheel flange mould using a given wooden pattern.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-11</th>
<th>BLACKSMITHY- I, TINSMITHY- I,</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch I: Prepare S-bend & J-bend for given MS rod using open hearth furnace.</td>
<td></td>
</tr>
<tr>
<td>Batch II: Prepare the development of a surface and make a rectangular tray and a round tin.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-12</th>
<th>TINSMITHY- I, BLACKSMITHY- I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch I: Prepare the development of a surface and make a rectangular tray and a round tin.</td>
<td></td>
</tr>
<tr>
<td>Batch II: Prepare S-bend & J-bend of given MS rod using open hearth furnace.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-13</th>
<th>PLASTIC MOULDING, INJECTION MOULDING, GLASS CUTTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch I: Plastic Moulding and Glass cutting.</td>
<td></td>
</tr>
<tr>
<td>Batch II: Plastic Moulding and Glass cutting.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-14</th>
<th>BLOW MOULDING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch I& II: Blow Moulding.</td>
<td></td>
</tr>
</tbody>
</table>

Reference Books:

Web References:

http://www.iare.ac.in
ENGLISH

I Semester: ECE / EEE / CE | II Semester: AE / CSE / IT / ME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHSB01</td>
<td>Foundation</td>
<td>L T P C CIA SEE Total</td>
<td>2 - - 2 30 70 100</td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: 30
Tutorial Classes: Nil
Practical Classes: Nil
Total Classes: 30

OBJECTIVES:
The course should enable the students to:
I. Communicate in an intelligible English accent and pronunciation.
II. Use the four language skills i.e., Listening, Speaking, Reading and Writing effectively.
III. Develop the art of writing accurate English with correct spelling, grammar and punctuation.

MODULE - I GENERAL INTRODUCTION AND LISTENING SKILLS
Classes: 07

Introduction to communication skills; Communication process; Elements of communication; Soft skills vs hard skills; Importance of soft skills for engineering students; Listening skills; Significance; Stages of listening; Barriers to listening and effectiveness of listening; Listening comprehension.

MODULE - II SPEAKING SKILLS
Classes: 09

Significance; Essentials; Barriers and effectiveness of speaking; Verbal and non-verbal communication; Generating talks based on visual prompts; Public speaking; Addressing a small group or a large formal gathering; Oral presentation; Power point presentation.

MODULE - III VOCABULARY & GRAMMAR
Classes: 10

Vocabulary:
The concept of Word Formation; Root words from foreign languages and their use in English; Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives; Synonyms; Antonyms; Standard abbreviations; Idioms and phrases; One word substitutes.

Grammar:
Sentence structure; Uses of phrases and clauses; Punctuation; Subject verb agreement; Modifiers; Articles; Prepositions.

MODULE - IV READING SKILLS
Classes: 09

Significance; Techniques of reading; Skimming-Reading for the gist of a text; Scanning - Reading for specific information; Intensive; Extensive reading; Reading comprehension;; Reading for information transfer; Text to diagram; Diagram to text.

MODULE - V WRITING SKILLS
Classes: 10

Significance; Effectiveness of writing; Organizing principles of Paragraphs in documents; Writing introduction and conclusion; Techniques for writing precisely; Letter writing; Formal and Informal letter writing; E-mail writing, Report Writing.
Text Books:

- Handbook of English for Communication (Prepared by Faculty of English, IARE)

Reference Books:

Web References:

1. www.edufind.com
2. www.myenglishpages.com
3. http://grammar.ccc.comment.edu
4. http://owl.english.prudue.edu

E-Text Books:

MATHEMATICAL TRANSFORM TECHNIQUES

II Semester: AE / ECE / EEE / ME / CE

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHSB11</td>
<td>Foundation</td>
<td>L T P C CIA SEE Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 1 - 4 30 70 100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: 45 Tutorial Classes: 15 Practical Classes: Nil Total Classes: 60

OBJECTIVES:
The course should enable the students to:

I. Enrich the knowledge solving algebra and transcendental equations and understanding Laplace transforms.
II. Determine the unknown values of a function by interpolation and applying inverse Laplace transforms.
III. Fitting of a curve and determining the Fourier transform of a function.
IV. Solving the ordinary differential equations by numerical techniques.
V. Formulate to solve partial differential equation.

Module-I ROOT FINDING TECHNIQUES AND LAPLACE TRANSFORMS Classes: 09

ROOT FINDING TECHNIQUES: Root finding techniques: Solving algebraic and transcendental equations by bisection method, method of false position, Newton-Raphson method.

LAPLACE TRANSFORMS: Definition of Laplace transform, linearity property, piecewise continuous function, existence of Laplace transform, function of exponential order, first and second shifting theorems, change of scale property, Laplace transforms of derivatives and integrals, multiplied by t, divided by t, Laplace transform of periodic functions.

Module-II INTERPOLATION AND INVERSE LAPLACE TRANSFORMS Classes: 09

INTERPOLATION: Interpolation: Finite differences, forward differences, backward differences and central differences; Symbolic relations; Newton’s forward interpolation, Newton’s backward interpolation; Gauss forward central difference formula, Gauss backward central difference formula; Interpolation of unequal intervals: Lagrange’s interpolation.

INVERSE LAPLACE TRANSFORMS: Inverse Laplace transform: Definition of Inverse Laplace transform, linearity property, first and second shifting theorems, change of scale property, multiplied by s, divided by s; Convolution theorem and applications.

Module-III CURVE FITTING AND FOURIER TRANSFORMS Classes: 09

CURVE FITTING: Fitting a straight line; Second degree curves; Exponential curve, power curve by method of least squares.

FOURIER TRANSFORMS: Fourier integral theorem, Fourier sine and cosine integrals; Fourier transforms; Fourier sine and cosine transform, properties, inverse transforms, finite Fourier transforms.
Module-IV
NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS
Classes: 09

STEP BY STEP METHOD: Taylor’s series method; Euler’s method, modified Euler’s method for first order differential equations.

MULTI STEP METHOD: Runge-Kutta method for first order differential equations.

Module-V
PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS
Classes: 09

PARTIAL DIFFERENTIAL EQUATIONS: Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions, solutions of first order linear equation by Lagrange method.

APPLICATIONS: Method of separation of variables; One dimensional heat and wave equations under initial and boundary conditions.

Text Books:

Reference Books:

Web References:

E-Text Books:
ENGINEERING CHEMISTRY

I Semester: CSE / IT/ EEE | II Semester: AE / ECE / ME / CE

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHSB03</td>
<td>Foundation</td>
<td>L T P C CIA SEE Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 1 - 4 30 70 100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: 45 Tutorial Classes: 15 Practical Classes: Nil Total Classes: 60

OBJECTIVES:
The course should enable the students to:
I. Apply the electrochemical principles in batteries, understand the fundamentals of corrosion.
II. Analysis of water for its various parameters and its significance in industrial and domestic Applications.
III. Analyze microscopic chemistry in terms of atomic, molecular orbitals and Intermolecular forces
IV. Analysis of major chemical reactions that are used in the synthesis of molecules.
V. Understand the chemistry of various fuels and their combustion.

MODULE -I ELECTROCHEMISTRY AND CORROSION Classes: 09

Electro chemical cells: Electrode potential, standard electrode potential, types of electrodes; Calomel, Quinhydrone and glass electrode; Nerst equation; Electrochemical series and its applications; Numerical problems; Batteries: Primary (Dry cell) and secondary batteries (Lead-acid storage battery and Lithium ion battery).

Causes and effects of corrosion: Theories of chemical and electrochemical corrosion, mechanism of electrochemical corrosion; Types of corrosion: Galvanic, water-line and pitting corrosion; Factors affecting rate of corrosion; Corrosion control methods: Cathodic protection, sacrificial anode and impressed current; Surface coatings: Metallic coatings- Methods of coating- Hot dipping, cementation, electroplating and Electroless plating of copper.

MODULE -II WATER AND ITS TREATMENT Classes: 08

Introduction: Hardness of water, Causes of hardness; Types of hardness: temporary and permanent, expression and units of hardness; Estimation of hardness of water by complexometric method; Potable water and its specifications, Steps involved in treatment of water, Disinfection of water by chlorination and ozonization; Boiler feed water and its treatment, Calgon conditioning, Phosphate conditioning and Colloidal conditioning; External treatment of water; Ion-exchange process; Desalination of water: Reverse osmosis, numerical problems.

MODULE -III MOLECULAR STRUCTURE AND THEORIES OF BONDING Classes: 08

Shapes of Atomic orbitals, Linear Combination of Atomic orbitals (LCAO), molecular orbitals of diatomic molecules; Molecular orbital energy level diagrams of N₂, O₂,F₂ CO and NO molecules.

Crystal Field Theory (CFT): Salient Features of CFT-Crystal Fields; Splitting of transition metal ion d-orbitals in Tetrahedral, Octahedral and square planar geometries; Band structure of solids and effect of doping on conductance.
MODULE - IV
STEREOCHEMISTRY, REACTION MECHANISM AND SYNTHESIS OF DRUG MOLECULES

<table>
<thead>
<tr>
<th>Classes: 12</th>
</tr>
</thead>
</table>

- Introduction to representation of 3-dimensional structures: Structural and stereoisomers, configurations, symmetry and chirality; Enantiomers, diastereomers, optical activity and Absolute configuration;
- Confirmation analysis of n- butane. Substitution reactions: Nucleophilic substitution reactions, Mechanism of SN₁, SN₂ reactions; Electrophilic and nucleophilic addition reactions; Addition of HBr to propene; Markownikoff and anti Markownikoff’s additions; Grignard additions on carbonyl compounds;
- Elimination reactions: Dehydro halogenation of alkylhalides; Saytzeff rule; Oxidation reactions: Oxidation of alcohols using KMnO₄ and chromicacid; Reduction reactions: Reduction of carbonyl compounds using LiAlH₄ & NaBH₄; Hydroboration of olefins; Structure, synthesis and pharmaceutical applications of Paracetamol and Aspirin.

MODULE – V
FUELS AND COMBUSTION

<table>
<thead>
<tr>
<th>Classes: 08</th>
</tr>
</thead>
</table>

- Fuels: Definition, classification of fuels and characteristics of a good fuels; Solid fuels: Coal; Analysis of coal: Proximate and ultimate analysis; Liquid fuels: Petroleum and its refining; Cracking: Fixed bed catalytic cracking; Knocking: Octane and cetane numbers; Gaseous fuels: Composition, characteristics and applications of natural gas, LPG and CNG; Combustion: Calorific value: Gross Calorific Value(GCV) and Net Calorific Value(NCV), calculation of air quantity required for complete combustion of fuel, numerical problems.

Text Books:

Reference Books:

Web References:
BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

I Semester: CE | II Semester: ME | III Semester: AE

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEED01</td>
<td>Foundation</td>
<td>L T P C</td>
<td>CIA</td>
<td>SEE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 1 - 4</td>
<td>30</td>
<td>70</td>
</tr>
</tbody>
</table>

Contact Classes: 45 Tutorial Classes: 15 Practical Classes: Nil Total Classes: 60

OBJECTIVES:
The course should enable the students to:
I. Understand Kirchhoff laws and their application in series and parallel electric circuits.
II. Discuss principle and operation of measuring instruments.
III. Analyze the characteristics of alternating quantities, DC and AC machines.
IV. Illustrate the V-I characteristics of various diodes and bi-polar junction transistor.

MODULE -I ELECTRIC CIRCUITS, ELECTROMAGNETISM AND INSTRUMENTS Classes: 10

Electrical Circuits: Basic definitions, types of elements, Ohm's Law, resistive networks, inductive networks, capacitive networks, Kirchhoff's Laws, series, parallel circuits and star delta transformations, simple problems, Faradays law of electromagnetic induction;

Instruments: Basic principles of indicating instruments, permanent magnet moving coil and moving iron instruments.

MODULE -II DC MACHINES Classes: 10

DC Machines: Principle of operation of DC generator, EMF equation, principle of operation of DC motors, torque equation, types of DC machines, applications, three point starter.

MODULE -III ALTERNATING QUANTITIES AND AC MACHINES Classes: 08

Alternating quantities: Sinusoidal AC voltage, average and RMS values, form and peak factor, concept of three phase alternating quantity; Transformer: Principle of operation, EMF equation, losses, efficiency and regulation.

MODULE -IV SEMICONDUCTOR DIODE AND APPLICATIONS Classes: 09

Semiconductor diode: P-N Junction diode, symbol, V-I characteristics, half wave rectifier, full wave rectifier, bridge rectifier and filters, diode as a switch, Zener diode as a voltage regulator.

MODULE -V BIPOLAR JUNCTION TRANSISTOR AND APPLICATIONS Classes: 08

Bipolar junction transistor: Working principle of transistors, DC characteristics, CE, CB, CC configurations, biasing, load line, applications.
Text Books:

Reference Books:

Web References:

E-Text Books:

5. https://www.ktustudents.in
ENGLISH LANGUAGE AND COMMUNICATION SKILLS LABORATORY

I Semester: ECE / EEE / CE | II Semester: AE / CSE / IT / ME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHSB08</td>
<td>Foundation</td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

Contact Classes: Nil
Tutorial Classes: Nil
Practical Classes: 24
Total Classes: 24

OBJECTIVES:
The course enables the students to:
1. Improve their ability to listen and comprehend a given text.
2. Upgrade the fluency and acquire a functional knowledge of English Language.
3. Enrich thought process by viewing a problem through multiple angles.

LIST OF ACTIVITIES

<table>
<thead>
<tr>
<th>Week-1</th>
<th>LISTENING SKILL</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>Listening to conversations and interviews of famous personalities in various fields; Listening practice related to the TV talk shows and news.</td>
</tr>
<tr>
<td>b.</td>
<td>Listening for specific information; Listening for summarizing information – Testing.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-2</th>
<th>LISTENING SKILL</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>Listening to films of short duration and monologues for taking notes; Listening to answer multiple choice questions.</td>
</tr>
<tr>
<td>b.</td>
<td>Listening to telephonic conversations; Listening to native Indian: Abdul Kalam, British: Helen Keller and American: Barrack Obama speakers to analyze intercultural differences – Testing.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-3</th>
<th>SPEAKING SKILL</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>Functions of English Language; Introduction to pronunciation; Vowels and Consonants</td>
</tr>
<tr>
<td>b.</td>
<td>Tips on how to develop fluency, body language and communication; Introducing oneself: Talking about yourself, others, leave taking.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-4</th>
<th>SPEAKING SKILL</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>Sounds - Speaking exercises involving the use of Vowels and Consonant sounds in different contexts; Exercises on Homophones and Homographs</td>
</tr>
<tr>
<td>b.</td>
<td>Just a minute (JAM) session.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-5</th>
<th>SPEAKING SKILL</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>Stress patterns.</td>
</tr>
<tr>
<td>b.</td>
<td>Situational Conversations: common everyday situations; Acting as a compere and newsreader; Greetings for different occasions with feedback preferably through video recording.</td>
</tr>
<tr>
<td>Week</td>
<td>READING SKILL</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>Week-6</td>
<td>a. Intonation.</td>
</tr>
<tr>
<td></td>
<td>b. Reading newspaper and magazine articles; Reading selective autobiographies for critical commentary.</td>
</tr>
<tr>
<td>Week-7</td>
<td>a. Improving pronunciation through tongue twisters.</td>
</tr>
<tr>
<td></td>
<td>b. Reading advertisements, pamphlets; Reading comprehension exercises with critical and analytical questions based on context.</td>
</tr>
<tr>
<td>Week-8</td>
<td>a. Listening to inspirational short stories.</td>
</tr>
<tr>
<td></td>
<td>b. Writing messages, leaflets, Notice; Writing tasks; Flashcards – Exercises.</td>
</tr>
<tr>
<td>Week-9</td>
<td>a. Write the review on a video clipping of short duration (5 to 10 minutes).</td>
</tr>
<tr>
<td></td>
<td>b. Write a slogan related to the image; Write a short story of 6-10 lines based on the hints given.</td>
</tr>
<tr>
<td>Week-10</td>
<td>a. Minimizing Mother Tongue Influence to improve fluency through watching educational videos.</td>
</tr>
<tr>
<td></td>
<td>b. Writing practices – précis writing; Essay writing.</td>
</tr>
<tr>
<td>Week-11</td>
<td>a. Correcting common errors in day to day conversations.</td>
</tr>
<tr>
<td></td>
<td>b. Practice in preparing thinking blocks to decode diagrammatical representations into English words, expressions, idioms, proverbs.</td>
</tr>
<tr>
<td>Week-12</td>
<td>a. Correcting common errors in day to day conversations.</td>
</tr>
<tr>
<td></td>
<td>b. Making pictures and improvising diagrams to form English words, phrases and proverbs.</td>
</tr>
</tbody>
</table>

Reference Books:

Web References:

1. http://learnenglish.britishcouncil.org
EQUIPMENT REQUIRED FOR A BATCH OF 60 STUDENTS (ORAL AND MULTIMEDIA)

1. Career laboratory: 1 Room
2. Server computer for the laboratory with high configuration: 1 no
3. Computers: 30 nos
4. Software: K Van Solution
5. LCD Projector: 1 no
6. Speakers with amplifiers, one wireless mic and one collar mic
7. Podium: 1
8. Chairs: 30
9. Discussion Tables: 2
10. White board: 1
ENGINEERING CHEMISTRY LABORATORY

I Semester: CSE / IT / EEE | II Semester: AE / ECE / ME / CE

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credit</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L T P C CIA SEE Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AHISB09</td>
<td>Foundation</td>
<td>- - 3 1.5 30 70 100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 36 Total Classes: 36

OBJECTIVES:

The course should enable the students to:

I. Analyze, interpret, and draw conclusions from experimental data.
II. Describe the fluid property of surface tension and viscosity.
III. Perform a complexometric titration to determine the hardness of water from various sources.
IV. Comprehend the experimental results.

LIST OF EXPERIMENTS

<table>
<thead>
<tr>
<th>Week</th>
<th>EXPERIMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION TO CHEMISTRY LABORATORY</td>
</tr>
<tr>
<td></td>
<td>Introduction to chemistry laboratory. Do's and Don'ts in chemistry laboratory.</td>
</tr>
<tr>
<td>2</td>
<td>PREPARATION OF ORGANIC COMPOUNDS</td>
</tr>
<tr>
<td></td>
<td>Synthesis of Aspirin.</td>
</tr>
<tr>
<td>3</td>
<td>VOLUMETRIC ANALYSIS</td>
</tr>
<tr>
<td></td>
<td>Estimation of Total hardness of water by complexometric method using EDTA.</td>
</tr>
<tr>
<td>5</td>
<td>INSTRUMENTATION</td>
</tr>
<tr>
<td></td>
<td>Estimation of an HCl by conductometric titrations.</td>
</tr>
<tr>
<td>6</td>
<td>INSTRUMENTATION</td>
</tr>
<tr>
<td></td>
<td>Estimation of HCl by potentiometric titrations.</td>
</tr>
<tr>
<td>7</td>
<td>INSTRUMENTATION</td>
</tr>
<tr>
<td></td>
<td>Estimation of Acetic acid by Conductometric titrations.</td>
</tr>
<tr>
<td>8</td>
<td>INSTRUMENTATION</td>
</tr>
<tr>
<td></td>
<td>Estimation of Fe$^{2+}$ by Potentiometry using KMnO$_4$titrations.</td>
</tr>
</tbody>
</table>
Week-9 | **VOLUMETRIC ANALYSIS**
---|---
Determination of chloride content of water by Argentometry.

Week-10	**PHYSICAL PROPERTIES**
Determination of surface tension of a given liquid using Stalagmometer.

Week-11	**PHYSICAL PROPERTIES**
Determination of viscosity of a given liquid using Ostwald’s viscometer.

Week-12	**PHYSICAL PROPERTIES**
Verification of freundlich adsorption isotherm-adsorption of acetic and on charcoal.

Week-13	**ANALYSIS OF ORGANIC COMPOUNDS**
Thin layer chromatography calculation of R_f values .Eg: ortho and para nitro phenols.

Week-14	**REVISION**
Revision.

Reference Books:

Web References:
http://www.iare.ac.in

LIST OF EQUIPMENT REQUIRED FOR A BATCH OF 30 STUDENTS:

<table>
<thead>
<tr>
<th>S. No</th>
<th>Name of the Apparatus</th>
<th>Apparatus Required</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Analytical balance</td>
<td>04</td>
<td>100 gm</td>
</tr>
<tr>
<td>2</td>
<td>Beaker</td>
<td>30</td>
<td>100 ml</td>
</tr>
<tr>
<td>3</td>
<td>Burette</td>
<td>30</td>
<td>50 ml</td>
</tr>
<tr>
<td>4</td>
<td>Burette Stand</td>
<td>30</td>
<td>Metal</td>
</tr>
<tr>
<td>5</td>
<td>Clamps with Boss heads</td>
<td>30</td>
<td>Metal</td>
</tr>
<tr>
<td>6</td>
<td>Conical Flask</td>
<td>30</td>
<td>250 ml</td>
</tr>
<tr>
<td>7</td>
<td>Conductivity cell</td>
<td>10</td>
<td>$K=1$</td>
</tr>
<tr>
<td>8</td>
<td>Calomel electrode</td>
<td>10</td>
<td>Glass</td>
</tr>
<tr>
<td>9</td>
<td>Digital Potentiometer</td>
<td>10</td>
<td>EI</td>
</tr>
<tr>
<td>10</td>
<td>Digital Conductivity meter</td>
<td>10</td>
<td>EI</td>
</tr>
<tr>
<td>11</td>
<td>Digital electronic balance</td>
<td>01</td>
<td>RI</td>
</tr>
<tr>
<td></td>
<td>Item</td>
<td>Quantity</td>
<td>Specification</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------------</td>
<td>----------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>12</td>
<td>Distilled water bottle</td>
<td>30</td>
<td>500 ml</td>
</tr>
<tr>
<td>13</td>
<td>Funnel</td>
<td>30</td>
<td>Small</td>
</tr>
<tr>
<td>14</td>
<td>Glass rods</td>
<td>30</td>
<td>20 cm length</td>
</tr>
<tr>
<td>15</td>
<td>Measuring Cylinders</td>
<td>10</td>
<td>10 ml</td>
</tr>
<tr>
<td>16</td>
<td>Oswald Viscometer</td>
<td>30</td>
<td>Glass</td>
</tr>
<tr>
<td>17</td>
<td>Pipette</td>
<td>30</td>
<td>20 ml</td>
</tr>
<tr>
<td>18</td>
<td>Platinum Electrode</td>
<td>10</td>
<td>PP</td>
</tr>
<tr>
<td>19</td>
<td>Porcelain Tiles</td>
<td>30</td>
<td>White</td>
</tr>
<tr>
<td>20</td>
<td>Reagent bottle</td>
<td>30</td>
<td>250 ml</td>
</tr>
<tr>
<td>21</td>
<td>Standard Flask</td>
<td>30</td>
<td>100 ml</td>
</tr>
<tr>
<td>22</td>
<td>Stalagmo meter</td>
<td>30</td>
<td>Glass</td>
</tr>
<tr>
<td>23</td>
<td>TLC Plates</td>
<td>40</td>
<td>--</td>
</tr>
<tr>
<td>24</td>
<td>UV Chamber</td>
<td>02</td>
<td>--</td>
</tr>
</tbody>
</table>
ENGINEERING GRAPHICS AND DESIGN LABORATORY

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB02</td>
<td>Foundation</td>
<td>L T P C CIA SEE Total</td>
<td>1 - 4 3 30 70 100</td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: 15
Tutorial Classes: Nil
Practical Classes: 48
Total Classes: 63

OBJECTIVES:

The course should enable the students to:

I. Understand the basic principles of engineering drawing and construction of curves used in engineering field.
II. Apply the knowledge of interpretation of projection in different quadrants.
III. Understand the projections of solids, when it is inclined to both planes simultaneously.
IV. Convert the pictorial views into orthographic view and vice versa.
V. Create intricate details of components through sections and develop its surfaces.

LIST OF EXPERIMENTS

MODULE - I
INTRODUCTION TO ENGINEERING DRAWING

- Conic sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid and Involute; Scales - Plain, Diagonal and Vernier Scales.

MODULE - II
OVERVIEW OF COMPUTER GRAPHICS, CUSTOMIZATION & CAD DRAWING, ANNOTATIONS, LAYERING & OTHER FUNCTIONS, DEMONSTRATION OF A SIMPLE TEAM DESIGN PROJECT

- Listing the computer technologies that impact on graphical communication, Demonstrating knowledge of the theory of CAD software [such as: The Menu System, Toolbars (Standard, Object Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Dialog boxes and windows, Shortcut menus (Button Bars), The Command Line (where applicable), The Status Bar, Different methods of zoom as used in CAD, Select and erase objects.; Isometric Views of lines, Planes, Simple and compound Solids].
- Consisting of set up of the drawing page and the printer, including scale settings, Setting up of units and drawing limits; ISO and ANSI standards for coordinate dimensioning and tolerancing; Orthographic constraints, Snap to objects manually and automatically; Producing drawings by using various coordinate input entry methods to draw straight lines, Applying various ways of drawing circles.
- Applying dimensions to objects, applying annotations to drawings; Setting up and use of Layers, layers to create drawings, Create, edit and use customized layers; Changing line lengths through modifying existing lines (extend/lengthen); Printing documents to paper using the print command; orthographic projection techniques; Drawing sectional views of composite right regular geometric solids and project the true shape of the sectioned surface; Drawing annotation, Computer-aided design (CAD) software modeling of parts and assemblies. Parametric and non-parametric solid, surface, and wireframe models. Part editing and two-dimensional documentation of models. Planar projection theory, including sketching of perspective, isometric, multiview, auxiliary, and section views. Spatial visualization exercises. Dimensioning guidelines, tolerancing techniques; dimensioning and scale multi views of dwelling.
MODULE - III ORTHOGRAPHIC PROJECTIONS

Principles of Orthographic Projections-Conventions-Projections of Points and lines inclined to both planes.

Projections of planes inclined Planes-Auxiliary Planes.

MODULE - IV PROJECTIONS OF REGULAR SOLIDS AND SECTIONS AND SECTIONAL VIEWS OF RIGHT ANGULAR SOLIDS

Those inclined to both the Planes- Auxiliary Views; Draw simple annotation, dimensioning and scale.Floor plans that include: windows, doors, and fixtures such as WC, bath, sink, shower, etc.

Draw the sectional orthographic views of geometrical solids of Prism, Pyramid, Cylinder and Cone; Objects from industry and dwellings (foundation to slab only).

MODULE - V DEVELOPMENT OF SURFACES AND ISOMETRIC PROJECTIONS

Development of surfaces of Right Regular Solids - Prism, Pyramid, Cylinder and Cone;
Principles of Isometric projection–Isometric Scale, Isometric Views, Conventions; Isometric Views of lines, Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa, Conventions.

DEMONSTRATION OF A SIMPLE TEAM DESIGN PROJECT:
Geometry and topology of engineered components: creation of engineering models and their presentation in standard 2D blueprint form and as 3D wire-frame and shaded solids; meshed topologies for engineering analysis and tool-path generation for component manufacture; geometric dimensioning and tolerancing; Use of solid-modeling software for creating associative models at the component and assembly levels; floor plans that include: windows, doors, and fixtures such as WC, bath, sink, shower, etc. Applying colour coding according to building drawing practice; Drawing sectional elevation showing foundation to ceiling; Introduction to Building Information Modelling (BIM).

Text Books

Reference Books:

Web References:

1. http://nptel.ac.in/courses/112103019
2. http://www.autocad tutorials.net/

SOFTWARE AND HARDWARE REQUIREMENTS FOR A BATCH OF 30 STUDENTS:

SOFTWARE: AUTOCAD 2016
HARDWARE: 30 numbers of Intel Desktop Computers with 2 GB RAM
BASIC ELECTRICAL AND ELECTRONICS ENGINEERING LABORATORY

I Semester: CE | II Semester: ME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credit</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEEB08</td>
<td>Foundation</td>
<td>L T P C CIA SEE Total</td>
<td>3 1.5 30 70 100</td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 36 Total Classes: 36

OBJECTIVES:
The course should enable the students to:
I. Analysis the basic concepts of electric circuits.
II. Study the performance of DC machines and AC machines.
III. Understand the characteristics of electronic components.

LIST OF EXPERIMENTS

Expt - 1 KIRCHHOFF’S CURRENT LAW AND VOLTAGE LAW
Verification of Kirchhoff’s current and voltage laws.

Expt - 2 OHM’S LAW
Verification of Ohm’s law.

Expt - 3 OPEN CIRCUIT CHARACTERISTICS OF DC SHUNT GENERATOR
Study the magnetization characteristics of DC shunt generator.

Expt - 4 SWINBURNE’S TEST
Predetermination of efficiency (Swinburne’s test) of DC shunt machine.

Expt - 5 OPEN CIRCUIT AND SHORT CIRCUIT TEST
Determination of efficiency of single phase transformer by conducting open circuit and short circuit test.

Expt - 6 BRAKE TEST ON THREE PHASE INDUCTION MOTOR
Plot the performance characteristics of three phase induction motor by conducting brake test.

Expt - 7 REGULATION OF ALTERNATOR
Determine the regulation of alternator using synchronous impedance method.

Expt - 8 PN JUNCTION DIODE
Study the characteristics of PN junction diode.
<table>
<thead>
<tr>
<th>Expt - 9</th>
<th>ZENER DIODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study the characteristics of Zener diode and breakdown mechanism.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expt - 10</th>
<th>HALF WAVE RECTIFIER CIRCUIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determine the efficiency of, regulation of half wave rectifier circuit.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expt - 11</th>
<th>FULL WAVE RECTIFIER CIRCUIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determine the efficiency of, regulation of full wave rectifier circuit.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expt - 12</th>
<th>TRANSISTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study the characteristics of Transistor with common emitter (CE) configuration.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expt - 13</th>
<th>TRANSISTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study the characteristics of Transistor with common base (CB) configuration.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expt - 14</th>
<th>CATHODE RAY OSCILLOSCOPE (CRO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check the features and limitations of cathode ray oscilloscope.</td>
<td></td>
</tr>
</tbody>
</table>

Reference Books:

Web References:

1. https://www.nptel.ac.in/Courses/117106108
3. https://www.textofvideo.nptel.iitm.ac.in
4. https://www.textofvideo.nptel.iitm.ac.in/

SOFTWARE AND HARDWARE REQUIREMENTS FOR A BATCH OF 30 STUDENTS:

SOFTWARE: Microsoft Windows 7 and MATLAB – V 8.5
HARDWARE: 01 numbers of Intel Desktop Computer with 2 GB RAM
ENGINEERING MECHANICS

II Semester: AE | III Semester: ME / CE

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB03</td>
<td>Foundation</td>
<td>L T P C CIA SEE Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 1 - 4 30 70 100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: 45 Tutorial Classes: 15 Practical Classes: Nil Total Classes: 60

OBJECTIVES:
The course should enable the students to:

I. Ability to work comfortably with basic engineering mechanics concepts required for analyzing static structures.
II. Identify an appropriate structural system to studying a given problem and isolate it from its environment, model the problem using good free-body diagrams and accurate equilibrium equations.
III. Identify and model various types of loading and support conditions that act on structural systems, apply pertinent mathematical, physical and engineering mechanical principles to the system to solve and analyze the problem.
IV. Understand the meaning of center of gravity (mass)/centroid and moment of Inertia using integration methods and method of moments.

MODULE-I INTRODUCTION TO ENGINEERING MECHANICS Classes: 10

Force Systems Basic concepts, Particle equilibrium in 2-D & 3-D; Rigid Body equilibrium; System of Forces, Coplanar Concurrent Forces, Components in Space – Resultant- Moment of Forces and its Application; Couples and Resultant of Force System, Equilibrium of System of Forces, Free body diagrams, Equations of Equilibrium of Coplanar Systems and Spatial Systems; Static Indeterminacy

MODULE -II FRICTION AND BASICS STRUCTURAL ANALYSIS Classes: 09

Types of friction, Limiting friction, Laws of Friction, Static and Dynamic Friction; Motion of Bodies, wedge friction, screw jack & differential screw jack; Equilibrium in three dimensions; Method of Sections; Method of Joints; How to determine if a member is in tension or compression; Simple Trusses; Zero force members; Beams & types of beams; Frames & Machines;

MODULE -III CENTROID AND CENTRE OF GRAVITY AND VIRTUAL WORK AND ENERGY METHOD Classes: 10

Centroid of simple figures from first principle, centroid of composite sections; Centre of Gravity and its implications; Area moment of inertia- Definition, Moment of inertia of plane sections from first principles, Theorems of moment of inertia, Moment of inertia of standard sections and composite sections; Mass moment inertia of circular plate, Cylinder, Cone, Sphere, Hook.

Virtual displacements, principle of virtual work for particle and ideal system of rigid bodies, degrees of freedom. Active force diagram, systems with friction, mechanical efficiency. Conservative forces and potential energy (elastic and gravitational), energy equation for equilibrium. Applications of energy method for equilibrium. Stability of equilibrium.

MODULE -IV PARTICLE DYNAMICS AND INTRODUCTION TO KINETICS Classes: 08

Particle dynamics- Rectilinear motion; Plane curvilinear motion (rectangular, path, and polar coordinates). 3-D curvilinear motion; Relative and constrained motion; Newton’s 2nd law (rectangular, path, and polar
coordinates). Work-kinetic energy, power, potential energy. Impulse-momentum (linear, angular); Impact (Direct and oblique). Introduction to Kinetics of Rigid Bodies covering, Basic terms, general principles in dynamics; Types of motion, Instantaneous centre of rotation in plane motion and simple problems; D’Alembert’s principle and its applications in plane motion and connected bodies; Work energy principle and its application in plane motion of connected bodies; Kinetics of rigid body rotation;

<table>
<thead>
<tr>
<th>MODULE - V</th>
<th>MECHANICAL VIBRATIONS</th>
<th>Classes: 08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic terminology, free and forced vibrations, resonance and its effects; Degree of freedom; Derivation for frequency and amplitude of free vibrations without damping and single degree of freedom system, simple problems, types of pendulum, use of simple, compound and torsion pendulums;</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Text Books:

Reference Books:

Web References:

2. https://www.youtube.com/playlist?list=PLUl4u3cNGP62esZEwffjMA5EMW_YArxYC

E-Text Books:

THERMODYNAMICS

III Semester: ME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB04</td>
<td>Core</td>
<td>L T P</td>
<td>CIA</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 1 -</td>
<td>4</td>
<td>30 70 100</td>
</tr>
</tbody>
</table>

Contact Classes: 45 Tutorial Classes: 15 Practical Classes: Nil Total Classes: 60

OBJECTIVES:
The course should enable the students to:

I. Understand the laws of thermodynamics and determine thermodynamic properties, gas laws.
II. Knowledge of properties during various phases of pure substances, mixtures, usage of steam tables and Mollier chart, psychometric charts.
III. Understand the direction law and concept of increase in entropy of universe.
IV. Understand the working of ideal air standard, vapor cycles and evaluate their performance in open systems like steam power plants, internal combustion engines, gas turbines and refrigeration systems.

MODULE-I BASIC CONCEPTS AND FIRST LAW OF THERMODYNAMICS Classes: 09

System, control volume, surrounding, boundaries, universe, types of systems, macroscopic and microscopic viewpoints, concept of continuum, thermodynamic equilibrium, state, property, process, cycle, reversibility, quasi static process, irreversible process, causes of irreversibility, various flow and non-flow processes, energy in state and in transition, types-work and heat, point and path function, Zeroth law of thermodynamics, concept of quality of temperature, Principles of thermometry, reference points, constant volume gas thermometer, ideal gas scale, PMMI Joule's experiments, first law of thermodynamics, corollaries first law applied to a process, applied to a flow system, steady flow energy equation.

MODULE-II SECOND LAW OF THERMODYNAMICS Classes: 09

Thermal reservoir, heat engine, heat pump, parameters of performance, second Law of thermodynamics, Kelvin Planck and Clausius statements and their equivalence, Corollaries, PMM of second kind, Carnot's principle, Carnot cycle and its specialties, thermodynamic scale of temperature, Clausius inequality, Entropy, principle of Entropy increase, availability and irreversibility, thermodynamic potentials, Gibbs and Helmholtz functions, Maxwell relations, elementary treatment of the Third Law of thermodynamics.

MODULE-III PURE SUBSTANCES Classes: 09

Phase transformations, T-S and H-S diagrams, P-V-T surfaces, triple point at critical state properties during change of phase, dryness fraction, Mollier charts, various thermodynamic processes and energy transfer, steam calorimeter.

Equation of state, specific and universal gas constants, throttling and free expansion processes, deviations from perfect gas model, Vander Waals equation of state.

MODULE-IV MIXTURES OF PERFECT GASES Classes: 09

Mole fraction, mass fraction, gravimetric and volumetric analysis, volume fraction, Dalton's law of partial pressure, Avogadro's laws of additive volumes, and partial pressure, equivalent gas constant, internal
energy, enthalpy, specific heats and entropy of mixture of perfect gases; psychometric properties, dry bulb temperature, wet bulb temperature, dew point temperature, thermodynamic wet bulb temperature, specific humidity, relative humidity, saturated air, vapor pressure, degree of saturation, adiabatic saturation, Carrier’s equation, Psychometric chart.

<table>
<thead>
<tr>
<th>MODULE-V</th>
<th>POWER CYCLES</th>
<th>Classes: 09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Otto, Diesel, Dual combustion cycles, description and representation on P-V and T-S diagram, thermal efficiency, mean effective pressures on air standard basis, comparison of cycles, introduction to Brayton cycle and Bell Coleman cycle.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Text Books:

Reference Books:

Web References:

2. https://www3.nd.edu/~powers/ame.20231/planckdover.pdf

E-Text Books:

1. https://www3.nd.edu/~powers/ame.20231/planckdover.pdf
MANUFACTURING PROCESSES

III Semester: ME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB05</td>
<td>Core</td>
<td>L T P C CIA SEE Total</td>
<td>3 - - 3 30 70 100</td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: 45
Tutorial Classes: Nil
Practical Classes: Nil
Total Classes: 45

OBJECTIVES:

The course should enable the students to:

I. Understand and develop an appreciation of the manufacturing processes in correlation with material properties.

II. Learn the material properties which change the shape, size and form of the raw materials into the desirable product.

III. Understand the processes for creating products by conventional or unconventional manufacturing methods.

MODULE-I CASTING

Casting: Steps involved in making a casting, its applications, patterns and types of patterns, pattern allowances and their construction, types of casting processes, solidification of casting.

MODULE-II WELDING

Inert gas welding, TIG welding, MIG welding, friction welding, induction pressure welding, explosive welding, electron beam welding, laser welding, soldering and brazing. Heat affected zone in welding, welding defects, causes and remedies, destructive and non-destructive testing of welds.

MODULE-III METAL FORMING

Forming: Hot working, cold working, strain hardening, recovery, re-crystallization and grain growth, comparison of properties of cold and hot worked parts, rolling fundamentals, theory of rolling, types of rolling mills and products; Forces in rolling and power requirements, stamping, forming and other cold.

Working processes: Blanking and piercing, bending and forming, drawing and its types, wire drawing and tube drawing; coining; hot and cold spinning, types of presses and press tools, forces and power requirements for the above operations.

MODULE-IV EXTRUSION AND RAPID PROTOTYPING

Extrusion of Metals: Basic extrusion process and its characteristics, hot extrusion and cold extrusion, forward extrusion and backward extrusion, impact extrusion, extruding equipment, tube extrusion and Pipe making, hydrostatic extrusion, forces in extrusion; Additive manufacturing: Rapid prototyping and rapid tooling.
MODULE-V FORGING

<table>
<thead>
<tr>
<th>Classes: 09</th>
</tr>
</thead>
</table>

Forging processes: Forging operations and principles, tools, forging methods, Smith forging, drop forging, roll forging, forging hammers: Rotary forging, forging defects, cold forging, swaging, forces in forging operations.

Text Books:

Reference Books:

Web References:

1. https://books.google.co.in/books/about/Manufacturing_Processes_Reference_Guide.html?id=6x1smAf_PAcC

E-Text Books:

1. https://books.google.co.in/books?id=6wFuw6wufTMC&printsec=frontcover#v=onepage&q&f=false
OBJECTIVES:
The course should enable the students to:
I. Enrich the knowledge of probability on single random variables and probability distributions.
II. Apply the concept of correlation and regression to find covariance.
III. Analyze the given data for appropriate test of hypothesis.

MODULE-I PROBABILITY AND RANDOM VARIABLES
- Probability, Conditional Probability, Baye’s Theorem
- Random variables: Basic definitions, discrete and continuous random variables
- Probability distribution: Probability mass function and probability density functions
- Mathematical expectation

MODULE-II PROBABILITY DISTRIBUTION
- Binomial distribution: Mean and variances of Binomial distribution, Recurrence formula for the Binomial distribution
- Poisson distribution: Poisson distribution as a limiting case of Binomial distribution, mean and variance of Poisson distribution, Recurrence formula for the Poisson distribution
- Normal distribution: Mean, Variance, Mode, Median, Characteristics of normal distribution

MODULE-III CORRELATIONS AND REGRESSION
- Correlation: Karle Pearson’s Coefficient of correlation, Computation of correlation coefficient, Rank correlation, Repeated Ranks
- Regression: Lines of regression, Regression coefficient, Properties of Regression coefficient, Angle between two lines of regression, Multiple correlation and Regression

MODULE-IV TEST OF HYPOTHESIS - I
- Sampling: Definitions of population, Sampling, Parameter of statistics, standard error
- Test of significance: Null hypothesis, alternate hypothesis, type I and type II errors, critical region, confidence interval
- Large sample test: Test of significance for single mean, Test of significance for difference between two sample means, Tests of significance single proportion and Test of difference between proportions

MODULE-V TEST OF HYPOTHESIS - II
- Small sample tests: Student t-distribution, its properties
- Test of equality of two population variances Chi-square distribution and it’s properties
- Test of equality of two population variances Chi-square distribution, it’s properties, Chi-square test of goodness of fit
Text Books:

Reference Books:

Web References:

E-Text Books:

DATA STRUCTURES

III Semester: ME / CSE / IT / ECE / CE | IV Semester AE / EEE

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACSB03</td>
<td>Core</td>
<td>L T P C CIA SEE Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 - - 3 30 70 100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

OBJECTIVES:
The course should enable the students to:
I. Learn the basic techniques of algorithm analysis.
II. Demonstrate searching and sorting algorithms and analyze their time complexities.
III. Implement linear data structures viz. stack, queue and linked list.
IV. Demonstrate non-linear data structures viz. tree and graph traversal algorithms.
V. Study and choose appropriate data structure to solve problems in real world.

MODULE – I INTRODUCTION TO DATA STRUCTURES, SEARCHING AND SORTING Classes: 09

Basic concepts: Introduction to data structures, classification of data structures, operations on data structures; Searching techniques: Linear search and Binary search; Sorting techniques: Bubble sort, selection sort, insertion sort and comparison of sorting algorithms.

MODULE - II LINEAR DATA STRUCTURES Classes: 09

Stacks: Primitive operations, implementation of stacks using arrays, applications of stacks arithmetic expression conversion and evaluation; Queues: Primitive operations; Implementation of queues using Arrays, applications of linear queue, circular queue and double ended queue (deque).

MODULE - III LINKED LISTS Classes: 09

Linked lists: Introduction, singly linked list, representation of a linked list in memory, operations on a single linked list; Applications of linked lists: Polynomial representation and sparse matrix manipulation.

Types of linked lists: Circular linked lists, doubly linked lists; Linked list representation and operations of Stack and Queue.

MODULE - IV NON LINEAR DATA STRUCTURES Classes: 09

Trees: Basic concept, binary tree, binary tree representation, array and linked representations, binary tree traversal, binary tree variants, application of trees; Graphs: Basic concept, graph terminology, graph implementation, graph traversals, Application of graphs.

MODULE - V BINARY TREES AND HASHING Classes: 09

Binary search trees: Binary search trees, properties and operations; Balanced search trees: AVL trees; Introduction to M-Way search trees, B trees; Hashing and collision: Introduction, hash tables, hash functions, collisions, applications of hashing.
<table>
<thead>
<tr>
<th>Text Books:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reference Books:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Web References:</th>
</tr>
</thead>
</table>
MANUFACTURING PROCESS LABORATORY

III Semester: ME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB06</td>
<td>Core</td>
<td>L T P C CIA SEE Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- - 2 1 30 70 100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 24 Total Classes: 24

OBJECTIVES:
The courses should enable the students to:
I. Understand practical orientation of manufacturing processes.
II. Knowledge on different kinds of production processes and practices available for shaping or molding several daily used parts for industries.
III. Selection of equipments for various manufacturing processes will be understood.

LIST OF EXPERIMENTS

Week-1 PATTERN MAKING
Pattern design and making, casting drawing.

Week-2 SAND PROPERTIES TESTING
Sand properties testing for strengths and permeability.

Week-3 METAL CASTING
Moulding, melting and casting.

Week-4 ARC WELDING
ARC welding lap and butt joint.

Week-5 SPOT WELDING
Spot welding, TIG welding.

Week-6 PLASMA WELDING AND BRAZING
Plasma welding and brazing (water plasma device).

Week-7 APPLICATION OF SIMPLE AND COMPOUND DIE
Blanking and piercing,

Week-8 APPLICATION OF PROGRESSIVE DIE

Week-9 MECHANICAL PRESS WORKING
Bending and other operation.
<table>
<thead>
<tr>
<th>Week-10</th>
<th>PROCESSING OF PLASTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Injection moulding.</td>
</tr>
<tr>
<td>Week-11</td>
<td>PROCESSING OF PLASTICS</td>
</tr>
<tr>
<td></td>
<td>Blow moulding.</td>
</tr>
<tr>
<td>Week-12</td>
<td>BEYOND SYLLABUS</td>
</tr>
<tr>
<td></td>
<td>Riveting of a plates.</td>
</tr>
<tr>
<td>Week-13</td>
<td>EXAMINATIONS</td>
</tr>
</tbody>
</table>

Reference Books:

Web References:

1. http://www.iare.ac.in
III Semester: ME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB07</td>
<td>Core</td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

Contact Classes: Nil
Tutorial Classes: Nil
Practical Classes: 36
Total Classes: 36

OBJECTIVES:
The course should enable students to
I. Understand Code of drawing practice as per BIS conventions for mechanical elements using AutoCAD.
II. Practice the drawing methods for sectioning of joints, couplings, bearings, keys.
III. Prepare assembly drawings, sectional views and bill of materials for selected assemblies.

LIST OF EXERCISES

<table>
<thead>
<tr>
<th>Week-1</th>
<th>CONVENTIONAL REPRESENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conventional representation of materials, common machine elements and parts such as screws, nuts, bolts, keys, gears, webs and ribs; Introduction to AutoCAD.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-2</th>
<th>SECTIONAL VIEWS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Types of sections, selection of section planes and drawing of sections and auxiliary sectional views, parts not usually sectioned.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-3</th>
<th>DIMENSIONING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Methods of dimensioning, general rules for sizes, and placement of dimensions for holes, centers, and curved and tapered features.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-4</th>
<th>WORKING DRAWINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Types of drawings–working drawings for machine parts.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-5</th>
<th>MACHINE ELEMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Drawing of machine elements and simple parts; Selection of orthogonal views and additional views for the following machine elements and parts with drawing proportion, popular forms of screw threads, bolts, nuts and stud bolts.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-6</th>
<th>KEYS AND COTTER JOINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Keys, cotter joints, and knuckle joint.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-7</th>
<th>RIVETED JOINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Riveted joints for plates.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-8</th>
<th>COUPLINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shaft couplings and spigot joint.</td>
</tr>
<tr>
<td>Week-9</td>
<td>BEARINGS</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>Journal, pivot, and collar bearing.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-10</th>
<th>ASSEMBLY DRAWINGS-ENGINE PARTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assembly drawings Assembly drawings for the following, using conventions and drawing proportions: Engine parts–stuffing box.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-11</th>
<th>CONNECTING ROD AND ECCENTRIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eccentrics, I.C. engine connecting rod.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-12</th>
<th>SCREW JACK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Screw jack.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-13</th>
<th>TAIL STOCK AND MACHINE VICE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Machine vice and tailstock.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-14</th>
<th>SAFETY VALVES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rams-bottom Safety Valve, feed check valve.</td>
</tr>
</tbody>
</table>

Text Books:

Web References:

2. https://drive.google.com/file/d/0B_GCh7LMfHf6Z0VNWTNHU3pMSTg/view?pref=2&pli=1
DATA STRUCTURES LABORATORY

III Semester: ME / CSE / IT / ECE / CE | IV Semester AE / EEE

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB05</td>
<td>Core</td>
<td>L T P C CIA SEE Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- - 3 1.5 30 70 100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 36 Total Classes: 36

COURSE OBJECTIVES:
The course should enable the students to:

I. Understand various data representation techniques in the real world.
II. Implement linear and non-linear data structures.
III. Analyze various algorithms based on their time and space complexity.
IV. Develop real-time applications using suitable data structure.
V. Identify suitable data structure to solve various computing problems.

LIST OF EXPERIMENTS

Week-1 BASICS OF PYTHON

Write Python programs for the following:

a. To find the biggest of given n numbers using control statements and lists
b. To print the Fibonacci series using functions
c. To find GCD of two numbers

Week-2 SEARCHING TECHNIQUES

Write Python programs for implementing the following sorting techniques to arrange a list of integers in ascending order.

a. Linear search
b. Binary search

c. Week-3 SORTING TECHNIQUES

Write Python programs for implementing the following sorting techniques to arrange a list of integers in ascending order.

a. Bubble sort
b. Insertion sort
c. Selection sort

week-4 IMPLEMENTATION OF STACK AND QUEUE

Write Python programs to for the following:

a. Design and implement Stack and its operations using List.
b. Design and implement Queue and its operations using List.

c. Week-5 APPLICATIONS OF STACK

Write Python programs for the following:

a. Uses Stack operations to convert infix expression into postfix expression.
b. Uses Stack operations for evaluating the postfix expression.
<table>
<thead>
<tr>
<th>Week-6</th>
<th>IMPLEMENTATION OF SINGLE LINKED LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Write Python programs for the following operations on Single Linked List. (i) Creation (ii) insertion (iii) deletion (iv) traversal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-7</th>
<th>IMPLEMENTATION OF CIRCULAR SINGLE LINKED LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Write Python programs for the following operations on Circular Linked List. (i) Creation (ii) insertion (iii) deletion (iv) traversal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-8</th>
<th>IMPLEMENTATION OF DOUBLE LINKED LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Write Python programs for the following operations on Double Linked List. (i) Creation (ii) insertion (iii) deletion (iv) traversal in both ways.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-9</th>
<th>IMPLEMENTATION OF STACK USING LINKED LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Write a Python program to implement Stack using linked list.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-10</th>
<th>IMPLEMENTATION OF QUEUE USING LINKED LIST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Write a Python program to implement Linear Queue using linked list.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-11</th>
<th>GRAPH TRAVERSAL TECHNIQUES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Write Python programs to implement the following graph traversal algorithms: a. Depth first search. b. Breadth first search.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-12</th>
<th>IMPLEMENTATION OF BINARY SEARCH TREE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Write a Python program to perform the following: a. Create a binary search tree. b. Traverse the above binary search tree recursively in pre-order, post-order and in-order. c. Count the number of nodes in the binary search tree.</td>
</tr>
</tbody>
</table>

LIST OF REFERENCE BOOKS:

WEB REFERENCES:

1. https://docs.python.org/3/tutorial/datastructures.html
FLUID MECHANICS AND MACHINES

IV Semester: ME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB08</td>
<td>Core</td>
<td>L T P C CIA SEE Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 1 - 4 30 70 100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: 45 Tutorial Classes: 15 Practical Classes: Nil Total Classes: 60

OBJECTIVES:
The course should enable the students to:
I. Learn about the application of mass and momentum conservation laws for fluid flows.
II. Understand the importance of dimensional analysis.
III. Obtain the velocity and pressure variations in various types of simple flows.
IV. Analyze the flow in water pumps and turbines.

MODULE-I FLUID STATICS Classes: 09
Definition of fluid, Newton’s law of viscosity, Units and dimensions-Properties of fluids, mass density, specific volume, specific gravity, viscosity, compressibility and surface tension, Control volume- application of continuity equation and momentum equation, Incompressible flow.

MODULE-II FLUID KINEMATICS AND DYNAMICS Classes: 09
Fluid Kinematics: Kinematics of fluid flow- Eulerian and Lagrangian descriptions, Stream line, path line, streak line and stream tube, classification and description of flows for one and three dimensions.
Fluid Dynamics: Euler's equation of motion, Bernoulli equation for flow along a stream line and applications, Measurement of flow.

MODULE-III BOUNDARY LAYER CONCEPTS AND CLOSED CONDUIT FLOW Classes: 09
Concept of boundary layer – Definition, characteristics along thin plate, laminar, transition and turbulent boundary layers, separation of boundary layer, measures of boundary layer thickness.

MODULE-IV FLUID MACHINES Classes: 09
Classification of water turbines, heads and efficiencies, velocity triangles- Axial, radial and mixed flow turbines- Pelton wheel, Francis turbine and Kaplan turbines, working principles – draft tube- Specific speed, unit quantities, performance curves for turbines – governing of turbines.

MODULE-V DIMENSIONAL ANALYSIS AND PUMPS Classes: 09
Dimensional Analysis: Need for dimensional analysis–methods of dimension analysis, Similitude, types of similitude Dimensionless parameters–application of dimensionless parameters, Model analysis.
Pumps: Theory of Roto dynamic machines , various efficiencies , velocity components at entry and exit of the rotor, velocity triangles, Centrifugal pumps, working principle, work done by the impeller, performance curves – Cavitation in pumps- Reciprocating pump–working principle.

Text Books:

Reference Books:

Web Reference:

1. https://nptel.ac.in/courses/112105171/

E-Book:

APPLIED THERMODYNAMICS - I

IV Semester: ME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB09</td>
<td>Core</td>
<td>L T P C</td>
<td>CIA</td>
<td>SEE Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 1 - 4</td>
<td>30</td>
<td>70 100</td>
</tr>
</tbody>
</table>

Contact Classes: 45 Tutorial Classes: 15 Practical Classes: Nil Total Classes: 60

OBJECTIVES:
The course should enable the students to:
I. Visualize the construction and working of internal combustion engines, compressors and refrigeration systems.
II. Compare the ideal and real working of thermodynamic cycles for performance evaluation.
III. Understand the subsystems of internal combustion systems.

MODULE-I IC ENGINES
Classes: 09
Four and two stroke engine, SI and CI engines, valve and port timing diagrams, fuel injection systems for SI engines, fuel injection systems for CI engines, ignition systems, cooling and lubrication system, fuel properties and combustion, stoichiometry.

MODULE-II COMBUSTION IN SI ENGINES AND CI ENGINES
Classes: 09
Normal combustion and abnormal combustion, importance of flame speed and effect of engine variables, type of abnormal combustion, pre-ignition and knocking, fuel requirements and fuel rating, anti-knock additives, combustion chamber, requirements, types; Combustion in CI Engines: Four stages of combustion, delay period and its importance, effect of engine variables, diesel Knock, need for air movement, open and divided combustion chambers and nozzles used, fuel requirements and fuel rating.

MODULE-III PERFORMANCE OF ENGINES AND COMPRESSORS
Classes: 09
Parameters of performance, measurement of cylinder pressure, fuel consumption, air intake, exhaust gas composition, brake power, determination of frictional losses and indicated power, performance test, heat balance sheet and chart.
Classification, of compressors, fans, blower and compressor, positive displacement and dynamic types, reciprocating and rotary types.

MODULE-IV CENTRIFUGAL AND AXIAL COMPRESSORS
Classes: 09
Roots blower, vane sealed compressor, mechanical details and principle of working efficiency considerations; Centrifugal compressors: mechanical details and principle of operation, velocity and Pressure variation, Energy transfer, impeller blade shape-losses, slip factor, and power input factor, pressure coefficient and adiabatic coefficient, velocity diagrams, power; Axial flow compressors: Mechanical details and principle of operation, velocity triangles and energy transfer per stage degree of reaction, work done factor, isentropic efficiency, pressure rise calculations, poly-tropic efficiency.

MODULE-V REFRIGERATION
Classes: 09
Mechanical refrigeration and types, units of refrigeration, air refrigeration system, details and principle of operation, applications of air refrigeration, vapor compression refrigeration systems, calculation of COP, effect of superheating and sub cooling, desired properties of refrigerants and common refrigerants, vapor absorption system, mechanical details, working principle, use of p-h charts for calculations.
Text Books:

Reference Books:

Web References:

2. http://www.nptel.ac.in/courses/112106133/#

E-Text Books:

KINEMATICS OF MACHINES

IV Semester: ME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB10</td>
<td>Core</td>
<td>L T P C CIA SEE Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 1 - 4 30 70 100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: 45 Tutorial Classes: 15 Practical Classes: Nil Total Classes: 60

OBJECTIVES:
The course should enable the students to:
I. To understand the mechanisms of various machines in order to find the velocity and accelerations for ideation of product development.
II. Understand the basic principles of kinematics and the related terminology of machines.
III. Discriminate mobility; enumerate links and joints in the mechanisms.
IV. Formulate the concept of analysis of different mechanisms.
V. Understand the working of various straight line mechanisms, gears, gear trains, steering gear mechanisms, cams and a Hooke’s joint.
VI. Analyze a mechanism for displacement, velocity and acceleration of links in a machine.

MODULE -I MECHANISMS Classes: 09

Mechanisms: Elements or links, classification, rigid link, flexible and fluid link, types of kinematic pairs types of constrained motion, kinematic chain, mechanism, machine, structure, inversion of mechanism, inversions of quadric cycle chain, single and double slider crank chains, mechanical advantage, Grubler’s Criterion.

MODULE -II KINEMATICS, PLANE MOTION OF BODY, ANALYSIS OF MECHANISMS Classes: 09

Kinematics: Velocity and acceleration, motion of link in machine, determination of velocity and acceleration, Graphical method, application of relative velocity method, plane motion of body: Instantaneous center of rotation, centroids and axodes, three centers in line theorem, graphical determination of instantaneous center, determination of angular velocity of points and links by instantaneous center method. Klein’s construction, Coriolis acceleration, determination of Coriolis component of acceleration; Analysis of mechanisms: Analysis of slider crank chain for displacement, velocity and acceleration of slider, acceleration diagram for a given mechanism.

MODULE-III STRAIGHT LINE MOTION MECHANISMS, STEERING GEARS, HOOKE’S JOINT Classes: 09

Straight-line motion Mechanisms: Exact and approximate copied and generated types, Peaucellier, Hart and Scott Russul, Grasshopper, Watt, TChebicheff and Robert mechanisms, pantograph.

Steering gears: Conditions for correct steering, Davis Steering gear, Ackerman’s steering gear, Hooke’s joint: Single and double Hooke’s joint, velocity ratio, application, problems.

MODULE-IV CAMS, ANALYSIS OF MOTION OF FOLLOWERS Classes: 09

Cams: Definitions of cam and followers, their uses, types of followers and cams, terminology, types of follower motion, uniform velocity, simple harmonic motion and uniform acceleration; Maximum velocity and maximum acceleration during outward and return strokes in the above three cases; Analysis of motion of followers: Tangent cam with roller follower, circular arc cam with straight, concave and convex flanks.
MODULE –V HIGHER PAIRS, GEAR TRAINS

<table>
<thead>
<tr>
<th>Classes: 09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher Pairs: friction wheels and toothed gears, types, law of gearing, condition for constant velocity ratio for transmission of motion, velocity of sliding, form of teeth, cycloidal and involute profiles, phenomena of interferences, methods of interference; Condition for minimum number of teeth to avoid interference, expressions for arc of contact and path of contact of pinion and gear pinion and rack arrangements; Introduction to helical, bevel and worm gearing; Gear trains: Introduction, types, simple and reverted gear trains, epicyclic gear train; Methods of finding train value or velocity ratio of epicyclic gear trains, selection of gear box, differential gear for an automobile.</td>
</tr>
</tbody>
</table>

Text Books:

References

Web References

2. http://ebooks.library.cornell.edu/k/kmoddl/toc_hartenberg1.html

E-Text Books

1. https://drive.google.com/file/d/0B7raaoEF40D7eEJIR1VoODJodFE/edit
3. https://docs.google.com/file/d/0B5dLUZfysmqMXBhakRyODhublU/edit
4. https://archive.org/details/theoryofmachines00mckarich
MATERIALS AND MECHANICS OF SOLIDS

IV Semester: ME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB11</td>
<td>Core</td>
<td>L T P C CIA SEE Total</td>
<td>3 1 - 4 30 70 100</td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: 45 Tutorial Classes: 15 Practical Classes: Nil Total Classes: 60

OBJECTIVES:
The course should enable the students to:
I. Understand the nature of stresses developed in simple geometries such as bars, cantilevers, beams, shafts, cylinders and spheres for various types of simple loads.
II. Calculate the elastic deformation occurring in various simple geometries for different types of loading.

MODULE-I FUNDAMENTALS OF MATERIAL SCIENCE Classes: 09
Basic Crystallography- Crystal structure – BCC, FCC and HCP structure – unit cell –crystallographic planes and directions, miller indices. Crystal imperfections, point, line, planar and volume defects – Grain size, ASTM grain size number. Frank Reed source of dislocation Elastic & plastic modes of deformation, slip & twinning, strain hardening, seasons cracking, Bauschinger’s effect, yield point phenomenon, cold/hot working, recovery, re-crystallization, and grain growth, strengthening of metals.

MODULE -II ALLOYS AND PHASE DIAGRAMS Classes: 09

MODULE-III SIMPLE STRESSES AND STRAINS, PRINCIPAL STRESSES Classes: 09
- Hooke’s law, stress and strain- tension, compression and shear stresses elastic constants and their relations
Volumetric, linear and shear strains- principal stresses and principal planes- Mohr’s circle.

MODULE -IV SHEAR FORCE AND BENDING MOMENT DIAGRAMS, FLEXURAL STRESSES, SHEAR STRESSES Classes: 09
Beams and types transverse loading on beams- shear force and bend moment diagrams- Types of beam supports, simply supported and over-hanging beams, cantilevers. Theory of bending of beams, bending stress distribution and neutral axis, shear stress distribution, point and distributed loads.

MODULE -V SLOPE & DEFLECTION Classes: 09
Moment of inertia about an axis and polar moment of inertia, deflection of a beam using double integration method, computation of slopes and deflection in beams, Maxwell’s reciprocal theorems.

Text Books:

<table>
<thead>
<tr>
<th>References</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Web References:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. https://www.youtube.com/watch?v=whB7IX3NQpg&list=PL49866E92803B242C</td>
</tr>
<tr>
<td>2. https://www.youtube.com/watch?v=vidZ1p82oCg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-Text Book:</th>
</tr>
</thead>
</table>
OBJECTIVES:
The course should enable the students to:
I. Apply the dynamic programming to solve problems of discreet and continuous variables.
II. Apply the concept of non-linear programming.
III. Complex problem analysis to be carried out to identify the sensitivity of project.
IV. Model the real world problem and simulate it.

MODULE-I DEVELOPMENT OF O.R AND ALLOCATION

MODULE-II TRANSPORTATION AND ASSIGNMENT

MODULE-III SEQUENCING AND REPLACEMENT
Sequencing Introduction: Flow, Shop sequencing, n jobs through two machines, n jobs through three machines, Job shop sequencing, two jobs through ‘m’ machines.

Replacement: Introduction: Replacement of items that deteriorate with time, when money value is not counted and counted, Replacement of items that fail completely, Group Replacement.

MODULE-IV THEORY OF GAMES AND INVENTORY
Theory Of Games: Introduction – Terminology, Solution of games with saddle points and without saddle points, 2×2 games, dominance principle, m X 2 & 2 X n games, Graphical method. Inventory: Introduction, Single item, Deterministic models, Purchase inventory models with one price break and multiple price breaks, Stochastic models, demand may be discrete variable or continuous variable, Single period model and no setup cost.

MODULE-V WAITING LINES, DYNAMIC PROGRAMMING AND SIMULATION
Text Books:

Reference Books:

Web References:

1. https://www.aicte-india.org/flipbook/p&ap/Vol.%20II%20UG/UG_2.html#p=8
2. https://www.britannica.com/topic/operations-research

E-Text Books:

OBJECTIVES:
The courses should enable the students to:

I. Understand the basic principles of fluid mechanics.
II. Apply Bernoulli equation for fluid flow.
III. Determine co-efficient of discharge.
IV. Evaluate the performance of hydraulic turbines.
V. Understand the functioning and characteristic curves of pumps.

LIST OF EXPERIMENTS

Week-1
CALIBRATION OF FLOW METERS
Determination of coefficient of discharge \(C_d\) and generation of various characteristic curves for water flowing through venturimeter
Determination of coefficient of discharge \(C_d\) and generation of various characteristic curves for water flowing through Orifice meter.

Week-2
DETERMINATION OF FRICTION FACTOR
Determination of friction factor for a given pipe line.

Week-3
BERNOULLI’S THEOREM
Verification of Bernoulli’s theorem.

Week-4
PERFORMANCE TEST ON REACTION TURBINES
Performance Test on Francis Turbine and generate various characteristic curves.
Performance Test on Kaplan wheel and generate various characteristic curves.

Week-5
PERFORMANCE TEST ON IMPULSE TURBINE
Performance test on Pelton wheel and generate various characteristic curves.

Week-6
PERFORMANCE TEST ON POSITIVE DISPLACEMENT PUMP
Performance Test on Reciprocating Pump and generate various characteristic curves.

Week-7
PERFORMANCE TEST ON ROTODYNAMIC PUMPS
Performance Test on Centrifugal Pumps and generate various characteristic curves.

Week-8
IC Engines Valve/Port timing diagram
Drawing valve and port timing diagram for 4-stroke diesel and 2-stroke petrol engine respectively.
<table>
<thead>
<tr>
<th>Week</th>
<th>Activity</th>
</tr>
</thead>
</table>
| Week-9 | IC Engine performance test for 4-stroke SI Engine
Performance test for 4-stroke SI engine and draw performance curves |
| Week-10 | IC Engine performance test on 4-Stroke CI engine
Performance Test on 4-stroke CI engine and to draw the performance curves |
| Week-11 | Performance Test on Air Compressor Unit
Volumetric Efficiency of Reciprocating Air compressor unit |
| Week-12 | Performance test on Variable Compression Ratio (VCR) engine
Performance Test on CI engine when the compression ratio is changing. |
| Week-13 | Examination |

Reference Books:

Web References:

1. https://docs.google.com/document/d/1UaDrm0pnHgd8GnN7dAcXM6EikgqAD7BU-0d52VFZz1w/edit
2. http://www.iare.ac.in
OBJECTIVES:
The course will enable the students to:
I. Determination of mechanical properties of different materials.
II. Establish the constitutive relations in metals using destructive methods.
III. Understand the behavior of members during twisting and transverse loading.
IV. Familiarize with standard test specimens.
V. Prepare samples for investigating microstructure of different materials.

LIST OF EXPERIMENTS

Week-1 MICROSTRUCTURE OF PURE METALS
Preparation and study of the microstructure of pure metals like iron, Cu, and Al.

Week-2 MICROSTRUCTURE OF STEELS
Preparation and study of the microstructure of mild steels, low carbon steels, high-C steels.

Week-3 MICROSTRUCTURE OF CAST IRON
Study of the microstructures of cast irons.

Week-4 MICROSTRUCTURE OF NON FERROUS ALLOYS
Study of the microstructures of non-ferrous alloys.

Week-5 MICROSTRUCTURE OF HEAT TREATED STEELS
Study of the microstructures of heat treated steels.

Week-6 HARDENABILITY OF STEELS
Hardenability of steels by Jominy end quench test.

Week-7 HARDNESS OF STEELS
To find out the hardness of various treated and untreated steels.

Week-8 TENSION TEST
To find % of elongation and Young’s modulus of a material.
<table>
<thead>
<tr>
<th>Week</th>
<th>Test Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week-9</td>
<td>TORSION TEST</td>
</tr>
<tr>
<td></td>
<td>To find the torsional rigidity of a material.</td>
</tr>
<tr>
<td>Week-10</td>
<td>HARDNESS TEST</td>
</tr>
<tr>
<td></td>
<td>a) Brinell’s hardness test.</td>
</tr>
<tr>
<td></td>
<td>b) Rockwell hardness test.</td>
</tr>
<tr>
<td>Week-11</td>
<td>SPRING TEST</td>
</tr>
<tr>
<td></td>
<td>Testing on compressive and elongation springs.</td>
</tr>
<tr>
<td>Week-12</td>
<td>COMPRESSION TEST</td>
</tr>
<tr>
<td></td>
<td>Compression test on springs.</td>
</tr>
<tr>
<td>Week-13</td>
<td>IMPACT TEST</td>
</tr>
<tr>
<td></td>
<td>a) Charpy.</td>
</tr>
<tr>
<td></td>
<td>b) Izod test.</td>
</tr>
<tr>
<td>Week-14</td>
<td>SHEAR TEST</td>
</tr>
<tr>
<td></td>
<td>Punch shear test on aluminium sheet.</td>
</tr>
</tbody>
</table>

Text Books:

Web References:

1. http://www.iare.ac.in
OBJECTIVES:
The course should enable the students to:

I. Understand the basic concepts of Python programming.
II. Apply Python programming skills in solving matrix operations.
III. Apply Python concepts in solving linear programming problems.
IV. Apply optimization techniques through TORA.
V. Evaluate optimization problems using Lingo/Excel solver.

LIST OF EXPERIMENTS

Week-1 MATRIX OPERATIONS
Write a Python program to find out when given an array of size N, the task is to partition the given array into two subsets such that the average of all the elements in both subsets is equal. If no such partition exists print -1. Otherwise, print the partitions. If multiple solutions exist, print the solution where the length of the first subset is minimum. If there is still a tie then print the partitions where the first subset is lexicographically smallest.

Week-2 MATRIX OPERATIONS
Write a Python program to find out when given an array of positive elements, you have to flip the sign of some of its elements such that the resultant sum of the elements of array should be minimum non-negative (as close to zero as possible). Return the minimum no. of elements whose sign needs to be flipped such that the resultant sum is minimum non-negative. Note that the sum of all the array elements will not exceed 10^4.

Week-3 MINIMUM COST PATH
Given a cost matrix $cost[i][j]$ and a position (m, n) in $cost[i][j]$, write a function that returns cost of minimum cost path to reach (m, n) from $(0, 0)$. Each cell of the matrix represents a cost to traverse through that cell. Total cost of a path to reach (m, n) is sum of all the costs on that path (including both source and destination). You can only traverse down, right and diagonally lower cells from a given cell, i.e., from a given cell (i, j), cells $(i+1, j)$, $(i, j+1)$ and $(i+1, j+1)$ can be traversed. You may assume that all costs are positive integers.

Week-4 FINDING MAXIMUM IN AN INTEGER ARRAY
Write a Python program to find out when given an array of non-negative integers $arr[]$, the task is to find a pair (n, r) such that n^r is maximum possible and $r \leq n$.

Week-5 ARRAY SORTING
Write a Python program to find out when given an array $arr[]$ of N integers, the task is to sort the array in non-decreasing order by performing the minimum number of operations. In a single operation, an element of the array can either be incremented or decremented by 1. Print the minimum number of operations required.
Week-6 | LINEAR PROGRAMMING PROBLEM

A store sells men's and women's tennis shoes. It makes a profit of $1 per pair of men's shoes and $1.20 per pair of women's shoes. It takes two minutes of a salesperson's time and two minutes of a cashier's time to sell a pair of men's shoes. It takes three minutes of a salesperson's time and one minute of a cashier's time per pair of women's shoes. The store is open eight hours per day, during which time there are two salespersons and one cashier on duty. How many pairs of shoes of each type should the store sell in order to maximize profit each day?

Week-7 | QUEUING PROBLEM

A supermarket has two girls ringing up sales at the counters. If the service time for each customer is exponential with mean 4 minutes, and if people arrive 3 in a poison fashion at the 10/hour.

a. What is the probability of having to wait for the service?

b. What is the expected percentage of idle time for each girl?

c. Find the average length and average number of units in the system.

Week-8 | SEQUENCING PROBLEM

We have five jobs each of which must go through two machines in the order BA, processing times are given in the table below.

<table>
<thead>
<tr>
<th>Job No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine A</td>
<td>10</td>
<td>2</td>
<td>18</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>Machine B</td>
<td>4</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>8</td>
</tr>
</tbody>
</table>

Determine a sequence for the five jobs that will minimize the total elapsed time. Also compute idle times for each of the machine.

Week-9 | GAME THEORY

Using the dominance property obtain the optimal strategy for both the players and determine the value of game. The payoff matrix for player A is given

<table>
<thead>
<tr>
<th>Player - B</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>II</td>
</tr>
<tr>
<td>III</td>
</tr>
<tr>
<td>IV</td>
</tr>
</tbody>
</table>

Week-10 | ASSIGNMENT PROBLEM

A company has three plants at locations A, B, and C which supply to warehouses located at D, E, F, G, and H. Monthly plant capacities are 800, 500, and 900 respectively. Monthly warehouse requirements are 400, 500, 400, and 800 units respectively. Unit transportation cost in rupees is given below.

<p>| Plant | Warehouses |
|---|---|---|---|---|---|</p>
<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>5</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

Determine an optimum distribution for the company in order to minimize the total transportation cost.
Week-11
DYNAMIC PROGRAMMING PROBLEM

Given an array `arr[]` of `N` integers, the task is to sort the array in non-decreasing order by performing the minimum number of operations. In a single operation, an element of the array can either be incremented or decremented by 1. Print the minimum number of operations required.

Week-12
INVENTORY PROBLEM

A dealer supplies you the following information with regards to an product that he deals in annual demand =10,000 units, ordering cost Rs.10/order, Price Rs.20/unit. Inventory carrying cost is 20% of the value of inventory per year. The dealer is considering the possibility of allowing some back orders to occurs. He has estimated that the annual cost of back ordering will be 25% of the value of inventory.

a. What should be the optimum no of units he should buy in 1lot?
b. What qty of the product should be allowed to be backordered?
c. What would be the max qty of inventory at any time of year?

Would you recommend to allow backordering? If so what would be the annual cost saving by adopting the policy of backordering.

Week-13
EXAMINATIONS

Examinations

Text Books

Reference Books

Web References

2. https://www.programiz.com/python-programming/examples/multiply-matrix
MANUFACTURING TECHNOLOGY

<table>
<thead>
<tr>
<th>V Semester: ME</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB16</td>
<td>Core</td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Contact Classes: 45</td>
<td>Tutorial Classes: Nil</td>
<td>Practical Classes: Nil</td>
<td>Total Classes: 45</td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIVES:
The course should enable the students to:
I. Visualize the generation of surface profiles using the relative motion between directrix and generatrix.
II. Understand the basic mechanism involved in metal cutting processes using different cutting tools.
III. Understand the measurement of different attributes of metal cutting using various measuring instruments.
IV. Analyze surface topography, establish geometrical dimensioning and tolerance.

MODULE-I BASIC MECHANISM OF METAL CUTTING Classes: 09
Elementary treatment of metal cutting theory, element of cutting process, geometry of single point tool and angles chip formation and types of chips, built up edge and its effects, chip breakers: Mechanics of orthogonal cutting, Merchant's force diagram, cutting forces, cutting speeds, feed, depth of cut, tool life, coolants, machinability, tool materials.

MODULE-II MACHINE TOOL-I Classes: 09
Engine lathe, Principle, specification, types, work and tool holding devices, Automatic lathes, classification: Single spindle and multi-spindle automatic lathes and its tool layouts; Shaping, slotting and planning machines, Principles of working, specification, operations performed, Kinematic scheme.

MODULE-III MACHINE TOOLS-II Classes: 09
Milling machine, classifications, specifications, working principles of milling machines; Geometry of milling cutters, methods of indexing, kinematic scheme of milling machines; Drilling and boring machines, principles of working, specifications, types, operations performed, twist drill; Kinematics scheme of the drilling and boring machines.

MODULE-IV GEOMETRICAL DIMENSIONING AND TOLERANCES Classes: 09
Systems of Limits and Fits: Introduction, normal size, tolerance limits, deviations, allowance, fits and their types, unilateral and bilateral tolerance system, hole and shaft basis systems, Interchangeability and selective assembly.
Linear Measurement: Slip gauges, dial indicator, micrometers; Measurement of angles and tapers: Bevel protractor, angle slip gauges, spirit levels, sine bar.

MODULE-V MEASURING INSTRUMENTS Classes: 09
Optical measuring instruments: Tool maker's microscope and its uses, collimators, optical projector, interferometer; Screw thread measurement: Element of measurement, errors in screw threads, measurement of effective diameter, angle of thread and thread pitch, profile thread gauges; Surface roughness measurement: Numerical assessment of surface finish: CLA, R.M.S Values, R_z values, methods of measurement of surface finish: profilograph, talysurf - ISI symbol for indication of surface finish.
Text Books:

Reference Books:

Web References:

1. http://www.me.iitb.ac.in/~ramesh/courses/ME338/metrology1.pdf

E-Text Book:

DYNAMICS OF MACHINERY

V Semester: ME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB17</td>
<td>Core</td>
<td>L T P C CIA SEE Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 1 - 3</td>
<td>30 70 100</td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: 30 Tutorial Classes: 15 Practical Classes: Nil Total Classes: 45

OBJECTIVES:
The course should enable the students to:
I. Understand the concept of equilibrium of a body subjected to static and dynamic forces.
II. Apply the phenomenon of friction for automobile application.
III. Analyze the significance of governors and its application in turning moment diagram.
IV. Determine the fundamental frequency of mechanical system.

MODULE-I PRECESION, STATIC AND DYNAMIC FORCE ANALYSIS OF PLANAR MECHANISMS
Classes : 09
Precession: Gyroscopes, effect of processional motion on the stability of moving vehicles such as motor car, motor cycle, aero-planes and ships, static and dynamic force analysis of planar mechanisms: (Neglecting friction). Introduction to free body diagrams, conditions of equilibrium, two and three force members, inertia forces and D’Alembert’s principle, planar rotation about a fixed centre.

MODULE-II CLUTCHES, BRAKES AND DYNAMOMETERS
Classes : 09
Clutches: Friction clutches, Single disc or plate clutch, multiple disc clutches, cone clutch and centrifugal clutch; Brakes and dynamometers: Simple block brakes, internal expanding brake, band brake of vehicle; Dynamometers absorption and transmission types, general description and method of operation.

MODULE-III TURNING MOMENT AND GOVERNORS
Classes : 09
Turning moment diagrams and flywheels: turning moment: Inertia torque, angular velocity and acceleration of connecting rod, crank effort and torque diagrams, fluctuation of energy; Design of flywheels.
Governors: Watt, Porter and Proell governors, spring loaded governors, Hartnell and Hartung with auxiliary springs, sensitiveness, isochronism and hunting.

MODULE-IV BALANCING OF ROTATORY AND RECIPROCATING MASSES
Classes: 09
Balancing: Balancing of rotating masses, single and multiple-single and different planes-balancing of reciprocating masses, primary and secondary balancing-analytical and graphical methods; unbalanced forces and couples: Balancing of V-engines, multi cylinder, inline and radial engines for primary, secondary balancing and locomotive balancing.

MODULE-V MECHANICAL VIBRATIONS
Classes : 09
Vibrations: Free vibration of mass attached to a vertical spring, simple problems on forced damped vibration; Vibration isolation and transmissibility, whirling of shafts, critical speeds, torsional vibrations, two and three rotor systems.

Text Books:
Reference Books:

Web References:

E-Text Book:

1. https://drive.google.com/file/d/ob7raaoEF40D7eEJIR1voODJodFE/edit
APPLIED THERMODYNAMICS - II

V Semester: ME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB18</td>
<td>Core</td>
<td>L T P C CIA SEE Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 1 - 3 30 70 100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: 30 Tutorial Classes: 15 Practical Classes: Nil Total Classes: 45

OBJECTIVES:
I. Visualize the construction and working of internal combustion engines, compressors and refrigeration systems.
II. Compare the ideal and real working of thermodynamic cycles for performance evaluation.
III. Understand the subsystems of internal combustion systems.
IV. Evaluate different refrigeration systems and air-conditioning systems using p-h charts.

MODULE-I I C ENGINES Classes: 09

I. C Engines: Four and two stroke engine, SI and CI engines, valve and port timing diagrams, fuel injection systems for SI engines, fuel injection systems for CI engines, ignition systems, cooling and lubrication system, fuel properties and combustion, stoichiometry.

MODULE-II COMBUSTION IN S I ENGINES AND CI ENGINES Classes: 09

Combustion in SI engines and CI engines: Normal combustion and abnormal combustion, importance of flame speed and effect of engine variables, type of abnormal combustion, pre-ignition and knocking, fuel requirements and fuel rating, anti knock additives, combustion chamber, requirements, types; Combustion in CI Engines: Four stages of combustion, delay period and its importance, effect of engine variables, diesel Knock, need for air movement, open and divided combustion chambers and nozzles used, fuel requirements and fuel rating.

MODULE-III TESTING AND PERFORMANCE Classes: 09

Testing and performance: Parameters of performance, measurement of cylinder pressure, fuel consumption, air intake, exhaust gas composition, brake power, determination of frictional losses and indicated power, performance test, heat balance sheet and chart; Compressors: Classification, of compressors, fans, blower and compressor, positive displacement and dynamic types, reciprocating and rotary types.

MODULE-IV ROTARY, DYNAMIC AND AXIAL FLOW Classes: 09

Rotary, dynamic and axial flow (positive displacement): Roots blower, vane sealed compressor, mechanical details and principle of working efficiency considerations; Centrifugal compressors: mechanical details and principle of operation, velocity and Pressure variation, Energy transfer, impeller blade shape-losses, slip factor, and power input factor, pressure coefficient and adiabatic coefficient, velocity diagrams, power; Axial flow compressors: Mechanical details and principle of operation, velocity triangles and energy transfer per stage degree of reaction, work done factor, isentropic efficiency, pressure rise calculations, polytropic efficiency.

MODULE-V REFRIGERATION Classes: 09

Refrigeration: Mechanical refrigeration and types, units of refrigeration, air refrigeration system, details and principle of operation, applications of air refrigeration, vapour compression refrigeration systems, calculation of COP, effect of superheating and sub cooling, desired properties of refrigerants and common refrigerants, vapour absorption system, mechanical details, working principle, use of p-h charts for calculations.
Text Books:

Reference Books:

Web References:

2. http://www.nptel.ac.in/courses/112106133/

E-Text Book:

BUSINESS ECONOMICS AND FINANCIAL ANALYSIS

III Semester: CSE / IT | V Semester: EEE / CE / MECH | VI Semester: ECE

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHSB14</td>
<td>Core</td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

OBJECTIVES:
The course should enable the students to:
I. Understand the market dynamics namely demand elasticity of demand and pricing in different market structures.
II. Analyze how capital budgeting decisions are carried out for selecting the best investment proposal.
III. Learn how organizations make important investment and financing decisions.
IV. Analyze a company’s financial statements and come to a reasoned conclusion about the financial situation of the company.
V. Acquire the basics of how to analyze and interpret the financial statements through ratio analysis.

MODULE – I INTRODUCTION AND DEMAND ANALYSIS Classes: 07
Definition, nature and scope of business economics; Demand analysis; Demand determinants, law of demand and its exceptions; Elasticity of demand: Definition, types, measurement and significance of elasticity of demand, demand forecasting, factors governing demand forecasting.

MODULE – II PRODUCTION AND COST ANALYSIS Classes: 10
Production function; Isoquants and isocosts, MRTS, least cost combination of inputs, Cobb-Douglas production function, internal and external economies of scale, cost analysis; Cost concepts: Break even analysis (BEA), determination of break-even point (simple problems), managerial significance.

MODULE – III MARKETS AND NEW ECONOMIC ENVIRONMENT Classes: 08
Types of competition and markets, features of perfect competition, monopoly and monopolistic competition, price-output determination in case of perfect competition and monopoly business.
Features and evaluation of different forms of business organizations: Sole proprietorship, partnership, joint stock company, public enterprises and their types.

MODULE – IV CAPITAL BUDGETING Classes: 10
Capital and its significance, types of capital, estimation of fixed and working capital requirements, methods and sources of raising capital, capital budgeting: features of capital budgeting proposals; Methods of capital budgeting: Payback period, accounting rate of return(ARR), net present value method and internal rate of return method (simple problems).

MODULE – V INTRODUCTION TO FINANCIAL ACCOUNTING AND FINANCIAL ANALYSIS Classes: 10
Financial accounting objectives, functions, importance; Accounting concepts and accounting conventions - double-entry book keeping, journal, ledger, trial balance; Final accounts: Trading account, profit and loss account and balance sheet with simple adjustments; Financial analysis: Analysis and interpretation of liquidity ratios, activity ratios, capital structure ratios and profitability ratios (simple problems), Du Pont chart.
Text Books:

Reference Books:

Web References:

4. https://www.gvpce.ac.in/syllabi/Managerial Economics and financial analysis

E-Text Book:

1. https://books.google.co.in/books/about/Managerial economics and financial analysis
4. http://books.google.com/books/about/Managerial economics and financial analysis
V Semester: ME

Course Code	Category	Hours / Week	Credits	Maximum Marks
AMEB19 | Core | L | T | P | C | CIA | SEE | Total |
-------------|----------|---|---|---|---|-----|-----|-------|
 | | | | 2 | 1 | 30 | 70 | 100 |
Contact Classes: Nil | Tutorial Classes: Nil | Practical Classes: 24 | Total Classes: 24

OBJECTIVES:
The courses should enable the students to:
I. Hands on experience on lathe machine to perform turning, facing, threading operations.
II. Practical exposure on flat surface machining, milling and grinding operations.
III. Skill development in drilling and threading operations.
IV. Linear and angular measurements exposure.
V. Create awareness on various mechanical measuring instruments.

LIST OF EXPERIMENTS

<table>
<thead>
<tr>
<th>Week-1</th>
<th>Lathe Machine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Step turning, taper turning, Thread cutting and knurling using lathe machine</td>
</tr>
<tr>
<td>Week-2</td>
<td>Screw Thread Measurement</td>
</tr>
<tr>
<td></td>
<td>Screw thread measurement by Three wire method</td>
</tr>
<tr>
<td>Week-3</td>
<td>Drilling and step boring</td>
</tr>
<tr>
<td></td>
<td>Drilling, tapping and step boring using drilling machine.</td>
</tr>
<tr>
<td>Week-4</td>
<td>Surface Roughness Measurement</td>
</tr>
<tr>
<td></td>
<td>Surface roughness measurement by Talysurf</td>
</tr>
<tr>
<td>Week-6</td>
<td>Shaping</td>
</tr>
<tr>
<td></td>
<td>Shaping of V groove using shaper.</td>
</tr>
<tr>
<td>Week-7</td>
<td>Slotting</td>
</tr>
<tr>
<td></td>
<td>Slotting of a keyway using slotter machine</td>
</tr>
<tr>
<td>Week-8</td>
<td>Milling and Surface Grinding</td>
</tr>
<tr>
<td></td>
<td>Milling of gear and Surface Grinding</td>
</tr>
<tr>
<td>Week-9</td>
<td>Vernier Calipers and Micrometer</td>
</tr>
<tr>
<td></td>
<td>Length, Depth, Diameter measuring using vernier calipers and micrometer.</td>
</tr>
<tr>
<td>Week-10</td>
<td>Bore Gauge</td>
</tr>
<tr>
<td></td>
<td>Bore measurement using bore gauge</td>
</tr>
<tr>
<td>Week-11</td>
<td>Gear Teeth Caliper</td>
</tr>
<tr>
<td></td>
<td>Use of gear teeth caliper for checking the chordal addendum and chordal height of spur gear.</td>
</tr>
<tr>
<td>Week-12</td>
<td>Angle And Taper Measurements</td>
</tr>
<tr>
<td></td>
<td>Angle and taper measurements using Bevel protractor, Sine bar and slip gauges.</td>
</tr>
<tr>
<td>Week-13</td>
<td>Review</td>
</tr>
<tr>
<td></td>
<td>Spare session for additional repetitions and review.</td>
</tr>
<tr>
<td>Week-14</td>
<td>Examinations</td>
</tr>
</tbody>
</table>

Text Books:

Web References:

1. https://ocw.mit.edu/courses/mechanical-engineering/
2. nptel.ac.in/courses/112106138/
3. www.nptel.ac.in/courses/112106139/
4. nptel.ac.in/courses/112105126/
THEORY OF MACHINES LABORATORY

V Semester: ME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB20</td>
<td>Core</td>
<td>L T P C CIA SEE Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- - 2 1</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>100</td>
</tr>
</tbody>
</table>

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 24 Total Classes: 36

OBJECTIVES:
The course should enable the students to:
I. Understand the basic principles of kinematics and the related terminology of machines.
II. Discriminate mobility; enumerate links and joints in the mechanisms.
III. Formulate the concept of analysis of different mechanisms.

LIST OF EXPERIMENTS

Week-1 GOVERNORS
1. Governor apparatus

Week-2 GYROSCOPE
2. Gyroscope apparatus

Week-3 STATIC FORCE ANALYSIS
3. Static Force analysis

Week-4 DYNAMIC FORCE ANALYSIS
4. Dynamic Force analysis

Week-5 BALANCING
5. Balancing of reciprocating masses

Week-6 BEARINGS
6. Journal bearing apparatus

Week-7 VIBRATIONS
7. Universal vibration apparatus

Week-8 WHIRLING
8. Whirling of shaft apparatus

Week-9 MECHANISMS
9. Various commonly used mechanisms and its inversions in machines

Week-10 DIFFERENTIAL
10. Demonstration of automobile differential gear box.

Week-11 INDEXING

Week-12 EXAMINATIONS

Text Books:
HEAT TRANSFER

VI Semester: ME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB21</td>
<td>Core</td>
<td>L T P C CIA SEE Total</td>
<td>3 - - 3 30 70 100</td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

OBJECTIVES:
The course should enable the students to:
I. Understand the basic forms of heat transfer like conduction, convection and radiation and build a strong foundation.
II. Understand the governing equations and solution procedures of various forms of heat transfer and solve practical problems using empirical correlations.
III. Understand the construction and working of heat exchangers.
IV. Analyze the concepts of boiling and condensation by the effect of phase change.

MODULE-I INTRODUCTION TO HEAT TRANSFER Classes : 09

Modes and mechanisms of heat transfer, basic laws of heat transfer, applications of heat transfer; conduction heat transfer: Fourier rate equation, general three dimensional heat conduction equations in cartesian, cylindrical and spherical coordinates; Simplification and forms of the field equation, steady and unsteady and periodic heat transfer, initial and boundary conditions.

MODULE-II CONDUCTION HEAT TRANSFER Classes : 09

One dimensional steady state conduction heat transfer: Homogeneous slabs, hollow cylinders and spheres, overall heat transfer coefficient, electrical analogy, Critical radius of insulation; one dimensional steady state conduction; heat transfer: with variable thermal conductivity, extended surfaces (Fins) long, short and insulated tips; significance of Biot and Fourier numbers, chart solutions of transient conduction systems.

MODULE-III CONVECTIVE HEAT TRANSFER Classes: 09

Buckingham Pi Theorem and method, application for developing semi, empirical non-dimensional correlation for convection heat transfer, significance of non-dimension numbers, concepts of continuity, momentum and energy equations; free convection: Development of hydrodynamic and thermal boundary layer along a vertical plate, use of empirical relations for vertical plates and pipes.

Forced convection: external flows: Concepts of hydrodynamic and thermal boundary layer and use of empirical correlations for convective heat transfer, flat plates and cylinders; Internal flows, Concepts about Hydrodynamic and thermal entry lengths, division of internal flows based on this, use of empirical correlations for horizontal pipe flow and annulus flow.

MODULE-IV RADIATION HEAT TRANSFER Classes: 09

Emission characteristics, laws of black-body radiation, Irradiation, total and Monochromatic quantities, laws of Planck, Wien, Kirchhoff, Lambert, Stefan and Boltzmann, heat exchange between two black bodies, concepts of shape factor, emissivity, heat exchange between grey bodies, radiation shields, electrical analogy for radiation networks.

MODULE-V HEAT EXCHANGERS AND PHASE CHANGE Classes : 09

Classification of heat exchangers, overall heat transfer Coefficient and fouling factor, Concepts of LMTD and NTU methods, Problems using LMTD and NTU methods. Boiling: Pool boiling-regimes Calculations on Nucleate boiling, Critical heat flux, Film boiling; Condensation: Film wise and drop wise condensation, Nusselt’s theory of condensation on a vertical plate Film condensation on vertical and horizontal cylinders using empirical correlations.
Text Books:

Reference Books:

Web References:

1. https://nptel.ac.in/courses/112101097/

E-Text Book:

1. https://b-ok.cc/book/539558/504c7c
2. https://b-ok.cc/book/454490/e8f467
FINITE ELEMENT METHODS

VI Semester: ME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB22</td>
<td>Core</td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

Contact Classes: 30
Tutorial Classes: 15
Practical Classes: Nil
Total Classes: 45

OBJECTIVES:
The course should enable the students to:

I. Select and apply numerical methods to solve engineering problems.

II. Discretize the given continuum and problem formulation using constitutive relations.

III. Apply FEM techniques to solve engineering problems (both vector and scalar) involving various fields for design, analysis and optimization.

IV. Understand to refine the approximate solution by spending more computational effort by using higher order interpolation continuities.

MODULE-I
INTRODUCTION TO FEM
Classes : 09

MODULE-II
ANALYSIS OF TRUSSES AND BEAMS
Classes : 09

Analysis of Trusses Stiffness matrix for plane Truss Elements, stress calculations and problems Analysis of beams: Element stiffness matrix for two nodes, two degrees of freedom per node beam element and simple problems. Problems

MODULE-III
2-D ANALYSIS
Classes: 09

Finite element modeling of two dimensional stress analysis with constant strain triangles and treatment of boundary conditions. Estimation of load Vector, stresses;
Finite element modeling of Axisymmetric solids subjected to Axisymmetric loading with triangular elements. Two dimensional four nodded isoparametric elements.

MODULE-IV
STEADY STATE HEAT TRANSFER ANALYSIS
Classes: 09

MODULE-V
DYNAMIC ANALYSIS
Classes : 09

Dynamic Analysis: Dynamic equations, lumped and consistent mass matrices, eigen Values and Eigen Vectors for a stepped bar, beam; Finite element, formulation to 3D problems in stress analysis, convergence requirements, mesh generation, techniques such as semi automatic AND fully automatic use of software such as ANSYS, NISA, NASTRAN.

Text Books:

Reference Books:

Web References:

1. https://www.google.co.in/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=fem%20notes

E-Text Book:

DESIGN OF MACHINE ELEMENTS

VI Semester: ME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Code</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB23</td>
<td>Core</td>
<td>L T P C CIA SEE Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 1 - 3 30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Classes: 30</td>
<td>Tutorial Classes: 15</td>
<td>Practical Classes: Nil</td>
<td>Total Classes: 45</td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIVES:
The course should enable the students to:
I. Understand design and analysis of load transmitting elements and selection of suitable materials and manufacture of these components.
II. Analyze the forces acting on various components and their design.
III. Apply theories of failure and select optimum design size for various machine elements.
IV. Understand the need for joints and their application for different purposes in transmission of static loads.

MODULE-I INTRODUCTION TO THEORY OF FAILURES Classes : 09
Introduction: General considerations in the design of engineering materials and their properties, selection, manufacturing consideration in design, tolerances and fits, BIS codes of steels; Theories of failures, factor of safety design for strength and rigidity, preferred number; Fatigue loading: Stress concentration, theoretical stress concentration factor, fatigue stress concentration factor, notch sensitivity, design for fluctuating stresses, endurance limit, estimation of endurance strength, Goodman’s life, Soderberg’s line.

MODULE-II DESIGN OF FASTENERS Classes : 09
Design of fasteners: Riveted joints, methods of failure of riveted joints, strength equations, efficiency of riveted joints, eccentrically loaded riveted joints; Welded Joints: Design of fillet welds, axial loads, circular fillet welds, bending, bolts of uniform strength.

MODULE-III DESIGN OF KEYS AND JOINTS Classes : 09
Keys, cotters and knuckle joints: Design of keys, stress in keys, cotter joints, spigot and socket.
Sleeve and cotter, jib and cotter joints, Knuckle joints.

MODULE-IV DESIGN OF SHAFTS Classes : 09
Design of Shafts: Design of solid and hollow shafts for strength and rigidity, design of shafts for complex loads, Shaft sizes, BIS code, design of shafts for gear and belt drives; Shaft couplings: Rigid couplings, muff, Split muff and flange couplings, flexible couplings, pin, bush coupling.

MODULE-V DESIGN OF SPRINGS Classes : 09
Mechanical Springs: Stresses and deflections of helical springs, extension compression springs, springs for static and fatigue loading, natural frequency of helical springs, energy storage capacity, helical torsion springs, co-axial springs.
Text Books:

Reference Books:

Web References:

1. http://nptel.ac.in/courses/Webcourse-contents/IIT%20Kharagpur/Machine%20Design1/New_index1.html
2. http://nptel.ac.in/downloads/112105125/
4. http://scoopworld.in/2015/03/design-of-machine-members-dmm-mech.html

E-Text Book:

3. http://only4engineer.com/2014/10/a-textbook-of-machine-design-by.html
HEAT TRANSFER LABORATORY

VI Semester: ME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB24</td>
<td>Core</td>
<td>L T P</td>
<td>C CIA SEE Total</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- - 2</td>
<td>1 30 70 100</td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 24 Total Classes: 24

OBJECTIVES:
The courses should enable the students to:
I. Apply the basic modes of heat transfer and determine constants for different geometrics.
II. Estimate the Performance of parallel and counter flow heat exchangers.
III. Determine Stefan Boltzmann constant-Black body radiation.
IV. Demonstration of application of heat transfer devices-heat pipes.
V. Use of heat transfer data hand book.

List of Experiments

Week-1 Composite slab apparatus-Overall heat transfer coefficient
Calculating the overall heat transfer coefficient for a composite slab

Week-2 Heat transfer through lagged pipe
Determination of thermal conductivity.

Week-3 Heat transfer through concentric sphere
Determination of thermal conductivity.

Week-4 Thermal conductivity of given metal rod
Determination of thermal conductivity.

Week-5 Heat transfer in Pin fin apparatus
Calculate the effectiveness and efficiency of pin fin.

Week-6 Experiment on transient heat conduction
Determination of thermal conductivity in transient mode.

Week-7 Heat transfer in forced convection apparatus
Calculating convective heat transfer coefficient

Week-8 Heat transfer in natural convection apparatus
Calculating convective heat transfer coefficient.

Week-9 Parallel an counter flow heat exchangers
Calculate the effectiveness both experimental and theoretical method

Week-10 Emissivity apparatus
Determination of emissivity of grey and blackbody.

Week-11 Stefan Botlzman apparatus
Determination of Stefan Botlzmann constant and compare its value.

Week-12 Critical heat flux apparatus
Evaluate the critical heat flux value by studying different zones of boiling.

Week-13 Study of heat pipe
Demonstration of heat pipe
<table>
<thead>
<tr>
<th>Week-14</th>
<th>Film and drop wise condensation apparatus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Understanding different methods of condensation</td>
</tr>
<tr>
<td>Text Books:</td>
<td></td>
</tr>
<tr>
<td>Web References:</td>
<td></td>
</tr>
</tbody>
</table>
FLUID THERMAL MODELING AND SIMULATION LABORATORY

VI Semester: ME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB25</td>
<td>Core</td>
<td>L T P C CIA SEE Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- - 2 1 30 70 100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 24 Total Classes: 24

OBJECTIVES:
The courses should enable the students to:
I. Analyze the fluid flow through pipes.
II. Understand the external fluid flow.
III. Apply simulation techniques to heat flow problems.
IV. Evaluate the thermal stresses of real time problems.
V. Demonstrate the 3D Heat conduction for real time problems.

LIST OF EXPERIMENTS

<table>
<thead>
<tr>
<th>Week-1</th>
<th>Internal Pipe Fluid Flow - FEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Internal Pipe flow problem Using theoretical FEM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-2</th>
<th>Internal Pipe Fluid Flow - ANSYS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Analyzing Flow in a System of Pipes using ANSYS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-3</th>
<th>Internal Pipe Fluid Flow - MATLAB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Internal Pipe flow problem using MAT LAB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-4</th>
<th>External Fluid Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Determination of the drag coefficient of a circular cylinder immersed in a uniform fluid stream using ANSYS/Solid Works Flow Simulation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-5</th>
<th>Flow Through Ball Valve</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Flow of water through a ball valve assembly using ANSYS/Solid Works Flow Simulation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-6</th>
<th>Heat Conduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Heat Conduction within a Solid using ANSYS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-7</th>
<th>Temperature Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Temperature distribution in a fin cooled electronic component using ANSYS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-8</th>
<th>3D Heat Conduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3D Heat Conduction within a Solid-Cell Phone using ANSYS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-9</th>
<th>Counter Flow Heat Exchanger</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Calculation of the efficiency of the counter flow heat exchanger using ANSYS/Solid Works Flow Simulation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-10</th>
<th>Conjugate Heat Transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conjugate heat transfer problem using ANSYS/Solid Works Flow Simulation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-11</th>
<th>3D Thermal Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3D Thermal Analysis, Finned Pipe using ANSYS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-12</th>
<th>Thermal Stress Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Thermal stress analysis of piston</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-13</th>
<th>Review of Fluid Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week-14</td>
<td>Review of Thermal Problems</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Text Books:</td>
<td></td>
</tr>
<tr>
<td>Web References:</td>
<td></td>
</tr>
<tr>
<td>1. https://docs.google.com/document/d/1UaDrm0pnHgd8GnN7dAcXM6EikgqAD7BU-0d52VFZz1w/edit</td>
<td></td>
</tr>
<tr>
<td>2. http://www.iare.ac.in</td>
<td></td>
</tr>
</tbody>
</table>
CAD/CAM

VII Semester: ME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB26</td>
<td>Core</td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Contact Classes: 45
Tutorial Classes: Nil
Practical Classes: Nil
Total Classes: 45

OBJECTIVES:

The course should enable the students to:

I. Understand the concept of implementation automation and PLMS in industries practicing CIM.

II. Recognize the need of computer graphics in seamless manufacturing environment.

III. Summarize the historical development of CAD/CAM software and CNC Technology.

IV. Categorize the creation of group technology of part families and end-end utility.

MODULE-I
FUNDAMENTAL CONCEPTS IN CAD
Classes: 09

MODULE-II
GEOMETRICAL MODELLING AND DRAFTING SYSTEMS
Classes: 09

Wire frame modeling- wire frame entities and their definitions, interpolation and approximation of curves, concepts of parametric and non-parametric representation, curve fitting techniques, Characteristics of Bezier and B-spline curves, NURBS.

Surface modeling: Surface modeling entities, Blending functions, Parameterization of surface patch, subdividing. Applications of Surface Modeling.

Solid modeling: Solid modeling entities- Boolean operations, sweep representation, Constructive Solid geometry, Boundary representation, Hybrid Modeling. Applications of Solid Modeling.

MODULE-III
COMPUTER AIDED MANUFACTURING
Classes: 09

Numerical control: NC, NC modes, NC elements, NC machine tools, structure of CNC machine tools, features of machining center, turning center;

CNC part programming: fundamentals, manual part programming methods, computer aided part programming.

MODULE-IV
GROUP TECHNOLOGY, CAPP AND CAQC
Classes: 09

Group technology: Part family, coding and classification, production flow analysis, advantages and limitations, computer Aided Processes Planning, Retrieval type and generative type, terminology in quality control, the computer in QC, contact inspection methods, noncontact inspection methods-optical, noncontact inspection methods-non-optical, computer aided testing, integration of CAQC with CAD/CAM.

MODULE-V
COMPUTER INTEGRATED MANUFACTURING SYSTEMS
Classes: 09

Text Books:

Reference Books:

Web References:

1. http://nptel.ac.in/courses/112102101/
2. http://nptel.ac.in/courses/112102103/

E-Text Book:

OBJECTIVES:
The course should enable the students to:
 I. Visualize the concepts of measurement and dynamic performance characteristics of measuring instruments.
 II. Understand the measurement of typical physical quantities like displacement, temperature, pressure, discharge, and speed.
 III. Comprehend for machine condition monitoring systems by using seismic instruments.
 IV. Develop electronic servo and interfacing systems for analogue to digital measurement.

MODULE-I PRINCIPLES OF MEASUREMENT Classes : 09
Definition, basic principles of measurement, measurement systems, generalized configuration and functional descriptions of measuring instruments examples, dynamic performance characteristics, sources of error, classification and elimination of error.

MODULE-II MEASUREMENT OF DISPLACEMENT, TEMPERATURE, PRESSURE Classes : 09
Measurement of Displacement: Theory and construction of various transducers to measure displacement, piezoelectric, inductive, capacitance, resistance, ionization and Photo electric transducers, Calibration procedures;
Measurement of temperature: Classification ranges, various principles of measurement, expansion, electrical resistance, thermistor, thermocouple, pyrometers, temperature indicators; Measurement of pressure: Modules, classification, different principles used, manometers, piston, bourdon pressure gauges, bellows, diaphragm gauges. low pressure measurement, thermal conductivity gauges, ionization pressure gauges, Mcleod pressure gauge.

MODULE-III MEASUREMENT OF LEVEL, FLOW, SPEED, ACCELERATION AND VIBRATION Classes: 09
Measurement of Level: Direct method, indirect methods, capacitative, ultrasonic, magnetic, cryogenic fuel level indicators, buubler level indicators; Flow measurement: Rotameter, magnetic, ultrasonic, turbine flow meter, hot-wire anemometer, laser doppler anemometer (LDA);
Measurement of Speed: Mechanical tachometers, electrical tachometers, stroboscope, noncontact type of tachometer; Measurement of Acceleration and Vibration: Different simple instruments, principles of seismic instruments, vibrometer and accelerometer using this principle.

MODULE-IV MEASUREMENT OF STRESS – STRAIN, HUMIDITY, FORCE, TORQUE AND POWER Classes: 09
MODULE-V

ELEMENTS OF CONTROL SYSTEMS

Elements of Control Systems: Introduction, importance, classification, open and closed systems, servomechanisms examples with block diagrams, temperature, speed and position control systems.

Text Books:

2. C. Nakra, K. K. Choudhary, “Instrumentation, Measurement & Analysis”, TMH.

Reference Books:

5. Sirohi, Radhakrishna, “Mechanical Measurements”, New Age

Web References:

1. http://nptel.ac.in/courses/112106138/

E-Text Book:

1. http://elearning.vtu.ac.in/newvtuelc/courses/10ME42B.html
OBJECTIVES:
The course should enable the students to:
I. Understand code of drawing practice as per BIS conventions for mechanical elements using CAD software’s.
II. Prepare the 2-D and 3-D drawings using parametric solid software’s as per industry templates.
III. Solve vector and scalar problems for structural and thermal fields using analysis software’s.
IV. Summarize computer aided engineering results with real time problems.

LIST OF EXPERIMENTS

Week 1 | INTRODUCTION TO CATIA
Familiarization and practicing of drawing and modifying commands, template creation, lettering, object snapping and sectioning.

Week 2 | DRAFTING OF SIMPLE 2D DRAWINGS
Prepare the 2D drawings using draw and modify commands for simple geometric assemblies, sectional views for part drawing and assemblies.

Week 3 | SOLID MODELING
Preparing the 2D and 3D models (wire frame, surface and solid models) by using B-REP, CSG. Introduction of Boolean operations. Generation of 2D, 3D models through protrusion, revolve, sweep.

Week 4 | CREATING ORTHOGRAPHIC VIEWS FROM SOLID MODELS
Development of orthographic views for assembly drawings and preparation of bill of materials (IC engine components, Machine tool accessories, Jigs & Fixtures).

Week 5 | INTRODUCTION TO ANSYS
Determination of deflection and stresses in bar.

Week 6 | TRUSSES AND BEAMS
Determination of deflection and stresses in 2D and 3D trusses and beams.

Week 7 | SHELL STRUCTURES
Determination of stresses in 3D and shell structures (one example in each case).

Week 8 | HARMONIC ANALYSIS
Estimation of natural frequencies and mode shapes, harmonic responses of 2D beams.

Week 9 | HEAT TRANSFER ANALYSIS
Steady state heat transfer analysis of plane and axi-symmetric components.

Week 10 | INTRODUCTION TO COMPUTER NUMERICAL CONTROL
Numerical control, functions of a machine tool, concept of numerical control, historical development, definition, advantages of CNC machine tools. Evolution of CNC, advantages of CNC, limitations of CNC, features of CNC, machine control MODULE (MCU) for CNC, classification of CNC machine tools; CNC machining centers: classification, features of CNC machining centers.

Week 11 | CNC TURNING
Fundamentals of CNC programming, Part programming and interpolation techniques, Work piece setting methods, tool setting methods.
<table>
<thead>
<tr>
<th>Week-12</th>
<th>CNC MILLING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamentals of CNC programming, Part programming and interpolation techniques, Machining practice on CNC milling.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-13</th>
<th>CAM SOFTWARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation of part programming through the CAM software package, CAM-CNC programming and execution on milling and turning machines.</td>
<td></td>
</tr>
</tbody>
</table>

Reference Books:

Web Reference:

1. https://mech.iitm.ac.in/Production%20Drawing.pdf
OBJECTIVES:
The course should enable the students to:
I. Configure and calibrate for physical quantities like pressure, temperature, speed, displacement.
II. Experiment for condition monitoring of machine tools and IC engines by using seismic pickup (vibrometer).
III. Study the deflection by using strain gauge on cantilever beam.
IV. Draw the characteristic calibration curves.

LIST OF EXPERIMENTS

Week-1 | CALIBRATION OF CAPACTIVE TRANSDUCER
Calibration of capacitive transducer for angular measurement.

Week-2 | CALIBRATION OF LVDT
Study and calibration of LVDT transducer for displacement measurement.

Week-3 | STUDY OF RESISTANCE TEMPERATURE DETECTOR
Calibration of thermistor, thermocouple, resistance temperature detector

Week-4 | CALIBRATION OF PRESSURE GUAGE AND VACCUM
Calibration of Pressure gauges ,Study and calibration of Mcleod gauge for low pressure.

Week-5 | CALIBRATION OF STRAIN GUAGE
Calibration of strain gauge for temperature measurement.

Week-6 | CALIBRATION OF PHOTO AND MAGNETIC SPEED PICKUP
Study and calibration of photo and magnetic speed pickups for the measurement of speed.

Week-7 | CALIBRATION OF ROTAMETER
Study and calibration of rotameter for flow measurement.

Week-8 | CALIBRATION OF VIBROMETER
Study and use of a Seismic pickup for the measurement of vibration amplitude of an engine bed at various loads.
<table>
<thead>
<tr>
<th>Week-9</th>
<th>CONVENTIONAL REPRESENTATION OF MATERIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conventional representation of parts screw joints, welded joints, springs, gears, electrical, hydraulic and pneumatic circuits, methods of indicating notes on drawings.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-10</th>
<th>LIMITS FITS AND TOLERANCES AND FORM AND POSITIONAL TOLERANCES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Limits, Fits and Tolerances: Types of fits, exercises involving selection, interpretation of fits and estimation of limits from tables; Introduction and indication of form and position tolerances on drawings;</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week-11</th>
<th>SURFACE ROUGHNESS AND ITS INTRODUCTION, DETAILED AND PART DRAWINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Definition, types of surface roughness indication surface roughness obtainable from various manufacturing processes, recommended surface roughness on mechanical components.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week - 12</th>
<th>DETAILED AND PART DRAWINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Drawing of parts from assembly drawings with indications of size, tolerances, roughness, form and position errors, Part drawings using computer aided drafting by CAD software.</td>
</tr>
</tbody>
</table>

Reference Books:

Web References:

1. www.iare.ac.in
PROJECT WORK - I

VII Semester: Common for all branches

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB58</td>
<td>Core</td>
<td>L T P C CIA SEE Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 0 10 5 30 70 100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 150 Total Classes: 150

The object of Project Work I is to enable the student to take up investigative study in the broad field of Electronics & Communication Engineering, either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department on an individual basis or two/three students in a group, under the guidance of a Supervisor. This is expected to provide a good initiation for the student(s) in R&D work. The assignment to normally include:

1. Survey and study of published literature on the assigned topic;
2. Working out a preliminary Approach to the Problem relating to the assigned topic;
3. Conducting preliminary Analysis / Modelling / Simulation/Experiment/Design/Feasibility;
4. Preparing a Written Report on the Study conducted for presentation to the Department;
5. Final Seminar, as oral Presentation before a departmental committee.

PROJECT WORK - II

VIII Semester: Common for all branches

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB59</td>
<td>Core</td>
<td>L T P C CIA SEE Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 0 12 6 30 70 100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: Nil Tutorial Classes: Nil Practical Classes: 180 Total Classes: 180

The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken up under EC P1, either fully theoretical/practical or involving both theoretical and practical work, under the guidance of a Supervisor from the Department alone or jointly with a Supervisor drawn from R&D laboratory/Industry. This is expected to provide a good training for the student(s) in R&D work and technical leadership. The assignment to normally include:

1. In depth study of the topic assigned in the light of the Report prepared under EEP1;
2. Review and finalization of the Approach to the Problem relating to the assigned topic;
3. Preparing an Action Plan for conducting the investigation, including team work;
4. Detailed Analysis / Modelling / Simulation / Design / Problem Solving / Experiment as needed;
5. Final development of product/process, testing, results, conclusions and future directions;
6. Preparing a paper for Conference presentation/Publication in Journals, if possible;
7. Preparing a Dissertation in the standard format for being evaluated by the Department.
8. Final Seminar Presentation before a Departmental Committee.
TURBOMACHINES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB30</td>
<td>Elective</td>
<td>L T P C CIA SEE Total</td>
<td>3 - - 3 30 70 100</td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: 45
Tutorial Classes: Nil
Practical Classes: Nil
Total Classes: 45

OBJECTIVES:
The course should enable the students to:
I. Understand energy transfer and losses in centrifugal compressors, axial fans and steam turbines
II. Classify turbo machines based on impulsive and reaction forces.
III. Estimate energy transfer through a turbo machines equipment.

MODULE -I
INTRODUCTION TO TURBOMACHINES
Classes: 09

MODULE -II
PRINCIPLES OF TURBOMACHINERY
Classes: 09

MODULE -III
FLOW THROUGH AXIAL FLOW FANS
Classes: 09

Slip stream and Blade Element theory for propellers. Performance and characteristics of Axial fans.

MODULE -IV
FLOW THROUGH CENTRIFUGAL COMPRESSORS
Classes: 09

Flow through Centrifugal compressors. Stage velocity triangles, specific work. Forward, radial and backward swept vanes. Enthalpy entropy diagram, degree of reaction, slip factor, efficiency. Vane less and vaned diffuser systems, volute as spiral casing. Surge and stall in compressors.

MODULE -V
AXIAL TURBINES
Classes: 09

Axial turbine stages, stage velocity triangles, work, efficiency, blade loading, flow coefficient. Single stage impulse and reaction turbines, degree of reaction, 50% reaction turbine stage, Radial equilibrium and Actuator disc approach for design of turbine blades. Partial admission problems in turbines. Losses in turbo machines.
Text Books:

Reference Books:

Web References:

1. https://onlinecourses.nptel.ac.in/noc11_mg14

E-Text Book:

2. https://www.researchgate.net/publication/318654507_Turbomachinery_Notes
REFRIGERATION AND AIR-CONDITIONING

PE - I: ME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB31</td>
<td>Elective</td>
<td>L T P C CIA SEE Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 - - 3 30 70 100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

OBJECTIVES:
The course should enable the students to:
I. Familiarize with the terminology associated with refrigeration systems and air conditioning.
II. Understand basic refrigeration processes.
III. Understand the basics of psychrometry and practice of applied psychrometrics.
IV. Acquire the skills required to model, analyse and design different refrigeration as well as air conditioning processes and components.

MODULE - I
INTRODUCTION TO REFRIGERATION
Classes: 8
Basic concepts: MODULE of refrigeration and COP, refrigerators, heat pump, Carnot refrigerator, applications of refrigerators, ideal cycle, deviations of practical (actual cycle) from ideal cycle, construction and use of P-H chart and problems. Classification of refrigeration systems.

MODULE - II
VAPOURCOMPRESSION AND VAPOUR ABSORPTION REFRIGERATION SYSTEMS
Classes: 9
Advanced vapour compression cycles, Refrigerants and their mixtures: properties and characteristics -Ozone depletion and global warming issues. Advanced absorption refrigeration systems and their components.

MODULE - III
REFRIGERATION EQUIPMENT
Classes: 10
System components: Compressors, Condensers, expansion devices and Evaporators; Performance matching of Compressors, Condensers, expansion devices and Evaporators of refrigeration systems.

MODULE - IV
INTRODUCTION TO AIR CONDITIONING
Classes: 10
Review Psychometric Properties and Processes, sensible and latent heat loads, characterization, need for ventilation, consideration of Infiltration, load concepts of RSHF, ASHF, ESHF and ADP; concept of human comfort and effective temperature, comfort air conditioning and cooling load calculations, industrial air conditioning and requirements, Applications of AC systems - Concept of enthalpy potential.

MODULE - V
AIRCONDITIONING EQUIPMENT
Classes: 8
Classification of equipment, Cooling Towers, Filters, Grills and Registers, Air Washers, Evaporative condensers, Cooling and dehumidifying coils.

Text Books:
Reference Books:

Web References:

E-Text Books:

2. engineeringstudymaterial.net/tag/air-conditioning-and-refrigeration-books/
OBJECTIVES:
The course should enable the students to:
I. Understand the sources of energy for power generation.
II. Visualize the intricacies of establishing combustion engine power plants.
III. Apply the knowledge of hydrology, non-conventional energy and nuclear power.
IV. Recognize the economics and environmental aspects.

MODULE -I
INTRODUCTION TO THE SOURCES OF ENERGY
Classes : 09
Introduction to the Sources of Energy: Resources and development of power in India; Steam power plant: Plant layout, Working of different circuits; Fuel and handling equipment, types of coals, coal handling, choice of handling equipment, coal storage, ash handling systems; Combustion process: Properties of coal overfeed and underfeed fuel beds, traveling grate stokers, spreader stokers, retort stokers, pulverized fuel burning system and its components, combustion needs and drought system, cyclone furnace, design and construction, dust collectors, cooling towers and heat rejection, corrosion and feed water treatment.

MODULE -II
INTERNAL COMBUSTION ENGINE PLANT, GAS TURBINE PLANT
Classes : 09
Internal combustion engine plant: Diesel power plant, introduction, internal combustion engines, types, construction, plant layout with auxiliaries, fuel supply system, air starting equipment, lubrication and cooling systems; Gas turbine plant: Introduction, classification, construction, layout with auxiliaries, principles of working of closed and open cycle gas turbines, combined cycle power plants and comparison; Direct energy conversion: solar energy, fuel cells, thermo electric and thermo ionic, MHD generation.

MODULE -III
HYDRO ELECTRIC POWER PLANT, HYDRO PROJECT AND PLANT
Classes: 09
Hydroelectric power plant: Water power, hydro logical cycle, flow measurement, drainage area characteristics, hydro graphs, storage and Poundage, classification of dams and spill ways; Hydro Projects And Plant: Classification typical layouts, plant auxiliaries, plant operation pumped storage plants; Power from Non-Conventional Sources: Utilization of skl-collectors, Principle of working, wind Energy, types, HAWT, VAWT tidal energy.

MODULE -IV
NUCLEAR POWER STATION
Classes: 09
Nuclear Power Station: Nuclear fuel, breeding and fertile materials, nuclear reactor, reactor operation, types of reactors, pressurized water reactor, boiling water reactor, sodium-graphite reactor, fast breeder reactor, homogeneous reactor, gas cooled reactor, radiation hazards and shielding radioactive waste disposal.
Power plant economics and environmental considerations: Capital cost, investment of fixed charges, operating costs, general arrangement of power distribution, load curves, load duration curve, definitions of connected load, maximum demand, demand factor, average load, load factor, diversity factor, related exercises, effluents from power plants and Impact on environment, pollutants and pollution standards, methods of Pollution control.

Text Books:

Reference Books:

Web References:

1. http://www.slideshare.net/mo7amedaboubakr/solar-collector-45031961

E-Text Book:

AUTOMOBILE ENGINEERING

PE - I: ME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credit</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB33</td>
<td>Elective</td>
<td>L T P C CIA SEE Total</td>
<td>3 - - 3 30 70 100</td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes:45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

OBJECTIVES:
The course should enable the students to:

I. Understand the function of various parts of automobile, features of fuel supply systems for S.I and C.I engines.

II. Distinguish the features of various types of cooling, ignition and electrical systems.

III. Identify the merits and demerits of the various transmission and suspension systems.

IV. Recognize the working of various braking and steering systems.

V. Summarize the ways and means of reducing the emissions from automobiles.

MODULE –I INTRODUCTION

Introduction to automobile engineering, chassis and body components, types of automobile engines, engine lubrication, engine servicing; Fuel system; spark ignition engine fuel supply systems, mechanical and electrical fuel pump, filters, carburetor types, air filters, petrol injection, multipoint fuel injection(MPFI) and gasoline direct injection systems; Compression ignition engines fuel supply systems, requirement of diesel injection systems, types of injection systems, direct injection systems, indirect injection (IDI) systems, fuel pump, nozzle, spray formation, injection timing, testing of fuel pumps, CRDI and turbocharged direct injection (TDI) systems.

MODULE -II COOLING SYSTEM

cooling requirements, air cooling, water cooling, thermo, water and forced circulation system, radiators types cooling fan, water pump, thermostat, pressure sealed cooling, antifreeze solutions, intelligent cooling; Ignition system: Function of an ignition system, battery ignition system constructional features of storage, battery, contact breaker points, condenser and spark plug, magneto coil ignition system, electronic ignition system using contact breaker, electronic ignition using contact triggers, spark advance and retard mechanism; Electrical system: Charging circuit, generator, current-voltage regulator, starting system, bendix drive mechanism solenoid switch, lighting systems, automatic high beam control, horn, wiper, fuel gauge, oil pressure gauge, engine temperature indicator.

MODULE -III TRANSMISSION AND SUSPENSIONS SYSTEMS

Transmission system: Clutches, principle, types, cone clutch, single plate clutch, multi plate clutch, magnetic and centrifugal clutches, fluid flywheel, gear box, types, sliding mesh, constant mesh, synchro mesh gear boxes, epicyclic gear box, auto transmission, continuous variable transmission over drive, torque converter, propeller shaft, Hotch-Kiss drive, torque tube drive, universal joint, differential, rear axles, types, wheels and tyres.

Suspension system: Objects of suspension systems, rigid axle suspension system, torsion bar, shock absorber, independent suspension system, air suspension system, Daimler-benz vehicle suspension.
MODULE - IV BRAKING AND STEERING SYSTEMS

| Braking system: Mechanical brakes system, Hydraulic brakes system, Master cylinder, wheel cylinder tandem master cylinder; Requirement of brake fluid, Pneumatic and vacuum brake, anti-skid braking (ABS), regenerative braking; Steering system: Steering geometry, camber, castor, king pin, rake, combined angle, toe-in, toe-out, center point steering, types of steering mechanism, power steering, Hydraulic, electronics, Ackerman steering mechanism, Davis steering mechanism, steering gears types, steering linkages, special steering columns. |

MODULE - V EMISSIONS FROM AUTOMOBILES

| Emissions from Automobiles, Pollution standards national and international, various pollution control techniques: Multipoint fuel injection for spark ignition engines, common rail diesel injection, variable valve timing, closed crank case ventilation, pfc value, EGR value, catalytic converters, catalyst window, lambda probe, energy alternatives, solar, photo-voltaic, hydrogen, biomass, alcohols, LPG, CNG, liquid Fuels and gaseous fuels, hydrogen as a fuel for internal combustion engines, their merits and demerits, standard vehicle maintenance practice. |

Text Books:

Reference Books:

Web References:

1. http://books.google.co.in/books/about/A_Text_Book_of_Automobile.Engineering.html?id=nBVefxD_0a
GAS DYNAMICS

PE -II: ME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB34</td>
<td>Elective</td>
<td>L T P C CIA SEE Total</td>
<td>3 - - 3</td>
<td>30 70 100</td>
</tr>
</tbody>
</table>

Contact Classes: 45
Tutorial Classes: Nil
Practical Classes: Nil
Total Classes: 45

OBJECTIVES:

The course should enable the students to:

I. Understand the features of compressible isentropic flow.
II. Understand the concept of shock with in depth knowledge in normal and oblique shocks.
III. Knowledge of various types of flows and their applications.
IV. Understand the concepts of high temperature gas dynamics and their applications in hypersonic flows.

MODULE -I COMPRESSIBLE FLOW
Classes: 09

Concept of compressible flow, speed of sound, temperature rise, Mach angle, thermodynamics of fluid flow, energy equation, entropy equation, thermal properties, the perfect gas, wave propagation, subsonic and supersonic flows

MODULE -II SHOCKWAVE PROPAGATION
Classes: 09

Fundamental equations, stream tube area-velocity relations, De Laval nozzle, supersonic flow generation, diffusers, equation of motion for a normal shockwave, Hugoniot equation, reflected shockwave, shock tube, oblique shock relations, shock polar, Prandtl-Meyer expansions, reflection and intersection of shockwaves, Mach reflection, shock expansion theory.

MODULE -III 1D, 2D COMPRESSIBLE FLOWS
Classes: 09

Crocco’s theorem, linearization of potential equation, boundary conditions, pressure coefficient, Prandtl-Glauert rule for subsonic, supersonic flows, Von Karman rule for transonic flows,

Hypersonic similarity, critical Mach number, general linear solutions for supersonic flows, flow along a wave shaped wall, two dimensional compressible flows.

MODULE -IV FRICTION FLOW WITH HEAT TRANSFER
Classes: 09

Prandtl-Meyer expansion fan, thermodynamics considerations, reflections, flow in a constant area duct with friction, flow with heating and cooling in ducts, the concepts of characteristics, compatibility relations, theorems for two dimensional flow, design of supersonic nozzle.

MODULE -V HIGH TEMPERATURE GAS DYNAMICS
Classes: 09

Pressure, temperature, velocity and density measurement, compressible flow visualization, high speed wind tunnels, Knudsen number, slip flow, importance of high temperature flows, nature of high temperature flows.

Text Books:

Reference Books:

Web References:

1. https://nptel.ac.in/courses/112103021/

E-Text Book:

1. https://b-ok.cc/book/449653/7ec8b0
2. https://b-ok.cc/book/449803/d9554e
COMPUTATIONAL FLUID DYNAMICS

PE -II: ME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB35</td>
<td>Elective</td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contact Classes:</th>
<th>Tutorial Classes:</th>
<th>Practical Classes:</th>
<th>Total Classes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>Nil</td>
<td>Nil</td>
<td>45</td>
</tr>
</tbody>
</table>

OBJECTIVES:

The course should enable the students to:

I. Understand the knowledge and essential Numerical background of Computational Fluid dynamics
II. Apply and solve the fundamental and applied fluid dynamics governing equations including heat transfer.
III. Learn to Implement numerical schemes and program the same for simple problems of fluid flow and heat transfer.
IV. Develop the computational problem solving skills using commercial software.

MODULE -I

INTRODUCTION TO COMPUTATIONAL FLUID DYNAMICS

- Classes: 09
- Introduction: History and Philosophy of computational fluid dynamics, CFD as a design and research tool, Applications of CFD in engineering, Numerical Methods Programming fundamentals, simple coding techniques for numerical problems.

MODULE -II

GOVERNING EQUATIONS OF FLUID FLOW AND HEAT TRANSFER

- Classes: 09

MODULE -III

PARTIAL DIFFERENTIAL EQUATIONS AND ITS NUMERICAL BEHAVIOUR

- Classes: 09
- The Forms of the governing equations suited for CFD, Conservation form of the equations, shock fitting and shock capturing, Time marching and space marching problems.

MODULE -IV

DISCRETIZATION AND NUMERICAL METHODS OF PDEs

- Classes: 09

MODULE -V

SOLUTION METHODS AND APPLICATIONS OF NUMERICS TO SIMPLE PROBLEMS

- Classes: 09
Text Books:

Reference Books:

Web References:

1. https://nptel.ac.in/courses/112105045/

E-Text Book:
GAS TURBINES AND JET PROPULSION TECHNOLOGY

PE - II: ME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB36</td>
<td>Elective</td>
<td>L T P</td>
<td>C</td>
<td>CIA SEE Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 - -</td>
<td>3</td>
<td>30 70 100</td>
</tr>
</tbody>
</table>

Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

OBJECTIVES:
The course should enable the students to:

I. Understand the fundamentals of gas turbine theory and applications.
II. Ability to calculate the thermal efficiency, thrust power and overall efficiency.
III. Visualize the geometry of inlets, combustors and nozzles in industrial applications.
IV. Analyze the axial flow compressor and turbines, velocity diagram and application in industrial field.

MODULE -I
FUNDAMENTALS OF GAS TURBINE THEORY (Classes: 09)

Thermodynamic Cycles, open closed and semi-closed, parameters of performances, cycle modifications for improvement of performance; Jet Propulsion: Historical sketch-reaction principle, essential features of propulsion devices, thermal engines, classification of energy flow thrust, thrust power and propulsion efficiency, need for thermal jet engines and applications.

MODULE -II
TURBOPROPULSION AND TURBOJET (Classes: 09)

Thermo dynamic cycles, plant layout, essential components, principles of operation, performance evaluation, thrust augmentation and thrust reversal, contrasting with piston engine propeller plant, power and efficiency calculations, turbojet, turbofan, and turboprop engines, ramjet engine, pulse-jet engine, turbo-jet engine, turboprop engine, thrust equation, ram efficiency, thermal efficiency of turbo-jet engine, propulsion efficiency, overall efficiency of a propulsive system.

MODULE -III
INLETS, COMBUSTORS, AND NOZZLES (Classes: 09)

Introduction, subsonic inlets, supersonic inlets, gas turbine combustors, afterburners and ramjet. Combustors, supersonic combustion, exhaust nozzle, numerical problems.

MODULE -IV
AXIAL FLOW COMPRESSOR (Classes: 09)

Euler's turbo-machinery equations, axial flow compressor analysis, cascade action, flow field, velocity diagrams, flow annulus area stage parameters, degree of reaction, cascade airfoil nomenclature and loss coefficient, diffusion factor, stage loading and flow coefficient, stage pressure ratio, Blade Mach no., repeating-stage, repeating-row, meanline design, flow path dimensions, number of blades per stage, radial variation, design process, performance.

MODULE -V
AXIAL FLOW TURBINE (Classes: 09)

Axial flow turbine: Introduction to turbine analysis, mean-radius stage calculations, stage parameters, stage loading and flow coefficients, degree of reaction, stage temperature ratio and pressure ratio, blade spacing, radial variation, velocity ratio, axial flow turbine stage flow path dimension, stage analysis, multistage design steps of design, single stage and two-stage, turbine performance, blade cooling.

Text Books:

Reference Books:

Web References:
1. https://nptel.ac.in/courses/112105045/

E-Text Book:
BOUNDARY LAYER THEORY

PE - II: ME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB37</td>
<td>Elective</td>
<td>L T P C CIA SEE Total</td>
<td>3 - 3</td>
<td>30 70 100</td>
</tr>
</tbody>
</table>

Objective Classes:
- **Contact Classes:** 45
- **Tutorial Classes:** Nil
- **Practical Classes:** Nil
- **Total Classes:** 45

Objectives:
The course should enable the students to:
- I. Understand the various viscous flow equations.
- II. Discuss the laminar and turbulent boundary layer theory.
- III. Visualize the approximate solution to boundary layer equations.
- IV. Familiarize the thermal boundary layer.

<table>
<thead>
<tr>
<th>Module</th>
<th>Title</th>
<th>Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module I</td>
<td>Viscous Flow Equations</td>
<td>09</td>
</tr>
<tr>
<td>Module II</td>
<td>Laminar Boundary Layer</td>
<td>09</td>
</tr>
<tr>
<td>Module III</td>
<td>Turbulent Boundary Layer</td>
<td>09</td>
</tr>
<tr>
<td>Module IV</td>
<td>Approximate Solution to Boundary Layer Equations</td>
<td>09</td>
</tr>
<tr>
<td>Module V</td>
<td>Thermal Boundary Layer</td>
<td>09</td>
</tr>
</tbody>
</table>

Text Books:

Reference Books:
<table>
<thead>
<tr>
<th>Web References:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. https://nptel.ac.in/courses/112105045/</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-Text Book:</th>
</tr>
</thead>
</table>
OBJECTIVES:
The course should enable the students to:

I. Basic knowledge about different methods of surface modification and surface treatment
II. In-depth understanding of how different material structures affects the surface properties
III. Knowledge of different physical laws and chemical reactions which affects the physical and mechanical properties of material surfaces
IV. In-depth understanding of tribological processes and knowledge of other aspects of the surface performance
V. Basic knowledge of different analytical techniques for surface analysis and characterization of their performance.

MODULE -I
SURFACE INTERACTION AND FRICTION
Classes : 09

Topography of Surfaces, surface features, properties and measurement, surface interaction, adhesive theory of sliding friction, rolling friction, friction properties of metallic and non-metallic materials, friction in extreme conditions, thermal considerations in sliding contact.

MODULE -II
WEAR AND SURFACE TREATMENT
Classes : 09

Types of wear, mechanism of various types of wear, laws of wear, theoretical wear models, wear of metals and non metals, surface treatments, surface modifications, surface coatings methods, surface topography measurements, laser methods, instrumentation, international standards in friction and wear measurements.

MODULE -III
LUBRICANTS AND LUBRICATION REGIMES
Classes: 09

Lubricants and their physical properties, viscosity and other properties of oils, additives and selection of lubricants, lubricants standards ISO, SAE, AGMA, BIS standards.

Lubrication regimes, solid lubrication, dry and marginally lubricated contacts, boundary lubrication hydrodynamic lubrication, elasto and plasto hydrodynamic, magneto hydrodynamic lubrication, hydro static lubrication, gas lubrication.

MODULE -IV
CORROSION
Classes: 09

Introduction, principle of corrosion, classification of corrosion, types of corrosion, factors influencing corrosion, testing of corrosion, in-service monitoring, simulated service, laboratory testing, evaluation of corrosion, prevention of corrosion, material selection, alteration of environment, design, cathodic and anodic protection, corrosion inhibitors.

MODULE -V
ENGINEERING MATERIALS
Classes : 09

Introduction, advanced alloys, super alloys, titanium alloys, magnesium alloys, aluminium alloys, and nickel based alloys, ceramics, polymers, biomaterials, applications, bio-tribology and nano-tribology.
<table>
<thead>
<tr>
<th>Text Books:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reference Books:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Web References:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>E-Text Book:</th>
</tr>
</thead>
</table>
ADDITIVE MANUFACTURING PROCESSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB39</td>
<td>Elective</td>
<td>L T P C</td>
<td>CIA SEE</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 - - 3</td>
<td>30</td>
<td>70</td>
</tr>
</tbody>
</table>

Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

OBJECTIVES:
The course should enable the students to:
I. Identify suitable time compression techniques for rapid product development.
II. Interpret the concept, process details with respect to different processes.
III. Describe the significance of each process parameter of various prototyping systems.
IV. Interpret the advantages, limitations and applications of various prototyping Systems.
V. Identify the various tooling required for rapid prototyping systems and reverse engineering & augmented reality.

MODULE -I INTRODUCTION TO RAPID PROTOTYPING Classes : 09

MODULE -II LIQUID-BASED RAPID PROTOTYPING SYSTEMS Classes : 09
Liquid-Based Rapid Prototyping Systems: Principle, Process parameter, Process details, Advantages, Disadvantages and Applications of Stereolithography Apparatus (SLA), Solid Ground Curing (SGC), Solid Object Ultraviolet-Laser Printer (SOUP), Rapid Freeze Prototyping and Microfabrication

MODULE -III SOLID-BASED RAPID PROTOTYPING SYSTEMS Classes: 09
Solid-Based Rapid Prototyping Systems: Principle, Process parameter, Process details, Advantages, Disadvantages and Applications of Laminated Object Manufacturing (LOM);
Fused Deposition Modeling (FDM), Paper Lamination Technology (PLT), Multi-Jet Modeling System (MJM) and CAM-LEM.

MODULE -IV POWDER-BASED RAPID PROTOTYPING SYSTEMS Classes: 09

MODULE -V RAPID TOOLING Classes : 09
Rapid Tooling: Introduction to rapid tooling (RT), Indirect rapid tooling methods: spray metal deposition, RTV epoxy tools, and 3D Keltool process, Direct rapid tooling methods: DTM Rapid Tool Process, EOS Direct Tool Process and Direct Metal Tooling using 3DP.
Text Books:

Reference Books:

Web References:

1. https://nptel.ac.in/courses/112102103/
2. https://nptel.ac.in/courses/112107078/

E-Text Book:

COMPOSITE MATERIALS

PE - III: ME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB40</td>
<td>Elective</td>
<td>L T P C CIA SEE Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 - - 3 30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Classes</td>
<td>Tutorial Classes: Nil</td>
<td>Practical Classes: Nil</td>
<td>Total Classes: 45</td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIVES:
The course should enable the students to:
I. Understand the role of matrix, fiber and filler in the design of polymer/metal matrix composites.
II. Elucidate linear elastic properties by rule of mixture, fabrication of composites, mechanical and tribological properties, and fracture behavior of composite materials.
III. Assortment of suitable Fabrication method for different Composite Materials
IV. Categorize alternatives involved in the design of composites.

MODULE-I INTRODUCTION TO COMPOSITE MATERIALS
Classes : 09
Introduction to composite materials: Definition, classification, types of matrices material and reinforcements, characteristics and selection, fiber composites, laminated composites, particulate composite, pre-peggs, and sandwich construction.

MODULE-II MICRO MECHANICAL ANALYSIS OF LAMINA AND BIAXIAL STRENGTH THEORIES
Classes : 09
Micro mechanical analysis of a lamina: Introduction, Evaluation of the four elastic moduli, rule of mixture, numerical problems; Biaxial strength theories: Maximum stress theory, maximum strain theory, Tsai Hill theory, Tsai, Wutensor theory, numerical problems.

MODULE-III MACRO MECHANICAL ANALYSIS OF LAMINA AND LAMINATE
Classes : 09
Macro mechanics of a lamina: Hooke's law for different types of materials, Number of elastic constants, derivation of nine independent constants for orthotropic material, two dimensional relationships of compliance and stiffness matrix. Hooke’s law for two-dimensional angle lamina, engineering constants, numerical problems, Invariant properties, stress strain relations for lamina of arbitrary orientation, numerical problems.
Macro mechanical analysis of laminate: Introduction, code, Kirchoff hypothesis, CLT, A, B, and D matrices (Detailed derivation) engineering constants, special cases of laminates, numerical problems.

MODULE-IV MANUFACTURING PROCESS OF COMPOSITES
Classes : 09
Manufacturing: Layup and curing open and closed mould processing, hand layup techniques, bag moulding and filament winding, putrusion, pulforming, thermoforming, Injection moulding, cutting, machining and joining, tooling, quality assurance, introduction, material qualification, types of defects, NDT methods.

MODULE-V METAL MATRIX COMPOSITES AND ITS APPLICATION DEVELOPMENTS
Classes : 09
Metal Matrix Composites: Reinforcement materials, types, fabrication, characteristics and selection, base metals selection, applications; Application developments: aircrafts, missiles, space hardware, automobile, electrical and electronics, marine, recreational and sports equipment, future potential of composites.
Text Books:

Reference Books:

Web References:

2. http://nptel.ac.in/courses/112104168/

E-Text Books:

OBJECTIVES:
The course should enable the students to:
 I. Recognize the importance of nano structures and technology.
 II. Understand various characterization techniques and synthesis processes.
 III. Identify various multi-disciplinary industrial applications.

MODULE-I INTRODUCTION TO NANOTECHNOLOGY
Classes : 09
Introduction: History and scope, can small things make a big difference, classifications of nano-structured materials, fascinating nanostructures, applications of nano materials, nature: The best nanotechnologist, challenges and future prospects.

MODULE-II UNIQUE PROPERTIES OF NANOMATERIALS
Classes : 09
Unique properties of nano materials: Microstructure and defects in nanocrystalline materials: dislocations, twins stacking faults and voids, grain boundries, triple and disclinations; Effects of nano-dimension on material behavior: Elastic properties, melting point, diffusivity, grain growth characteristics, enhanced solid solubility; Magnetic properties: Soft magnetic nano crystalline alloy, permanent magnetic nanocrystalline material, giant magnetic resonance, electrical properties, optical properties, thermal properties and mechanical properties.

MODULE-III SYNTHESIS ROUTES
Classes:09
Synthesis Routes: Bottom up approaches: Physical vapor deposition, inert gas condensation, laser ablation, chemical vapor deposition, molecular beam epitaxy, sol-gel method, self assembly. Top down approaches: Mechanical alloying, nano-lithography; Condensation of nano powders: Shock wave consolidation, hot isostatic pressing and cold isostatic, spark plasma sintering.

MODULE-IV TOOLS TO CHARACTERIZE NANOMATERIALS
Classes: 09
Tools to characterize nano materials: X-ray diffraction, small angle X-ray scattering(SAXS), scanning electron microscopy(SEM), transmission electron microscopy(TEM), atomic force microscopy(AFM), scanning tunneling microscopy(STM), field ion microscopy (FEM), three dimensional atom probe(3DAP), nano indentation.

MODULE-V APPLICATION OF NANOMATERIALS
Classes : 09
Application of nano materials: Nano-electronics, micro and nano-electromechanical systems(MEMS/NEMS), nano sensors, nano catalysts, food and agricultural industry, cosmetic and consumer goods, structure and engineering, automotive industry, water-treatment and the environment, nano-medical applications, textiles, paints, energy defence and space applications, concerns and challenges of nanotechnology.
Text Books:

Reference Books:

Web References:

1. http://nptel.ac.in/courses/112106138/

E-Text Book:

ADVANCED MACHINE DESIGN

PE-IV: ME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB42</td>
<td>Core</td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

OBJECTIVES:
The course should enable the students to:
I. Design and analyze the power transmitting elements.
II. Apply the theories of failures and design optimization procedures using strength and stiffness criteria.
III. Select the bearings for industrial applications using design data hand book.
IV. Comprehend the principles of standardization and interchangeability.

MODULE-I BEARINGS Classes: 09

MODULE-II DESIGN OF IC ENGINE PARTS Classes: 09
Connecting rod: thrust in connecting rod-stress due to whipping action on connecting rod ends; Cranks And Crank Shafts: strength and proportions of over hung and center cranks-crank pins, crank shafts; Piston: Forces acting on piston-construction design and proportions of piston.

MODULE-III POWER TRANSMISSION SYSTEMS, PULLEYS Classes: 09
Power Transmission Systems, Pulleys: Transmission of power by belt and rope drives, transmission efficiencies Belts-Flat and V belts;
Ropes- Different types of ropes, Selection of ropes; Pulleys for belt and rope drives, materials- chain drives.

MODULE-IV GEARS Classes: 09

MODULE-V DESIGN OF POWER SCREWS Classes: 09
Design of power screws: Design of screw, design of nut, compound screw, differential screw, ball screw-possible failures.

Text Books:
Reference Books:

Web References:

1. http://nptel.ac.in/courses/112106137/#
4. http://www.mechcareer.in/study-material/machine-design/

E-Text Book:

4. http://machinedesign.com/learning-resources/ebooks
MECHANICAL VIBRATIONS

PE – IV: ME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB43</td>
<td>Elective</td>
<td>L T P C CIA SEE Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 - - 3 30 70 100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

OBJECTIVES:
The course should enable the students to:
I. Understand basic concepts of mechanical vibrations and phenomena of transmissibility
II. Analyze mechanical systems with/without damping for 1/multi degrees of freedom environment.
III. Application of vibration measuring instruments and machine monitoring systems.
IV. Develop competency in analytical methods in solving problems of vibrations along with mode shapes.

MODULE-I SINGLE DEGREE OF FREEDOM SYSTEMS Classes: 09

Single degree of freedom systems: Undamped and damped free vibrations; forced vibrations coulomb damping; Response to excitation; rotating unbalance and support excitation; vibration isolation and transmissibility, response to non Periodic Excitations: MODULE impulse, MODULE step and MODULE ramp functions; response to arbitrary excitations, the convolution integral; shock spectrum; System response by the laplace transformation method.

MODULE-II TWO DEGREE FREEDOM SYSTEMS Classes: 09

Two degree freedom systems: Principal modes, undamped and damped free and forced vibrations; undamped vibration absorbers.

MODULE-III MULTI DEGREE FREEDOM SYSTEMS Classes: 09

Multi degree freedom systems: Matrix formulation, stiffness and flexibility influence coefficients; Eigen value problem; normal modes and their properties; Free and forced vibration by Modal analysis. Method of matrix inversion; Torsional vibrations of multi-rotor systems and geared systems; Discrete-Time systems; Vibration measuring instruments: Vibrometer, velocity meters and accelerometers.

MODULE-IV FREQUENCY DOMAIN VIBRATION ANALYSIS Classes: 09

Frequency domain vibration analysis: Overview, machine train monitoring parameters, data base development, vibration data acquisition, trending analysis, failure node analysis, root cause analysis.

MODULE-V NUMERICAL METHODS Classes: 09

Numerical methods: Raleigh’s stodola’s, Matrix iteration, Rayleigh- Ritz Method and Holzer's methods

Text Books:

Reference Books:

Web References:

3. http://nptel.ac.in/courses/1121031111/

E-Text Book:

TOOL DESIGN

PE – IV: ME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB44</td>
<td>Elective</td>
<td>L T P C CIA SEE Total</td>
<td>3 - - 3 30 70 100</td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: 45 **Tutorial Classes: Nil** **Practical Classes: Nil** **Total Classes: 45**

OBJECTIVES:
The course should enable the students to:
I. Identify different properties of materials suitable for cutting/ forming tools.
II. Illustrate principle of 3-2-1jigs and fixture to arrest the degree of freedom.
III. Design of bushing and special clamping methods for drill jigs.
IV. Gain knowledge in design and development of forming dies and punches for different materials.

MODULE-I **TOOL MATERIAL**

MODULE-II **DESIGN OF CUTTING TOOLS**

Design of cutting tools: Point cutting tools: Milling cutters, drills, selection of carbide steels, determination of shank size for single point carbide tools, determining the insert thickness for carbide tools.

MODULE-III **DESIGN OF JIGS AND FIXTURES**

Design of jigs and fixtures: Basic principles of location and clamping; Locating methods and devices, jigs, definition types.
General considerations in the design of drill jigs, drill bushing, methods of construction; Fixtures, vice fixtures, milling, boring lathe grinding fixtures.

MODULE-IV **DESIGN FOR SHEET METAL FORMING - I**

Design of sheet metal blanking and piercing dies: Fundamentals of die cutting operation, power press types, general press information, materials handling equipment, cutting action in punch and die operations, die clearance, types of die construction, die design fundamentals, banking and piercing die construction, pilots, stripper and pressure pads presswork material, strip layout, short run tooling for piercing.

MODULE-V **DESIGN FOR SHEET METAL FORMING – II**

Design of sheet metal bending, forming and drawing dies: Bending dies, drawing dies, forming dies, drawing operations, variables that effect metal flow during drawing, determination of blank size, drawing force, single and double action draw dies.

Text Books:
<table>
<thead>
<tr>
<th>Reference Books:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Web References:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. http://nptel.ac.in/courses/112106138</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-Text Book:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. https://books.google.co.in/books/about/Tool_Design.html?id=-M_mtiYyB_EC</td>
</tr>
</tbody>
</table>
EXPERIMENTAL STRESS ANALYSIS

IV Group: ME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB45</td>
<td>Elective</td>
<td>L T P C CIA SEE Total</td>
<td>3 - - 3 30 70 100</td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

OBJECTIVES:
The course should enable the students to:
I. Study the Various Experimental Techniques Involved for Measuring Displacements, Stresses Strains in Structural Components.
II. Understand the strain analysis of measuring circuits.
III. Understand the Different types of coatings.

MODULE-I EXTENSOMETERS AND DISPLACEMENT SENSORS
Classes : 09
Principles of Measurements, Accuracy, Sensitivity and Range of Measurements, Mechanical, Optical, Acoustical and Electrical Extensometers and Their Uses, Advantages and Disadvantages, Capacitance Gauges, Laser Displacement Sensors

MODULE-II ELECTRICAL RESISTANCE STRAIN GAGES
Classes : 09
Principle Of Operation And Requirements, Types And Their Uses, Materials For Strain Gauges, Calibration And Temperature Compensation, Cross Sensitivity, Wheatstone Bridge And Potentiometer Circuits For Static And Dynamic Strain Measurements, Strain Indicators, Rosette Analysis, Stress Gauges, Load Cells, Data Acquisition, Six Component Balance.

MODULE-III PHOTOELASTICITY
Classes:09
Two-Dimensional Photo Elasticity, Photo Elastic Materials, Concept Of Light, Photoelastic Effects, Stress Optic Law, Transmission Photo elasticity, Jones Calculus, Plane And Circular Polariscopes.
Interpretation Of Fringe Pattern, Calibration Of Photo elastic Materials, Compensation And Separation Techniques, Introduction To Three Dimensional Photo Elasticity.

MODULE-IV BRITTLE COATING AND MOIRE TECHNIQUES
Classes: 09
Relation Between Stresses In Coating And Specimen, Use Of Failure Theories In Brittle Coating, Moire Method Of Strain Analysis.

MODULE-V NON – DESTRUCTIVE TESTING
Classes : 09

Text Books:

Reference Books:
Web References:

1. https://nptel.ac.in/syllabus/syllabus.php?subjectId=112106068

E-Text Books:

2. www.apm.iitm.ac.in/smlab/kramesh/book_5.htm
OBJECTIVES:
The course should enable the students to:
I. Understand the BIS code fits and tolerances for geometrical dimensioning and tolerance (GD &T).
II. Understand the principal application of different measuring instruments.
III. Summarize the application of latest manufacturing techniques (nano).

MODULE I ACCURACY AND ALIGNMENT TESTS Classes : 09
Accuracy and alignment tests: General concept of accuracy, Spindle rotation accuracy, test methods, displacement accuracy, dimensional wear of cutting tools, accuracy of NC systems, clamping errors, setting errors, location of rectangular prism, cylinder, basic type of tests, measuring instruments used for testing machine tools, alignment tests, straightness, flatness, parallelism, squareness, Circularity, cylindricity.

MODULE II INFLUENCE OF STATIC STIFFNESS,THERMAL EFFECTS Classes : 09
Influence of static stiffness, thermal effects: Static stiffness, nature of deformation in a machine tool, overall stiffness of a lathe, compliance of work piece, errors due to the variation of the cutting force and total compliance, accuracies due to thermal effects, methods of decreasing thermal effects-Influence of vibration on accuracy.

MODULE III PRECISION MACHINING Classes:09
Top down and bottom up approach, development of Nanotechnology, precision and micro-machining, diamond turning of parts to nanometer accuracy.
Stereo microlithography, machining of micro-sized components, mirror grinding of ceramics, ultra precision block gauges.

MODULE IV NANO MEASURING SYSTEMS Classes: 09
In-process measurement of position of processing point, post process and online measurement of dimensional features, mechanical measuring systems, optical measuring systems, electron beam measuring systems, pattern recognition and inspectionsystems.

MODULE V LITHOGRAPHY Classes : 09
Nano Lithography: Photolithography, nano lithography, photolithography, electron beam lithography, ion Beam lithography, optical lithography, LIGA process, dip pen lithography, deep UV.

Text Books:
Reference Books:

Web References:

1. http://nptel.ac.in/courses/112106138/

E-Text Book:

1. https://accessengineeringlibrary.com/browse/precision-engineering
MECHATRONICS

PE – IV: ME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB47</td>
<td>Elective</td>
<td>L T P C CIA SEE Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 - - 3 30 70 100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

OBJECTIVES:
The course should enable the students to:

I. Understand basic mechatronics system, design and their structure, mechanism, ergonomic and safety.
II. Apply the theoretical and practical aspects of computer interfacing and real time data acquisition and control.
III. Understand the fundamentals of PLC.

MODULE-I INTRODUCTION TO MECHATRONICS Classes : 09

Mechatronics systems, elements level of mechatronics system, mechatronics design process, system, measurement system, control system, microprocessor based controller, advantages and disadvantages of mechatronics systems, sensors and transducers, types, displacement, position, proximity, velocity, force, acceleration, torque, fluid pressure, liquid flow, liquid level, temperature and light sensors.

MODULE-II ELECTRONIC DEVICES Classes : 09

Solid state electronic devices, PN junction diode, BJT, FET, DIA and TRIAC, analog signal conditioning, amplifiers, filtering, introduction to mems and typical applications.

MODULE-III HYDRAULIC AND PNEUMATIC ACTUATORS Classes:09

Hydraulic and pneumatic actuating systems, fluid systems, hydraulic and pneumatic systems, components, control valves, electro-pneumatic, hydropneumatic.

Electro- hydraulic servo systems: Mechanical actuating systems and electrical actuating systems.

MODULE-IV DIGITAL ELECTRONIC AND SYSTEMS Classes: 09

Digital electronics and systems, digital logic control, micro processor and micro controller, programming, process controller, programmable logic controller, PLC’s versus computer, application of PLC’s or control.

MODULE-V SYSTEM INTERFACING AND DATA ACQUISITION Classes : 09

System interfacing and data acquisition, DAQS, SCADA, A to D, D to A, conversion; Dynamic models and analogies, system response, design of mechatronics system and future trend.

Text Books:
Reference Books:

Web References:

1. www.nptel.ac.in/courses/112103174
2. www.electricalengineeringschools.org/mechatronics/

E-Text Book:

DESIGN FOR MANUFACTURING

PE – IV: ME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB48</td>
<td>Elective</td>
<td>L T P C CIA SEE Total</td>
<td>3 - - 3 30 70 100</td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

OBJECTIVES:
The course should enable the students to:
1. Understand the design principles of design for manufacturing processes.
2. Understand the various factors influencing the manufacturability of components.
3. Estimates the cost of dies, molds and machined components based on die life
4. Application of this study to various casting, welding and machining processes.

MODULE-I INTRODUCTION

Introduction: Overview of the course, Design for manufacturing, Typical Case studies, Innovative product and service designs. Material Selection: Requirements for material selection, systematic selection of processes and materials, ASHBY charts

MODULE-II MACHINING PROCESS

Machining process: Overview of various machining processes, general design rules for machining, dimensional tolerance and surface roughness, design for machining, ease, redesigning of components for machining ease with suitable examples, general design recommendations for machined parts.

MODULE-III METAL CASTING

Metal casting: appraisal of various casting processes, selection of casting process, general design considerations for casting; Casting tolerances, use of solidification simulation in casting design, product design rules for sand casting.

MODULE-IV METAL JOINING

Metal joining: Appraisal of various welding processes, Factors in design of weldments, general design guidelines - pre and post treatment of welds, effects of thermal stresses in weld joints, design of brazed joints; forging, design factors for Forging, closed dies forging design, parting lines of dies drop forging die design, general design recommendations; Extrusion and sheet metal work: design guidelines for extruded sections, design principles for punching, Blanking, bending, deep drawing, Keeler Goodman Forming line diagram; component design for blanking.

MODULE-V DESIGN FOR SHEET METAL WORKING&POWDER METAL PROCESSING

Design for Sheet metal working: Press selection, press brake operations, design rules, design for powder metal processing: Powder metallurgy, tooling and presses for compaction, sintering, materials, heat treatments, design guidelines.

Text Books:
Reference Books:

Web References:

1. https://nptel.ac.in/courses/112101005/

E-Text Book:

ROBOTICS

Course Code: AMB49
Category: Elective
Hours / Week: L T P C CIA SEE Total
3 - - 3 30 70 100

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
<th>Contact Classes: 45</th>
<th>Tutorial Classes: Nil</th>
<th>Practical Classes: Nil</th>
<th>Total Classes: 45</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMB49</td>
<td>Elective</td>
<td>L T P C CIA SEE Total</td>
<td>3 - - 3 30 70 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIVES:
The course should enable the students to:
I. Understand principles of automation and robotics.
II. Comprehend motion analysis kinematics.
III. Apply robotics for different industrials applications.

MODULE-I INTRODUCTION TO AUTOMATION AND ROBOTICS Classes: 09
Introduction, automation and robotics, an overview of robotics, classification by coordinate system and control systems, components of the industrial robotics: Degrees of freedom, end effectors: mechanical gripper, magnetic vacuum cup and other types of grippers, general consideration on gripper selection and design, robot actuator and sensors.

MODULE-II MOTION ANALYSIS Classes: 09
Motion analysis: Basic rotation matrices, composite rotation matrices, equivalent angle and axis homogeneous transformation, problems; Manipulator kinematics: D-H notations, joint coordinates and world coordinates, forward and inverse kinematics, problems.

MODULE-III DIFFERENTIAL KINEMATICS Classes: 09

MODULE-IV TRAJECTORY PLANNING Classes: 09
Trajectory planning: Joint space scheme, cubic polynomial fit, avoidance of obstacles, types of motion: Slew motion, joint interpolated motion, straight line motion, problems, robot actuators and feedback components: Actuators, pneumatic.

MODULE-V ROBOT APPLICATIONS Classes: 09
Robot application in manufacturing: Material handling, assembly and inspection, work cell design.

Text Books:

Reference Books:

<table>
<thead>
<tr>
<th>Web References:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. http://nptel.ac.in/courses/112101099/</td>
</tr>
<tr>
<td>2. http://nptel.ac.in/courses/112101099/3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-Text Book:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. http://www.intechopen.com/books/robot-control</td>
</tr>
</tbody>
</table>

| Course Home Page: |
UNCONVENTIONAL MACHINING PROCESS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB50</td>
<td>Elective</td>
<td>L T P C</td>
<td>CIA SEE Total</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 - - 3</td>
<td>30 70 100</td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

OBJECTIVES:
The course should enable the students to:
I. Understand and develop an appreciation of the processes in correlation with material properties which change the shape, size and form of the raw materials into the desirable product by conventional or unconventional manufacturing methods.
II. Understand the need and importance of non-traditional machining methods and process selection.
III. Gain the knowledge to remove material by thermal evaporation, mechanical energy process.
IV. Apply the knowledge to remove material by chemical and electro chemical methods.
V. Analyze various material removal applications by unconventional machining process.

MODULE-I INTRODUCTION TO UNCONVENTIONAL MACHINING Classes : 09
Need for non-traditional machining methods, classifications of modern machining processes, considerations in process selection, materials application, Ultrasonic machining: Elements of the process, mechanics of metal removal, process parameters, economic considerations, application and limitations, recent developments.

MODULE-II ABRASIVE JET MACHINING Classes : 09
Abrasive jet machining, water jet machining and abrasive water jet machining: basic principles, equipments process variables, mechanics of metal removal, MRR, applications and limitations; Electro chemical processes: Fundamentals of electro chemical machining, electro chemical grinding, electro chemical honing and deburring process, metal removal rate in ECM, tool design, surface finish and accuracy, economic aspect of ECM, simple problem for estimation of metal removal rate.

MODULE-III THERMAL METAL REMOVAL PROCESSES Classes : 09
General principle and applications of Electric discharge machining, electric discharge grinding, electric discharge wire cutting processes, power circuits in EDM, mechanism of metal removal in EDM, process parameters. Selection of tool electrodes and dielectric fluids, surface finish and accuracy, characteristics of spark eroded surface and machine tool selection, wire EDM principle and applications.

MODULE-IV ELECTRON BEAM MACHINING Classes : 09
Generation and control of electron beam for machining, theory of electron beam machining, comparison of thermal and non thermal processes, general principle and applications of laser beam machining, thermal features, cutting speed and accuracy of cut.

MODULE-V PLASMA MACHINING Classes : 09
Application of plasma for machining, metal removal mechanism, process parameters, accuracy and surface finish and other applications of plasma in manufacturing industries; Chemical machining principle, maskants, etchants, applications.
Text Books:

Reference Books:

Web References:

1. https://nptel.ac.in/courses/112105126/36

E-Text Book:

OPERATION RESEARCH

PE – VI: ME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB51</td>
<td>Elective</td>
<td>L T P C CIA SEE Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 - - 3 30 70 100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

OBJECTIVES:
The course should enable the students to:
I. Formulate the mathematical model of real time problem for optimization.
II. Establish the problem formulation by using linear, dynamic programming, game theory and queuing models.
III. Apply stochastic models for discrete and continuous variables to control inventory.
IV. Visualize the computer based manufacturing simulation models.

MODULE-I INTRODUCTION AND ALLOCATION
Classes : 09
Development, definition, characteristics and phases, types of operation research models, applications; Allocation: linear programming, problem formulation, graphical solution, simplex method, artificial variables techniques, two–phase method, big-M method.

MODULE-II TRANSPORTATION AND ASSIGNMENT PROBLEM
Classes : 09

MODULE-III SEQUENCING AND REPLACEMENT
Classes:09
Sequencing: Introduction, flow, shop sequencing, n jobs through two machines, n jobs through three machines, job shop sequencing, two jobs through ‘m’ machines. Replacement: Introduction: Replacement of items that deteriorate with time, when money value is not counted and counted, replacement of items that fail completely, group replacement.

MODULE-IV THEORY OF GAMES AND INVENTORY
Classes: 09
Theory Of Games: Introduction, minimax (maximin) criterion and optimal strategy, solution of games with saddle points, rectangular games without saddle points, dominance principle, mx2 and 2xn games, graphical method; Inventory: Introduction, single item, deterministic models, purchase inventory models with one price break and multiple price breaks, shortages are not allowed, stochastic models, demand may be discrete variable or continuous variable, instantaneous production, instantaneous demand and continuous demand and no set up cost, single period model.

MODULE-V WAITING LINES AND SIMULATION
Classes : 09
Waiting Lines: Introduction, single channel, poisson arrivals , exponential service times, with infinite population and finite population models, multichannel, poisson arrivals, exponential service times with infinite population single channel Poisson arrivals; Simulation: Definition, types of simulation models, phases of simulation, applications of simulation, inventory and queuing problems, advantages and disadvantages, brief Introduction of simulation languages.
Text Books:

Reference Books:

Web References:

1. http://people.brunel.ac.uk/~mastjjb/jeb/or/contents.html
2. https://pe.gatech.edu/degrees/online-masters-degrees/operations-research
3. http://nptel.ac.in/courses/112106134/1

E-Text Book:

PRODUCTION PLANNING AND CONTROL

PE – VI: ME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB52</td>
<td>Elective</td>
<td>L T P C CIA SEE Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 1 - 3 30 70 100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

OBJECTIVES:
The course should enable the students to:
I. Understand the PPC function in industrial manufacturing scenario.
II. Apply forecasting techniques for different types of products.
III. Knowledge in optimal inventory control and capacity planning.

MODULE-I OVERVIEW OF PRODUCTION PLANNING CONTROL Classes: 09
Introduction: Definition, Objectives of production planning and control, functions of production planning and control, elements of production control, types of production, organization of production planning and control department, internal organization of department.

MODULE-II FORECASTING Classes: 09
Forecasting: Importance of forecasting, types of forecasting, their uses, general principles of forecasting, forecasting techniques, qualitative methods and quantitative methods; Inventory management, functions of inventories relevant inventory costs ABC analysis, VED analysis, EOQ model, inventory control systems, P-Systems and Q-Systems.

MODULE-III INTRODUCTION TO MRP Classes:09
Introduction to MRP and ERP, LOB (Line of Balance), JIT inventory, and Japanese concepts.
Routing, definition, routing procedure Route sheets, bill of material, factors affecting routing procedure, Schedule, definition, difference with loading.

MODULE-IV SCHEDULING Classes: 09
Scheduling Policies, techniques, Standard scheduling methods; Line balancing, aggregate planning, chase planning, expediting, controlling aspects.

MODULE-V DISPATCHING Classes: 09
Dispatching: Activities of dispatcher, dispatching procedure, follow up, definition, reason for existence of functions, types of follow up, applications of computer in production planning and control.

Text Books:

Reference Books:
<table>
<thead>
<tr>
<th>Web References:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. http://nptel.ac.in/courses/112107143/</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-Text Book:</th>
</tr>
</thead>
</table>
PLANT LAYOUT AND MATERIAL HANDLING

PE – VI: ME

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB53</td>
<td>Elective</td>
<td>L T P C CIA SEE Total</td>
<td>3 - - 3 30 70 100</td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

OBJECTIVES:
The course should enable the students to:
I. Plan Analyze and design to improve manufacturing and service facilities.
II. Apply techniques to evaluate and design material handling and storage systems.
III. Visualize plant layout and material handling in industries

MODULE-I INTRODUCTION TO PLANT LAYOUT Classes : 09
Introduction, classification of layout, advantages and limitations of different layouts, layout design procedures, overview of the plant layout, process layout and product layout: Selection, specification, implementation and follow up, comparison of product and process layout

MODULE-II HEURISTICS FOR PLANT LAYOUT Classes : 09
Heuristics for plant layout ALDEP, CORELAP, CRAFT, group layout, fixed position layout, Quadratic assignment model, branch and bound method.

MODULE-III MATERIAL HANDLING SYSTEMS Classes: 09
Introduction, material handling systems, material handling principles. Classification of material handling equipment, relationship of material handling to plant layout

MODULE-IV BASIC MATERIAL HANDLING SYSTEMS Classes: 09
Basic material handling systems: Selection, material handling method, path equipment, function oriented systems

MODULE-V METHODS TO MINIMIZE COST OF MATERIAL HANDLING Classes : 09
Methods to minimize cost of material handling, maintenance of material handling equipments, safety in handling ergonomics of material handling equipment, design, miscellaneous equipments.

Text Books:

Reference Books:

Web References:
1. http://nptel.ac.in/courses/112106138/

E-Text Book:
FLIGHT CONTROL THEORY

OE - I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAEB53</td>
<td>Core</td>
<td>L T P C</td>
<td>CIA</td>
<td>SEE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 - - 3</td>
<td>30</td>
<td>70</td>
</tr>
</tbody>
</table>

Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

OBJECTIVES:
The course should enable the students to:

I. Apply stability criteria to determine the stability of an aircraft and specify the aircraft time-domain and frequency-domain response specifications.

II. Understand classical control theory in the frequency domain and modern control theory in the state-space are effectively mixed to provide the student with a modern view of systems theory.

III. Design control techniques for aircraft control systems, and study some feedback control applications.

IV. Study the controllability and observability of aerospace systems, and apply the modern control techniques to design enhanced flight control systems.

MODULE-I INTRODUCTION TO CONTROL SYSTEMS Classes: 10

MODULE-II MATHEMATICAL MODELLING OF DYNAMIC SYSTEMS Classes: 10

MODULE -III STEADY STATE RESPONSE ANALYSIS Classes: 10

Experimental determination of system transfer functions by frequency response measurements. Example. Frequency domain description- frequency response- gain and phase shift- significance- representation asymptotic (Bode) plots, polar (Nyquist) plots, frequency transfer functions. Characteristic parameters
corner frequencies, resonant frequencies, peak gain, and bandwidth- significance. First and second order systems- extension to higher order systems.

<table>
<thead>
<tr>
<th>MODULE-IV</th>
<th>AIRCRAFT RESPONSE TO CONTROLS</th>
<th>Classes:07</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximations to aircraft transfer functions, control surface actuators-review. Response of aircraft to elevator input, Response of aircraft to rudder input and Response of aircraft to aileron input to atmosphere. Need for automatic control. Auto pilots Stability augmentation systems-pitch damper and yaw damper.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MODULE -V</th>
<th>FLYING QUALITIES OF AIRCRAFT</th>
<th>Classes: 08</th>
</tr>
</thead>
</table>

Text Books:

Reference Books:

E-Text Books:
AIRFRAME STRUCTURAL DESIGN

OE - I

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAEB54</td>
<td>Elective</td>
<td>L T P C CIA SEE Total</td>
<td>3 - - 3 30</td>
<td>70 100</td>
</tr>
</tbody>
</table>

Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

OBJECTIVES:
The course should enable the students to:

I. Familiarize students with the important issues and methodologies of aircraft design.
II. Illustrate the process of aircraft synthesis as an outcome of the integration of the disciplines of aerodynamics, performance, stability and control, propulsion, structures and aero elasticity.
III. Understand role and lay-out of main structural members of load carrying airframe components as well as the relevant basic design philosophies.
IV. Develop the ability to function as a member of a team in a design setting; including the ability to conduct a peer review of the other team members.
V. Familiarize students with Federal Aviation Regulations as a means for ensuring passenger safety

MODULE-I INTRODUCTION AIRWORTHINESS REQUIREMENTS Classes: 10

MODULE-II EXTERNAL LOADS-ESTIMATION, FASTENERS AND STRUCTURAL JOINTS Classes: 10

MODULE -III DESIGN OF WING, TAIL UNIT STRUCTURES Classes: 10

The wing- role- summary of wing loads, structural components- wing box, leading and trailing edges. Wing layout- location of spars, ailerons and flaps, rib spacing and direction, root rib bulkhead, span wise stiffeners, wing covers- skin-stringer panels, integrally stiffened panels, access holes, attachment of leading edge and trailing edge panels.

Spars- general rules of spar design. Ribs and bulkheads- rib spacing and arrangement. Wing root joints, carry through structure. Fighter wing design- problems with swept wings. Wing box, root rib bulkhead-
estimation of loads, stress analysis, design parameters, optimisation, sizing, margins of safety. Leading and trailing edge assembly- control surfaces, flaps- structure

<table>
<thead>
<tr>
<th>MODULE-IV</th>
<th>DESIGN OF FUSELAGE, LANDING GEAR, ENGINE MOUNTS</th>
<th>Classes:07</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function of fuselage- loading, general requirements. Ultimate strength of stiffened cylindrical structure- review, Principal structural components- skin and stringers, frame and floor beam, pressure bulkhead, wing and fuselage intersection- lay out, loading, stress analysis, sizing. Forward fuselage, aft fuselage structures, fuselage openings- windows, doors- design considerations. Landing gear- purpose, types, general arrangement, loads- design considerations- ground handling, take-off, landing, braking, pavement loading, support structure. Stowage and retraction, gear lock- kinematic design. Shock absorbers- function, types, components, operation, loads, materials, design. Wheels and brakes, tire selection. Engine mounts- types- wing pod, rear fuselage, tail, fuselage mount, loads, design considerations</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MODULE - V</th>
<th>FATIGUE LIFE, DAMAGE TOLERANCE, FAIL-SAFE DESIGN- WEIGHT CONTROL AND BALANCE</th>
<th>Classes: 08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catastrophic effects of fatigue failure- examples- modes of failure- design criteria- fatigue stress, fatigue performance, fatigue life. Fatigue design philosophy- fail-safe, safe life. Service behaviour of aircraft structures- effect of physical and load environment design and of detail of fabrication Structural life- methods of estimation- the scatter factor- significance Fail-safe design- the concept, requirements, damage tolerance-estimation of fatigue strength</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Text Books:

Reference Books:

E-Text Books:

2. https://www.e-booksdirectory.com/
MECHANICAL PROPERTIES OF MATERIALS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB54</td>
<td>Open</td>
<td>L T P C CIA SEE Total</td>
<td>3 - - 3 30 70 100</td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

OBJECTIVES:
The course should enable the students to:

I. Understand the physical and mechanical, metallurgical engineering concepts for metals and preparation of alloys.
II. Understand the stages of design process and evolution of materials.
III. Interpret the basis for material selection in engineering design through case studies.
IV. Explore the material property plots, database and optimization techniques to identify the best performing materials for a given application.
V. Estimate the material life and their impact on industries and environment.

MODULE-I STRUCTURE OF METALS

Structure of metals: Crystallography, Miller indices, packing efficiency, density calculations, grains and grain boundaries, effect of grain size on the properties, determination of grain size by different methods, constitution of alloys, necessity of alloying, types of solid solutions, Hume-Rothery rules, intermediate alloy phases.

MODULE-II MATERIAL SELECTION

The basics, metals and metallic structure, metallic alloys, ceramics and glasses, polymers and composites for mechanical design, material properties: surface and other functional properties, the selection strategy, Attribute limits and material indices, the selection procedure, shape factor, Computer-aided selection, and the structural index Case Studies: Diaphragms for pressure actuators, Deflection limited design with brittle polymers, Nylon bearings for ship rudders.

MODULE-III PROCESSES AND PROCESS SELECTION

Introduction and synopsis, classifying processes, the processes: shaping, joining, and finishing, Systematic process selection, Ranking: process cost, Computer-aided process selection, supporting information Case studies: Forming ceramic tape valves, Forming a silicon nitride micro-beam, Fabricating a pressure vessel.

MODULE-IV DESIGN PROCESS

Material Selection using Ashby method, micro-structural shape factors, exploring and comparing structural sections, multiple Constraints and objectives in material selection, optimal selection with and without shape factor, multiple objectives, role of materials in shaping the product character.

MODULE-V METHODS TO MINIMIZE COST OF MATERIAL HANDLING

Environmental Impact: Materials and the environment, the material life cycle, material and energy consuming systems, the eco-attributes of materials, eco-selection, Case studies-Drink containers and crash barriers. materials and industrial design: Introduction and synopsis, the requirements pyramid, product character, using materials and processes to create product personality.
<table>
<thead>
<tr>
<th>Text Books:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reference Books:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Web References:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. http://nptel.ac.in/courses/112106138/</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-Text Book:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. https://accessengineeringlibrary.com/browse/precision-engineering</td>
</tr>
</tbody>
</table>
AEW55

Elective

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMEB55</td>
<td></td>
<td>L T P C CIA SEE Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 - - 3 30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Classes: 45</td>
<td>Tutorial Classes: Nil</td>
<td>Practical Classes: Nil</td>
<td>Total Classes: 45</td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIVES:
The course should enable the students to:
I. Describe the basic concepts of automation in manufacturing systems.
II. Acquire the fundamental concepts of automated flow lines and their analysis.
III. Classify automated material handling, automated storage and retrieval systems.
IV. Illustrate adaptive control systems and automated inspection methods.

MODULE-I INTRODUCTION AND MANUFACTURING OPERATIONS
Classes: 09

MODULE-II INDUSTRIAL CONTROL SYSTEM
Classes: 09

MODULE-III AUTOMATED MANUFACTURING SYSTEMS
Classes: 09
Components of Manufacturing systems, Classification of Manufacturing Systems, overview of Classification Scheme, Single Station Manned Workstations and Single Station Automated Cells

MODULE-IV GROUP TECHNOLOGY AND FLEXIBLE MANUFACTURING SYSTEMS
Classes: 09
Part Families, Parts Classification and coding, Production Flow Analysis, Cellular Manufacturing, and Flexible Manufacturing Systems: What is an FMS, FMS Components, FMS Applications, benefits, FMS Planning and Implementation issues

MODULE-V Manufacturing Support System
Classes: 09

Text Books:
Reference Books:

Web References:

2. http://nptel.ac.in/courses/112102011

E-Text Book:

1. https://docs.google.com/file/d/0B7uir_9DoCLFaGduckFqQmcwUnc/edit?usp=drive
REMOTE SENSING AND GIS

Course Details

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACEB50</td>
<td>Elective</td>
<td>3 L, - T, - P</td>
<td>3</td>
<td>30, 70, 100</td>
</tr>
</tbody>
</table>

Contact Classes: 45 **Tutorial Classes:** Nil **Practical Classes:** Nil **Total Classes:** 45

Objectives:

The course should enable the students to:

I. Understand the Photogrammetric techniques, concepts, components of Photogrammetry.
II. Introduce the students to the basic concepts and principles of various components of remote sensing.
III. Provide an exposure to GIS and its practical applications in Civil Engineering.
IV. Analyze the energy interactions in the atmosphere and earth surface features.

Modules

MODULE - I
INTRODUCTION TO PHOTOGRAMMETRY

- Principles & types of aerial photograph, geometry of vertical aerial photograph, Scale & Height measurement on single vertical aerial photograph, Height measurement based on relief displacement, Fundamentals of stereoscopy, fiducially points, parallax measurement using fiducially line.

Classes: 09

MODULE - II
REMOTE SENSING

- Basic concepts and foundation of remote sensing – elements involved in remote sensing, electromagnetic spectrum, remote sensing terminology and units, Energy resources, energy interactions with earth surface features and atmosphere, resolution, sensors and satellite visual interpretation techniques, basic elements, converging evidence, interpretation for terrain evaluation, spectral properties of water bodies, introduction to digital data analysis.

Classes: 09

MODULE - III
GEOGRAPHIC INFORMATION SYSTEM AND TYPES OF DATA REPRESENTATION

- Introduction, GIS definition and terminology, GIS categories, components of GIS, fundamental operations of GIS, A theoretical framework for GIS.
- Data collection and input overview, data input and output. Keyboard entry and coordinate geometry procedure, manual digitizing and scanning, Raster GIS, Vector GIS – File management, Spatial data – Layer based GIS, Feature based GIS mapping.

Classes: 09

MODULE - IV
GIS SPATIAL ANALYSIS

- Computational Analysis Methods (CAM), Visual Analysis Methods (VAM), Data storage – vector data storage, attribute data storage, overview of the data manipulation and analysis. Integrated analysis of the spatial and attribute data.

Classes: 09

MODULE - V
WATER RESOURCES APPLICATIONS

- Land use/Land cover in water resources, Surface water mapping and inventory, Rainfall – Runoff relations and runoff potential indices of watersheds, Flood and Drought impact assessment and monitoring, Watershed management for sustainable development and Watershed characteristics.

Classes: 09
Text Books:

Reference Books:

Web References:

1. https://nptel.ac.in/courses/105103193/
2. https://nptel.ac.in/courses/121107009/
3. https://nptel.ac.in/courses/105108077/

E-Text Books:

OBJECTIVES:
The course should enable the students to:
I. Understand the various safety concepts and requirements applied to construction projects.
II. Study the of construction accidents, safety programmes, contractual obligations, and design for safety.
III. Understand the safety and health of persons at work in connection with the use of plant and machinery.
IV. A structured management approach to control safety risks in operations.

MODULE - I CONSTRUCTION ACCIDENTS

MODULE - II SAFETY PROGRAMMES

MODULE - III CONTRACTUAL OBLIGATIONS

Safety in Construction Contracts – Substance Abuse – Safety Record Keeping

MODULE - IV DESIGNING FOR SAFETY

MODULE - V OWNERS’ AND DESIGNERS’ OUTLOOK

Owner’s responsibility for safely – Owner preparedness – Role of designer in ensuring safety – Safety clause in design document.

Text Books:
Reference Books:

Web References:

1. https://nptel.ac.in/content/storage2/courses/114106039/Tutorial%20key.pdf

E-Text Books:

1. https://safetyrisk.net/free-safety-ebooks/
COMPUTER ARCHITECTURE

OE – II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACSB32</td>
<td>Elective</td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

OBJECTIVES:
The course should enable the students to:

I. Understand the organization and architecture of computer systems and electronic computers.
II. Study the assembly language program execution, instruction format and instruction cycle.
III. Design a simple computer using hardwired and micro programmed control methods.
IV. Study the basic components of computer systems besides the computer arithmetic.
V. Understand input-output organization, memory organization and management, and pipelining.

MODULE - I INTRODUCTION TO COMPUTER ORGANIZATION Classes: 09

Basic computer organization, CPU organization, memory subsystem organization and interfacing, input or output subsystem organization and interfacing, a simple computer levels of programming languages, assembly language instructions, a simple instruction set architecture.

MODULE - II ORGANIZATION OF A COMPUTER Classes: 09

Register transfer: Register transfer language, register transfer, bus and memory transfers, arithmetic micro operations, logic micro operations, shift micro operations; Control memory.

MODULE - III CPU AND COMPUTER ARITHMETIC Classes: 09

CPU design: Instruction cycle, data representation, memory reference instructions, input-output, and interrupt, addressing modes, data transfer and manipulation, program control.
Computer arithmetic: Addition and subtraction, floating point arithmetic operations, decimal arithmetic unit.

MODULE - IV INPUT-OUTPUT ORGANIZATION Classes: 09

Input or output organization: Input or output Interface, asynchronous data transfer, modes of transfer, priority interrupt, direct memory access.

MODULE - V MEMORY ORGANIZATION Classes: 09

Memory organization: Memory hierarchy, main memory, auxiliary memory, associative memory, cache memory, virtual memory; Pipeline: Parallel processing, Instruction pipeline;

Text Books:

Reference Books:

Web References:

1. https://www.tutorialspoint.com/computer_logical_organization/
2. https://www.coursera.org/learn/comparch

E-Text Books:

ANALYSIS OF ALGORITHMS AND DESIGN

OE - II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACSB33</td>
<td>Elective</td>
<td>L T P C CIA SEE Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 - - 3 30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Classes: 45</td>
<td>Tutorial Classes: Nil</td>
<td>Practical Classes: Nil</td>
<td>Total Classes: 45</td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIVES:
The course should enable the students to:
I. Assess how the choice of data structures and algorithm design methods impacts the performance of programs.
II. Solve problems using data structures such as binary search trees, and graphs.
III. Choose the appropriate data structure and algorithm design method for a specified application.
IV. Solve problems using algorithm design methods such as the divide and conquer, greedy method, dynamic programming, branch and bound, backtracking.

MODULE I - INTRODUCTION
Algorithm: Pseudo code for expressing algorithms; Performance analysis: Space complexity, time complexity; Amortized Complexity, Asymptotic notations: Big O notation, omega notation, theta notation and little o notation.

MODULE II - DIVIDE AND CONQUER
Divide and Conquer: General method, applications: Binary search, quick sort, merge sort, Strassen’s matrix multiplication.

MODULE III - TRAVERSAL TECHNIQUES AND GREEDY METHOD
Efficient non recursive binary tree traversal algorithms, spanning trees; Graph traversals: Breadth first search, depth first search, connected components, biconnected components.
Greedy method: The general method, job sequencing with deadlines, knapsack problem, single source shortest paths.

MODULE IV - DYNAMIC PROGRAMMING
Dynamic programming: The general method, matrix chain multiplication, optimal binary search trees, 0/1 knapsack problem, all pairs shortest paths problem.

MODULE V - BRANCH AND BOUND, BACKTRACKING
Branch and bound: The general method, travelling salesperson problem; Backtracking: The general method, the 8 queens problem, graph coloring.

Text Books:
Reference Books:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>

Web References:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>http://www.facweb.iitkgp.ernet.in/~sourav/daa.html</td>
</tr>
</tbody>
</table>

E-Text Books:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>http://ebook/com/item/introduction_to_the_design_and_analysis_of_algorithms_3rd_editionananylevitin/</td>
</tr>
<tr>
<td>2.</td>
<td>https://drive.google.com/file/d/0B_Y1VbyboEDBTDVxVXpVbnk4TVE/edit?pref=2&pli=1</td>
</tr>
</tbody>
</table>
RELATIONAL DATABASE MANAGEMENT SYSTEMS

OE – II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACSB34</td>
<td>Elective</td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Contact Classes: 45 | Tutorial Classes: Nil | Practical Classes: Nil | Total Classes: 45

OBJECTIVES:
The course should enable the students to:

I. Understand the role of database management system in an organization and learn the database concepts.

II. Design databases using data modeling and Logical database design techniques.

III. Construct database queries using relational algebra and calculus and SQL.

IV. Understand the concept of a database transaction and related concurrent, recovery facilities.

V. Learn how to evaluate a set of queries in query processing.

MODULE - I CONCEPTUAL MODELING INTRODUCTION

Introduction to Databases and Database Management System - Database system Applications Advantages of DBMS over File System - Data Models – Instances and schema - View of Data - Database Languages - DDL-DML - Database Users and Administrator - Database System Structure.

MODULE - II RELATIONAL APPROACH

MODULE - III SQL QUERY - BASICS , RDBMS - NORMALIZATION

Introduction to the Relational Model – Structure of RDBMS - Integrity Constraints over Relations – Enforcing Integrity Constraints – Querying Relational Data - Relational Algebra and Calculus.

Introduction to SQL- Data Definition commands, Data Manipulation Commands, Basic Structure, Set operations Aggregate Operations - Join operations - Sub queries and correlated queries, SQL functions, views ,Triggers, Embedded SQL

MODULE - IV TRANSACTION MANAGEMENT

MODULE - V DATA STORAGE AND QUERY PROCESSING

Transaction concept- Transaction state- Implementation of atomicity and Durability- Concurrent executions – Serializability, Recoverability; File Organization – Organization of records in file - Data Dictionary Storage – Indexing and Hashing – Basic Concepts , Ordered Indices,B”Tree Index files, B- tree index files
Text Books:

Reference Books:

Web References:

1. https://www.youtube.com/results?search_query=DBMS+online+classes
2. http://www.w3schools.in/dbms/

E-Text Books:

3. https://docs.google.com/file/d/0B9aJA_iV4kHYM2dieHZhMHhyRVE/edit

MOOC Course

1. https://onlinecourses.nptel.ac.in/noc18_cs15/preview
ADVANCED DATA STRUCTURES

OE - II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AITB30</td>
<td>Elective</td>
<td>L T P C CIA SEE Total</td>
<td>3 - - 3 30 70 100</td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: 45
Tutorial Classes: Nil
Practical Classes: Nil
Total Classes: 45

OBJECTIVES:

The course should enable the students to:

I. Understand the basic data structures and techniques of algorithm analysis.
II. Understand dictionaries, hashing mechanisms and skip lists for faster data retrieval.
III. Comprehension of heaps, priority queues and its operations.
IV. Understand balanced trees and their operations.
V. Illustration of tries and pattern matching algorithms.

MODULE -I

OVERVIEW OF DATA STRUCTURES

Algorithms; Performance analysis: Time complexity and Space complexity, Asymptotic notation. Review of basic data structures - The list ADT, Stack ADT, Queue ADT, Linked list – Single linked list, Double linked list, Circular linked list.

MODULE –II

DICTIONARIES, HASH TABLES

Dictionaries: Linear list representation, Skip list representation, operations - insertion, deletion and searching, Hash table representation, hash functions, collision resolution - separate chaining, open addressing - linear probing, quadratic probing, double hashing, rehashing, extendible hashing, comparison of hashing and skip lists.

MODULE -III

PRIORITY QUEUES

Priority Queues – Definition, ADT, Realizing a Priority Queue using Heaps, Insertion, Deletion, Application-Heap Sort, External Sorting- Model for external sorting, Multiway merge, Polyphase merge.

MODULE -IV

SEARCH TREES

MODULE -V

PATTERN MATCHING AND TRIES

Pattern matching algorithms - the Boyer - Moore algorithm, the Knuth – Morris – Pratt algorithm. Tries – Definition, concepts of digital search tree, Binary trie, Patricia, Multi-way trie.

Text Books:

Reference Books:

Web References:

E-Text Books:
1. https://pdfs.semanticscholar.org/19ec/55ed703eb24e1d98a4abd1a15387281cc0f8.pdf

MOOC Course
1. https://nptel.ac.in/courses/106103069/
DATA COMMUNICATIONS AND NETWORKS

OE - II

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AITB31</td>
<td>Elective</td>
<td>L T P C CIA SEE Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 - - 3 30 70 100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

OBJECTIVES:
The course should enable the students to:
I. Develop an understanding of modern network architectures from a design and performance perspective.
II. Understand the basics and challenges of network communication.
III. Provide an opportunity to do network programming using TCP/IP.
IV. Understand the operation of the protocols that are used inside the Internet.

MODULE - I DATA COMMUNICATIONS Classes: 09
Components, Direction of Data flow, Networks, Components and Categories, Types of Connections, Topologies, Protocols and Standards, ISO / OSI model, Example Networks such as ATM, Frame Relay, ISDN.

MODULE – II THE PHYSICAL LAYER Classes: 09
Transmission modes, Switching, Circuit Switched Networks, Transmission Media, Datagram Networks, Virtual Circuit Networks.

MODULE – III THE DATALINK LAYER Classes: 09

MODULE – IV THE NETWORK LAYER Classes: 09
Logical Addressing, Internetworking, Tunneling, Address mapping, ICMP, IGMP, Forwarding, Uni-Cast Routing Protocols, Multicast Routing Protocols

MODULE – V THE TRANSPORT AND APPLICATION LAYER Classes: 09

Text Books:
Reference Books:

Web References:

E-Text Books:

MOOC Course

NETWORK SECURITY

<table>
<thead>
<tr>
<th>OE - II</th>
</tr>
</thead>
</table>

Course Code | Category | Hours / Week | Credits | Maximum Marks |
| AITB32 | Elective | L | T | P | C | CIA | SEE | Total |
| | | 3 | - | - | 3 | 30 | 70 | 100 |

Contact Classes: 45
Tutorial Classes: Nil
Practical Classes: Nil
Total Classes: 45

OBJECTIVES:
The course should enable the students to:

I. Learn the basic categories of threats to computers and networks.
II. Understand various cryptographic algorithms and be familiar with public-key cryptography.
III. Apply authentication functions for providing effective security.
IV. Analyze the application protocols to provide web security.
V. Discuss the place of ethics in the information security area.

MODULE-I
ATTACKS ON COMPUTERS AND COMPUTER SECURITY
Classes: 09

Attacks on computers and computer security: Introduction, the need for security, security approaches, principles of security, types of security attacks, security services, security mechanism, a model for network security; Cryptography concepts and techniques: Introduction, plain text and cipher text, substitution techniques, transposition techniques, encryption and decryption, symmetric and asymmetric key cryptography.

MODULE-II
SYMMETRIC AND ASYMMETRIC KEY CIPHERS
Classes: 09

Symmetric key ciphers: Block cipher principles and algorithms (DES,AES), block cipher modes of operation, stream ciphers, and placement of encryption function, key distribution; Asymmetric key ciphers: Principles of public key cryptosystems, algorithms (RSA Diffie-Hellman).

MODULE-III
MESSAGE AUTHENTICATION ALGORITHM AND HASH FUNCTIONS
Classes: 09

Message authentication algorithm and hash functions: Authentication requirements, functions, message, authentication codes.

MODULE-IV
E-MAIL SECURITY
Classes: 09

E-mail Security: Pretty Good Privacy; S/MIME
IP Security: IP security overview, IP security architecture, authentication header, encapsulating security payload, combining security associations, key management.

MODULE-V
WEB SECURITY
Classes: 09

Web security: Web security considerations, secure socket layer and transport layer security, secure electronic transaction.
Intruders; Virus and firewalls: Intruders, intrusion detection password management, virus and related threats, countermeasures, firewall design principles; Types of firewalls.

Text Books

Reference Books

Web References

2. https://books.google.co.in/books/about/Cryptography_Network_Security_Sie_2E.html?id=Kokjwdf0E7QC
3. https://books.google.co.in/books/about/Information_Security.html?id=Bh45pU0_E_4C

E-Text Books

1. https://books.google.co.in/books/about/Information_Security.html
SOFT SKILLS AND INTERPERSONAL COMMUNICATION

OE - III

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHSB18</td>
<td>Elective</td>
<td>L T P C CIA SEE Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 - - 3 30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Classes: 45</td>
<td>Tutorial Classes: Nil</td>
<td>Practical Classes: Nil</td>
<td>Total Classes: 45</td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIVES:
The course should enable the students to:
I. Communicate in a comprehensible English accent and pronunciation.
II. Use the four language skills i.e., Listening, Speaking, Reading and Writing effectively.
III. Develop the art of interpersonal communication skills to avail the global opportunities
IV. Enhances the understanding of soft skills resulting in an overall grooming of the skills

MODULE-I SOFT SKILLS
Soft Skills: An Introduction – Definition and Significance of Soft Skills; Process, Importance and Application of Soft Skills, Discovering the Self; Setting Goals; Positivity and Motivation: Developing Positive Thinking and Attitude

MODULE -II EFFECTIVENESS OF SOFT SKILLS
Developing interpersonal relationships through effective soft skills; Define Listening, Speaking, Reading and Writing skills; Barriers to Listening, Speaking, Reading and Writing; Essential formal writing skills; Public Speaking: Skills, Methods, Strategies and Essential tips for effective public speaking.

MODULE-III ORAL AND AURAL SKILLS
Vocabulary:
Sounds of English vowels sounds and constant sounds, Word Accent and connected speech- contractions, questions tags, Listening for information, Taking notes while listening to lectures (use of Dictionary).

Group Discussion: Importance, Planning, Elements, Skills, Effectively disagreeing, Initiating.

MODULE-IV VERBAL AND NON-VERBAL COMMUNICATION
Interpersonal communication-verbal and nonverbal etiquette; Body language, grapevine, Postures, Gestures, Facial expressions, Proximity; Conversation skills, Critical thinking, Teamwork, Group Discussion, Impact of Stress; Measurement and Management of Stress

MODULE-V INTERPERSONAL COMMUNICATION
Significance; Effectiveness of writing; Organizing principles of Paragraphs in documents; Writing introduction and conclusion; Techniques for writing precisely; Letter writing; Formal and Informal letter writing; E-mail writing, Report Writing.

Text Books:
Handbook of English for Communication (Prepared by Faculty of English, IARE)
Reference Books:

Web References:

1. www.edufind.com
2. www.myenglishpages.com
3. http://grammar.ccc.comm.net.edu
4. http://owl.english.prudue.edu

E-Text Books:

CYBER LAW AND ETHICS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHSB19</td>
<td>Elective</td>
<td>L 3 T - P - C 3</td>
<td>CIA 30</td>
<td>SEE 70</td>
</tr>
<tr>
<td>Contact Classes: 45</td>
<td>Tutorial Classes: Nil</td>
<td>Practical Classes: Nil</td>
<td>Total Classes: 45</td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIVES:
The course should enable the students to:
- I. Understand key terms and concepts in cyber society, cyber ethics.
- II. Analyze fundamentals of Cyber Law
- III. Learn the importance of nine P’s in ethics.
- IV. Understand artificial intelligence and Blockchain ethics.

MODULE-I | CYBER SOCIETY

MODULE-II | CYBER LAW AND CYBER ETHICS
Cyber Law and Cyber Ethics The Importance of Cyber Law, The Significance of Cyber Ethics, Cyber Crime is Unethical and Illegal, Ethics Education has Positive Impact, The Need for Cyber Regulation Based on Cyber Ethics, Very Dangerous Times.

MODULE-III | ETHICS IN THE INFORMATION SOCIETY, THE NINE P’S

MODULE-IV | DISRUPTIVE CYBER TECHNOLOGIES AND AI ETHICS

MODULE-V | DISRUPTIVE CYBER TECHNOLOGIES AND ETHICS -II
Disruptive Cyber Technologies and Ethics -II BLOCKCHAIN ETHICS: Blockchain Definition and Description, Blockchain Anonymity and Privacy: Ethical, No Possibility to Be Forgotten, Blockchain for Voting, Blockchain for Transparent Trade Tracing, Blockchain Energy: Environmental Impact, Decentralised or Majority-Owned, Ethically More Benefits or Dangers, future jobs in cyber society.
<table>
<thead>
<tr>
<th>Text Books:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reference Books:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Dr. Farooq Ahmad, Cyber Law in India, Allahbad Law Agency- Faridabad.</td>
</tr>
<tr>
<td>2. J.P. Sharma, SunainaKanojia, Cyber Laws</td>
</tr>
<tr>
<td>3. Harish Chander, Cyber Laws and IT Protection</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-Reference:</th>
</tr>
</thead>
</table>
ECONOMIC POLICIES IN INDIA

OE - III

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHSB20</td>
<td>Elective</td>
<td>L T P C CIA SEE Total</td>
<td>45 0 0 30 0 70 100</td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

OBJECTIVES:
The course should enable the students to:

I. Introduce the economic development elements and its measures
II. Provide inside knowledge on monetary policy and its importance in economic development
III. Communicate the importance of fiscal policies in promoting the economy
IV. Explore the policies and practices in resource base infrastructure
V. Discuss the industrial and exit policies related to the industries

MODULE I

INTRODUCTION ECONOMIC DEVELOPMENT AND ITS DETERMINANTS

Approaches to economic development and its measurement – sustainable development; Role of State, market and other institutions; Indicators of development – PQLI, Human Development Index (HDI), gender development indices.

MODULE II

MONEY, BANKING AND PRICES

Analysis of price behavior in India; Financial sector reforms; Interest rate policy; Review of monetary policy of RBI; Money and capital markets; Working of SEBI in India

MODULE III

FISCAL POLICY AND PUBLIC FINANCES

Fiscal federalism – Centre-State financial relations; Finances of central government; Finances of state governments; Parallel economy; Problems relating to fiscal policy; Fiscal sector reforms in India.

MODULE IV

RESOURCE BASE AND INFRASTRUCTURE

Energy; social infrastructure – education and health; Environment; Regional imbalance; Issues and policies in financing infrastructure development. Policies and Performance in Industry Growth; productivity; diversification; small scale industries; public sector; competition policy; foreign investment.

MODULE V

THE INDUSTRIAL AND EXIT POLICIES

Industrial policy; Public Sector enterprises and their performance; Problem of sick units in India; Privatization and disinvestment debate; Growth and pattern of industrialization; Small-scale sector; Productivity in industrial sector; Exit policy – issues in labour market reforms; approaches for employment generation

Text Books:

2. The Strength of Economic Development by Albert Hirschman.
3. Money, Banking and Public Finance by Dr. V.C.Sinha
Reference Books:

Web References:

GLOBAL WARMING AND CLIMATE CHANGE

OE - III

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHSB21</td>
<td>Elective</td>
<td>L T P C</td>
<td>CIA</td>
<td>SEE Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 - - 3</td>
<td>30</td>
<td>70 100</td>
</tr>
</tbody>
</table>

Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

OBJECTIVES:
The course should enable the students to:
I. Understand the importance of Ozone layer in the atmosphere.
II. Comprehend composition of atmosphere.
III. Understand impacts of climate change on ecosystem.
IV. Understand initiatives taken by different countries to reduce emission of greenhouse gases.

MODULE - I EARTH’S CLIMATE SYSTEM Classes: 09

MODULE - II ATMOSPHERE AND ITS COMPONENTS Classes: 09

MODULE - III IMPACTS OF CLIMATE CHANGE Classes: 09
Causes of Climate change: Changes of Temperature in the environment, Melting of ice pole, sea level rise, Impacts of Climate Change on various sectors – Agriculture, Forestry and Ecosystem, Water Resources, Human Health, Industry, Settlement and Society.

Methods and Scenarios, Projected Impacts for different regions, Uncertainties in the projected impacts of Climate Change, Risk of Irreversible Changes.

MODULE - IV OBSERVED CHANGES AND ITS CAUSES Classes: 09

MODULE - V CLIMATE CHANGE AND MITIGATION MEASURES Classes: 09

Text Books:
Reference Books:

E-Text Books:

INTELLECTUAL PROPERTY RIGHTS

OE: III

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHSB22</td>
<td>Elective</td>
<td>L T P</td>
<td>C CIA SEE</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 3 0 0</td>
<td>3 30</td>
<td>0 70 100</td>
</tr>
</tbody>
</table>

| Contact Classes: 45 | Tutorial Classes: Nil | Practical Classes: Nil | Total Classes: 45 |

OBJECTIVES:
The course should enable the students to:
I. Gain knowledge in world trade organization and agreements between nations.
II. Safeguard the intellectual property with international trade agreements.
III. Understand types of intellectual property rights.
IV. Apply different laws in protection of intellectual property rights and its implementation.

MODULE I
INTRODUCTION
Classes: 10
General agreement on tariffs and trade (GATT) eight rounds: Uruguay round, world trade organization: structure, technology transfer, dispute resolution mechanism, Doha declaration world trade organization agreements including trade related intellectual properties rights and trade related investment measures.

MODULE I
WORLD INTELLECTUAL PROPERTY ORGANIZATION
Classes: 08
Paris convention, Bern convention, Budapest treaty, Madrid agreement, huge agreement.

MODULE I
PATENTS
Classes: 09
Historical background of intellectual property rights, introduction, definition and classification of intellectual property, patents, patentable and non-patentable inventions. Legal requirements for patents, types of patent applications, patent document: specification and claims, important procedural aspects, management of intellectual property rights assets and intellectual property portfolio, commercial exploitation of intellectual property.

MODULE I
DESIGNS AND GEOGRAPHICAL INDICATIONS
Classes: 10
Designs: basic requirements, procedure, convention application term, date, geographical indication: definition, what can be registered, who can apply, rights, term, restrictions.

MODULE I
TRADEMARK AND COPYRIGHTS
Classes: 08
Definition, classification of trademarks, classifications of goods and services, Vienna classification, trademarks procedure, trademarks enforcement: infringement and passing off, remedies, copyrights, term of copyrights, and procedure of copyright assignment of copyright, copyright infringement remedies.

Text Books:

Reference Books:
Web References:

2. http://Campus guides.lib.utah.edu

E-Text Books:

ENTREPRENEURSHIP

OE - III

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHSB23</td>
<td>Elective</td>
<td>L T P C CIA SEE Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 - - 3 30 70 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Classes: 45</td>
<td>Tutorial Classes: Nil</td>
<td>Practical Classes: Nil</td>
<td>Total Classes: 45</td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIVES:
The course should enable the students to:
I. Understand the Entrepreneurial process and also inspire them to be Entrepreneurs.
II. Adopting of the key steps in the elaboration of business idea.
III. Understand the stages of the entrepreneurial process and the resources needed for the successful development of entrepreneurial ventures.

MODULE-I UNDERSTANDING ENTREPRENEURIAL MINDSET Classes: 09

MODULE-II INDIVIDUAL ENTREPRENEURIAL MIND-SET AND PERSONALITY Classes: 09

MODULE-III LAUNCHING ENTREPRENEURIAL VENTURES Classes: 09

Opportunities identification- Finding gaps in the market place – techniques for generating ideas-entrepreneurial Imagination and Creativity- the nature of the creativity process - Innovation and entrepreneurship.

Methods to initiate Ventures- Creating new ventures-Acquiring an Established entrepreneurial venture-Franchising- advantage and disadvantages of Franchising.

MODULE-IV LEGAL CHALLENGES OF ENTREPRENEURSHIP Classes: 09

Intellectual property protection - Patents, Copyrights - Trademarks and Trade secrets - Avoiding trademark pitfalls. Feasibility Analysis - Industry and competitor analysis - Formulation of the entrepreneurial Plan- The challenges of new venture start-ups, developing an effective business model – Sources of finance - Critical factors for new venture development - The Evaluation process

MODULE-V STRATEGIC PERSPECTIVES IN ENTREPRENEURSHIP - Classes: 09

Strategic planning - Strategic actions strategic positioning- Business stabilization - Building the adaptive firms - Understanding the growth stage – Internal growth strategies and external growth strategies, Unique managerial concern of growing ventures. Initiatives by the Government of India to promote entrepreneurship, Social and women entrepreneurship.
Text Books:

Reference Books:

MICRO PROCESSORS AND INTERFACING

OE - IV

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECB55</td>
<td>Elective</td>
<td>L T P C CIA SEE Total</td>
<td>3 - - 3 30 70 100</td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

OBJECTIVES:
The course should enable the students to:

I. Understand the architecture of 8085 and 8086 microprocessors.
II. Analyze and develop the programming and interfacing techniques of 8086 microprocessor.
III. Understand the architecture of advanced microprocessors and microcontrollers.
IV. Analyze the basic concepts and programming of 8051 microcontroller.

MODULE - I INTRODUCTION TO 8 BIT AND 16 BIT MICROPROCESSOR Classes: 08

An overview of 8085, Architecture of 8086 Microprocessor, register organization of 8086, 8086 flag register, Addressing modes of 8086, Instruction set of 8086. Assembler directives, procedures, and macros. Assembly language programs involving logical, Branch & Call instructions, sorting, evaluation of arithmetic expressions, string manipulation.

MODULE - II OPERATION OF 8086 AND INTERRUPTS. Classes: 09

Pin diagram of 8086-Minimum mode and maximum mode of operation with Timing diagrams. Interrupt structure of 8086: Vector interrupt table, Interrupt service routines. Introduction to DOS and BIOS interrupts.

MODULE - III INTERFACING WITH 8086. Classes: 09

Memory interfacing to 8086 (Static RAM & EPROM). Need for DMA, DMA data transfer Method, Interfacing with 8237/8257. 8259 PIC Architecture and interfacing cascading of interrupt controller and its importance.

Serial data transfer schemes: Asynchronous and Synchronous data transfer schemes. 8251 USART architecture and interfacing. TTL to RS 232C and RS232C to TTL conversion.

MODULE - IV ADVANCED MICRO PROCESSORS Classes: 09

Introduction to 80286, Salient Features of 80386, Real and Protected Mode Segmentation & Paging, Salient Features of Pentium, Branch Prediction, and Overview of RISC Processors.

MODULE - V 8051 MICROCONTROLLER ARCHITECTURE Classes: 10

8051 Microcontroller Architecture, Register set of 8051, Modes of timer operation, Serial port operation, Interrupt structure of 8051, Memory and I/O interfacing with 8051.

Text Books:

Reference Books:

Web References:

1. http://www.nptel.ac.in/downloads/106108100/
2. http://www.the8051microcontroller.com/web-references
3. http://www.iare.ac.in

E-Text Books:

1. https://books.google.co.in/books
PRINCIPLES OF COMMUNICATION

OE - IV

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECB56</td>
<td>Elective</td>
<td>L T P C CIA</td>
<td>SEE</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 - - - 3</td>
<td>30 70</td>
<td>100</td>
</tr>
<tr>
<td>Contact Classes: 45</td>
<td>Tutorial Classes: Nil</td>
<td>Practical Classes: Nil</td>
<td>Total Classes: 45</td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIVES:
The course should enable the students to:

I. Determine the performance of analog modulation schemes in time and frequency domains
II. Determine the performance of analog communication systems
III. Understand the characteristics of pulse amplitude modulation, pulse position modulation and pulse code modulation systems.

MODULE - I AMPLITUDE MODULATION Classes: 08

MODULE - II DOUBLE SIDE BAND-SUPPRESSED CARRIER MODULATION Classes: 09

Time and Frequency – Domain description, Ring modulator, Coherent detection, Costas Receiver, Quadrature Carrier Multiplexing.

MODULE - III SINGLE SIDE–BAND AND VESTIGIAL SIDEBAND METHODS OF MODULATION Classes: 09

SSB Modulation, VSB Modulation, Frequency Translation, Frequency- Division Multiplexing, Theme Example: VSB Transmission of Analog and Digital Television.

MODULE - IV ANGLE MODULATION Classes: 09

MODULE - V DIGITAL REPRESENTATION OF ANALOG SIGNALS Classes: 10

Text Books:

Reference Books:

<table>
<thead>
<tr>
<th>Web References:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. https://everythingvtu.wordpress.com</td>
</tr>
<tr>
<td>3. http://nptel.ac.in/</td>
</tr>
<tr>
<td>4. http://www.iare.ac.in</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-Text Books:</th>
</tr>
</thead>
</table>
OE - IV

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AECB57</td>
<td>Elective</td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Contact Classes: 45</td>
<td>Tutorial Classes: Nil</td>
<td>Practical Classes: Nil</td>
<td>Total Classes: 45</td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIVES:
The course should enable the students to:
I. Understand the image fundamentals and mathematical transforms necessary for image processing.
II. Describe the image enhancement techniques.
III. Analyze the image compression procedures.
IV. Design the image segmentation and representation techniques.

MODULE - I DIGITAL IMAGE FUNDAMENTALS
Classes: 10

MODULE - II IMAGE TRANSFORMS
Classes: 09

MODULE - III IMAGE ENHANCEMENT
Classes: 08

MODULE - IV IMAGE SEGMENTATION
Classes: 08
Detection of discontinuities. Edge linking and boundary detection, Thresholding, Region oriented segmentation.

MODULE - V IMAGE COMPRESSION
Classes: 10
Redundancies and their removal methods, Fidelity criteria, Image compression models, Source encoder and decoder, Error free compression, Lossy compression.

Text Books:

Reference Books:
Web References:

1. https://imagingbook.com/

E-Text Books:

ELECTRICAL ENGINEERING MATERIALS

OC – IV

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEEB55</td>
<td>Elective</td>
<td>L T P C CIA SEE Total</td>
<td>3 - - 3 30 70 100</td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: 45 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 45

OBJECTIVES:
The course should enable the students to:
I. Learn the basics of materials used in electrical engineering.
II. Realize the dielectric properties of insulators in static and alternating fields.
III. Explain the importance of magnetic properties and superconductivity.
IV. Explain the behavior of conductivity of metals and classifications of semiconductor materials.

MODULE-I ELEMENTARY MATERIALS SCIENCE CONCEPTS Classes: 06

Bonding and types of solids, crystalline state and their defects, classical theory of electrical and thermal conduction in solids, temperature dependence of resistivity, skin effect, hall effect.

MODULE-II DIELECTRIC PROPERTIES OF INSULATORS IN STATIC AND ALTERNATING FIELD Classes: 06

Dielectric constant of mono-atomic gases, poly-atomic molecules and solids, internal field in solids and liquids, properties of Ferro-Electric materials, polarization, piezoelectricity, frequency dependence of electronic and Ionic polarizability, complex dielectric constant of non-dipolar solids, dielectric losses.

MODULE-III MAGNETIC PROPERTIES AND SUPER CONDUCTIVITY Classes: 07

Magnetization of matter, magnetic material classification, ferromagnetic origin, curie-weiss law, soft and hard magnetic materials:
Superconductivity and its origin, zero resistance and Meissner effect, critical current density.

MODULE-IV CONDUCTIVITY OF MATERIALS Classes: 08

Ohm’s law and relaxation time of electrons, collision time and mean free path, electron scattering and resistivity of metals.

MODULE-V SEMICONDUCTOR MATERIALS Classes: 08

Classification of semiconductors, semiconductor conductivity, temperature dependence, carrier density and energy gap, trends in materials used in electrical equipment.

Text Books:
Reference Books:

Web References:

E-Text Books:

1. https://www.books.google.co.in/books/about/A_Textbook_of_Electrical_Engineering_Mat.html?id=Ee8ruUXkJeMC.
NON CONVENTIONAL ENERGY SOURCES

OE - IV

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEEB56</td>
<td>Elective</td>
<td>L 3 T - P -</td>
<td>C 3</td>
<td>CIA 30 SEE 70</td>
</tr>
</tbody>
</table>

| Contact Classes: 45 | Tutorial Classes: Nil | Practical Classes: Nil | Total Classes: 45 |

OBJECTIVES:
The course should enable the students to:
I. Understand the various types of renewable energy sources.
II. Analyze the principle and operation of direct energy conversion.
III. Understand and analyze the hybrid energy systems.
IV. Understand the renewable energy sources to real world electrical and electronics problems.

MODULE - I
PRINCIPLES OF SOLAR RADIATION
Classes: 08
Role and potential of new and renewable source, the solar energy option, Environmental impact of solar power, physics of the sun, the solar constant, extraterrestrial and terrestrial solar radiation, solar radiation on titled surface, instruments for measuring solar radiation and sun shine, solar radiation data.

MODULE - II
SOLAR ENERGY COLLECTION AND SOLAR ENERGY STORAGE AND APPLICATIONS
Classes: 10
Flat plate and concentrating collectors, classification of concentrating collectors, orientation and thermal analysis, advanced collectors.
Different methods, Sensible, latent heat and stratified storage, solar ponds. Solar Applications- solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion.

MODULE - III
WIND ENERGY AND BIO-MASS
Classes: 09
Wind Energy: Sources and potentials, horizontal and vertical axis windmills, performance characteristics, Betz criteria.

MODULE - IV
GEOTHERMAL ENERGY AND OCEAN ENERGY
Classes: 10
Geothermal Energy: Resources, types of wells, methods of harnessing the energy, potential in India

MODULE - V
DIRECT ENERGY CONVERSION
Classes: 08
Need for DEC, Carnot cycle, limitations, principles of DEC.

Text Books:
Reference Books:

1. Renewable Energy resources /Tiwari and Ghosal/Narosa
2. Renewable Energy Technologies /Ramesh & Kumar /Narosa
NANO TECHNOLOGY

OE - IV

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEEB57</td>
<td>Elective</td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Contact Classes: 45
Tutorial Classes: Nil
Practical Classes: Nil
Total Classes: 45

OBJECTIVES:

The course should enable the students to:

I. Impart the basic knowledge in Nano Science and Technology.
II. Give insight into many aspects of Nano science, technology and their applications in the prospective of materials science.
III. Develop new devices and technologies for applications in a wide range of industrial sectors including information technology, medicine, manufacturing, high-performance materials.

UNIT-I INTRODUCTION

History and scope, can small things make a big difference, classification of nanostructured materials, fascinating nanostructures, applications of nanomaterials, Nature: The best of nanotechnologist, challenges, and future prospects.

UNIT-II UNIQUE PROPERTIES OF NANOMATERIALS

Microstructure and Defects in Nanocrystalline Materials: Dislocations, twins, stacking faults and voids, grain boundaries, triple, and disclinations, effect of Nano-dimensions on materials behavior: Elastic properties, melting point, diffusivity, grain growth characteristics, enhanced solid solubility; Magnetic Properties: Soft magnetic Nanocrystalline alloy, permanent magnetic Nanocrystalline materials, giant magnetic resonance, electrical properties, optical properties, thermal properties, and mechanical properties.

UNIT-III SYNTHESIS ROUTES

Bottom up approaches: Physical vapor deposition, inert gas condensation, laser ablation, chemical vapor deposition, molecular beam Epitaxy, solgel method, self assembly.

Top down approaches: Mechanical alloying, Nano-lithography, consolidation of Nano powders: Shock wave consolidation, hot isostatic pressing and cold isostatic pressing spark plasma sintering.

UNIT-IV TOOLS TO CHARACTERIZE NANOMATERIALS

UNIT-V APPLICATIONS OF NANOMATERIALS

Nano-electronics, micro- and Nano-electromechanical systems (MEMS/NEMS), Nanosensors, Nanocatalysts, food and agricultural industry, cosmetic and consumer goods, structure and engineering, automotive industry, water treatment and the environment, Nano-medical applications, textiles, paints, energy, defence and space applications, concerns and challenges of Nanotechnology.
Text Books:

Reference Books

Web References:

3. https://libguides.northwestern.edu › LibGuides

E-Text Book:

ENVIRONMENTAL SCIENCES

IV Semester: AE / CSE / IT / ECE / EEE / ME / CE

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHSB07</td>
<td>Mandatory</td>
<td>C</td>
<td>L T P C</td>
<td>CIA SEE Total</td>
</tr>
</tbody>
</table>

Contact Classes: Nil
Tutorial Classes: Nil
Practical Classes: Nil
Total Classes: Nil

COURSE OBJECTIVES:

The course should enable the students to:

I. Analyze the interrelationship between living organism and environment.
II. Understand the importance of environment by assessing its impact on the human world.
III. Enrich the knowledge on themes of biodiversity, natural resources, pollution control and waste management.
IV. Understand the constitutional protection given for environment.

<table>
<thead>
<tr>
<th>MODULE-I</th>
<th>ENVIRONMENT AND ECOSYSTEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment: Definition, scope and importance of environment, need for public awareness; Ecosystem: Definition, scope and importance of ecosystem, classification, structure and function of an ecosystem, food chains, food web and ecological pyramids, flow of energy; Biogeochemical cycles; Biomagnifications</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MODULE-II</th>
<th>NATURAL RESOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural resources: Classification of resources, living and nonliving resources; Water resources: Use and over utilization of surface and ground water, floods and droughts, dams, benefits and problems; Mineral resources: Use and exploitation; Land resources; Energy resources: Growing energy needs, renewable and non renewable energy sources, use of alternate energy source, case studies.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MODULE-III</th>
<th>BIODIVERSITY AND BIOTIC RESOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biodiversity and biotic resources: Introduction, definition, genetic, species and ecosystem diversity; Value of biodiversity: Consumptive use, productive use, social, ethical, aesthetic and optional values; India as a mega diversity nation; Hot spots of biodiversity</td>
<td></td>
</tr>
</tbody>
</table>

Threats to biodiversity: Habitat loss, poaching of wildlife, human-wildlife conflicts; Conservation of biodiversity: In situ and ex situ conservation; National biodiversity act.

<table>
<thead>
<tr>
<th>MODULE-IV</th>
<th>ENVIRONMENTAL POLLUTION, POLLUTION CONTROL TECHNOLOGIES AND GLOBAL ENVIRONMENTAL PROBLEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental pollution: Definition, causes and effects of air pollution, water pollution, soil pollution, noise pollution; Solid waste: Municipal solid waste management, composition and characteristics of e-waste and its management; Pollution control technologies: Waste water treatment methods, primary, secondary and tertiary; Concepts of bioremediation; Global environmental problems and global efforts: Climate change, ozone depletion, ozone depleting substances, deforestation and desertification</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MODULE-V</th>
<th>ENVIRONMENTAL LEGISLATIONS AND SUSTAINABLE DEVELOPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental legislations: Environmental protection act, air act1981, water act, forest act, wild life act, municipal solid waste management and handling rules, biomedical waste management and handling rules2016, hazardous waste management and handling rules, Environmental impact assessment(EIA); Towards sustainable future: Concept of sustainable development, population and its explosion, crazy consumerism, environmental education, urban sprawl, concept of green building</td>
<td></td>
</tr>
</tbody>
</table>
Text Books:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>

Reference Books:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>

Web References:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>https://www.tndte.com</td>
</tr>
<tr>
<td>2.</td>
<td>https://www.nptel.ac.in/downloads</td>
</tr>
<tr>
<td>4.</td>
<td>https://www.cuiet.info</td>
</tr>
<tr>
<td>5.</td>
<td>https://www.sbtebihar.gov.in</td>
</tr>
<tr>
<td>6.</td>
<td>https://www.ritchennai.org</td>
</tr>
</tbody>
</table>
ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Category</th>
<th>Hours / Week</th>
<th>Credits</th>
<th>Maximum Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHSB17</td>
<td>Mandatory</td>
<td>L T P C CIA SEE Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- - - - 30 70 100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contact Classes: Nil
Tutorial Classes: Nil
Practical Classes: Nil
Total Classes: Nil

COURSE OBJECTIVES:
The course should enable the students to:
I. Understand the concept of Traditional knowledge and its importance
II. Know the need and importance of protecting traditional knowledge.
III. Know the various enactments related to the protection of traditional knowledge.
IV. Understand the concepts of Intellectual property to protect the traditional knowledge

MODULE-I
INTRODUCTION TO TRADITIONAL KNOWLEDGE
Define traditional knowledge, nature and characteristics, scope and importance, kinds of traditional knowledge, the physical and social contexts in which traditional knowledge develop, the historical impact of social change on traditional knowledge systems. Indigenous Knowledge (IK), characteristics, traditional knowledge vis-à-vis indigenous knowledge, traditional knowledge Vs western knowledge traditional knowledge vis-à-vis formal knowledge

MODULE-II
PROTECTION OF TRADITIONAL KNOWLEDGE
Protection of traditional knowledge: The need for protecting traditional knowledge Significance of TK Protection, value of TK in global economy, Role of Government to harness TK.

MODULE-III
LEGAL FRAME WORK AND TK
A: The Scheduled Tribes and Other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006, Plant Varieties Protection and Farmer's Rights Act, 2001 (PPVFR Act);

MODULE-IV
TRADITIONAL KNOWLEDGE AND INTELLECTUAL PROPERTY
Systems of traditional knowledge protection, Legal concepts for the protection of traditional knowledge, Certain non IPR mechanisms of traditional knowledge protection, Patents and traditional knowledge, Strategies to increase protection of traditional knowledge, global legal FORA for increasing protection of Indian Traditional Knowledge.

MODULE-V
TRADITIONAL KNOWLEDGE IN DIFFERENT SECTORS:
Traditional knowledge and engineering, Traditional medicine system, TK and biotechnology, TK in agriculture, Traditional societies depend on it for their food and healthcare needs, Importance of conservation and sustainable development of environment, Management of biodiversity, Food security of the country and protection of TK.

Text Books:
2. Traditional Knowledge System and Technology in India by Basanta Kumar Mohanta and Vipin Kumar Singh Pratibha Prakashan 2012.

Reference Books:
2. "Knowledge Traditions and Practices of India" Kapil Kapoor1, Michel Danino2
VISION AND MISSION OF THE INSTITUTE

VISION
To bring forth professionally competent and socially sensitive engineers, capable of working across cultures meeting the global standards ethically.

MISSION
To provide students with an extensive and exceptional education that prepares them to excel in their profession, guided by dynamic intellectual community and be able to face the technically complex world with creative leadership qualities.

Further, be instrumental in emanating new knowledge through innovative research that emboldens entrepreneurship and economic development for the benefit of wide spread community.

B.TECH - PROGRAM OUTCOMES (POs)

PO-1: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems (Engineering Knowledge).

PO-2: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences (Problem Analysis).

PO-3: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations (Design/Development of Solutions).

PO-4: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions (Conduct Investigations of Complex Problems).

PO-5: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations (Modern Tool Usage).

PO-6: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice (The Engineer and Society).

PO-7: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development (Environment and Sustainability).

PO-8: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice (Ethics).

PO-9: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings (Individual and Team Work).

PO-10: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions (Communication).

PO-11: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments (Project management and finance).

PO-12: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change (Life-long learning).
OBJECTIVES OF THE DEPARTMENT

DEPARTMENT OF MECHANICAL ENGINEERING

PROGRAM EDUCATIONAL OBJECTIVES (PEO’S)

A graduate of the Mechanical Engineering Program should:

PEO – I: To provide students with a sound foundation in the mathematical, scientific and engineering fundamentals necessary to formulate, solve and analyze engineering problems.

PEO – II: To prepare students for successful careers in industry that meet the needs of local, Indian and multinational companies.

PEO – III: To develop the ability among students to synthesize data and technical concepts for application to product design and prepares students to work as part of teams on multidisciplinary projects.

PEO – IV: To promote student awareness for life-long learning and to introduce them to codes of professional practice, ethics and prepare them for higher studies.

PROGRAM SPECIFIC OUTCOMES (PSO’s)

PSO – I: To produce engineering professional capable of synthesizing and analyzing mechanical systems including allied engineering streams.

PSO – II: An ability to adopt and integrate current technologies in the design and manufacturing domain to enhance the employability.

PSO – III: To build the nation, by imparting technological inputs and managerial skills to become Technocrats.
FREQUENTLY ASKED QUESTIONS AND ANSWERS ABOUT AUTONOMY

1. **Who grants Autonomy? UGC, Govt., AICTE or University**

 In case of Colleges affiliated to a university and where statutes for grant of autonomy are ready, it is the respective University that finally grants autonomy but only after concurrence from the respective state Government as well as UGC. The State Government has its own powers to grant autonomy directly to Govt. and Govt. aided Colleges.

2. **Shall IARE award its own Degrees?**

 No. Degree will be awarded by Jawaharlal Nehru Technological University, Hyderabad with a mention of the name IARE on the Degree Certificate.

3. **What is the difference between a Deemed University and an Autonomy College?**

 A Deemed University is fully autonomous to the extent of awarding its own Degree. A Deemed University is usually a Non-Affiliating version of a University and has similar responsibilities like any University. An Autonomous College enjoys Academic Autonomy alone. The University to which an autonomous college is affiliated will have checks on the performance of the autonomous college.

4. **How will the Foreign Universities or other stakeholders know that we are an Autonomous College?**

 Autonomous status, once declared, shall be accepted by all the stakeholders. The Govt. of Telangana mentions autonomous status during the First Year admission procedure. Foreign Universities and Indian Industries will know our status through our website.

5. **What is the change of Status for Students and Teachers if we become Autonomous?**

 An autonomous college carries a prestigious image. Autonomy is actually earned out of our continued past efforts on academic performances, our capability of self-governance and the kind of quality education we offer.

6. **Who will check whether the academic standard is maintained/improved after Autonomy? How will it be checked?**

 There is a built in mechanism in the autonomous working for this purpose. An Internal Committee called Academic Program Evaluation Committee, which will keep a watch on the academics and keep its reports and recommendations every year. In addition the highest academic council also supervises the academic matters. The standards of our question papers, the regularity of academic calendar, attendance of students, speed and transparency of result declaration and such other parameters are involved in this process.

7. **Will the students of IARE as an Autonomous College qualify for University Medals and Prizes for academic excellence?**

 No. IARE has instituted its own awards, medals, etc. for the academic performance of the students. However for all other events like sports, cultural or co-curricular organized by the University the students shall qualify.

8. **Can IARE have its own Convocation?**

 No. Since the University awards the Degree the Convocation will be that of the University, but there will be Graduation Day at IARE.

9. **Can IARE give a provisional degree certificate?**

 Since the examinations are conducted by IARE and the results are also declared by IARE, the college sends a list of successful candidates with their final Grades and Grade Point Averages including CGPA to the University. Therefore with the prior permission of the University the college will be
entitled to give the provisional certificate.

10 **Will Academic Autonomy make a positive impact on the Placements or Employability?**
Certainly. The number of students qualifying for placement interviews is expected to improve, due to rigorous and repetitive classroom teaching and continuous assessment. Also the autonomous status is more responsive to the needs of the industry. As a result therefore, there will be a lot of scope for industry oriented skill development built-in into the system. The graduates from an autonomous college will therefore represent better employability.

11 **What is the proportion of Internal and External Assessment as an Autonomous College?**
Presently, it is 70% external and 30% internal. As the autonomy matures the internal assessment component shall be increased at the cost of external assessment.

12 **Is it possible to have complete Internal Assessment for Theory or Practicals?**
Yes indeed. We define our own system. We have the freedom to keep the proportion of external and internal assessment component to choose.

13 **Why Credit based Grade System?**
The credit based grade system is an accepted standard of academic performance the world over in all Universities. The acceptability of our graduates in the world market shall improve.

14 **What exactly is a Credit based Grade System?**
The credit based grade system defines a much better statistical way of judging the academic performance. One Lecture Hour per week of Teaching Learning process is assigned One Credit. One hour of laboratory work is assigned half credit. Letter Grades like A, B, C, D, etc. are assigned for a Range of Marks. (e.g. 91% and above is A+, 80 to 90% could be A etc.) in Absolute Grading System while grades are awarded by statistical analysis in relative grading system. We thus dispense with sharp numerical boundaries. Secondly, the grades are associated with defined Grade Points in the scale of 1 to 10. Weighted Average of Grade Points is also defined Grade Points are weighted by Credits and averaged over total credits in a Semester. This process is repeated for all Semesters and a CGPA defines the Final Academic Performance

15 **What are the norms for the number of Credits per Semester and total number of Credits for UG/PG program?**
These norms are usually defined by UGC or AICTE. Usually around 25 Credits per semester is the accepted norm.

16 **What is a Semester Grade Point Average (SGPA)?**
The performance of a student in a semester is indicated by a number called SGPA. The SGPA is the weighted average of the grade points obtained in all the courses registered by the student during the semester.

\[
SGPA = \sum_{i=1}^{n} \left(\frac{C_i \cdot G_i}{\sum_{i=1}^{n} C_i} \right)
\]

Where, \(C_i\) is the number of credits of the \(i^{th}\) course and \(G_i\) is the grade point scored by the student in the \(i^{th}\) course and \(n\) represent the number of courses in which a student registered in the concerned semester. SGPA is rounded to two decimal places.

17 **What is a Cumulative Grade Point Average (CGPA)?**
An up-to-date assessment of overall performance of a student from the time of his first registration is
obtained by calculating a number called CGPA, which is weighted average of the grade points obtained in all the courses registered by the students since he entered the Institute.

\[CGPA = \frac{\sum_{j=1}^{m} (C_j S_j)}{\sum_{j=1}^{m} C_j} \]

Where, \(S_j \) is the SGPA of the \(j^{th} \) semester and \(C_j \) is the total number of credits upto the semester and \(m \) represent the number of semesters completed in which a student registered upto the semester. CGPA is rounded to two decimal places.

18 Is there any Software available for calculating Grade point averages and converting the same into Grades?
Yes, The institute has its own MIS software for calculation of SGPA, CGPA, etc.

19 Will the teacher be required to do the job of calculating SGPAs etc. and convert the same into Grades?
No. The teacher has to give marks obtained out of whatever maximum marks as it is. Rest is all done by the computer.

20 Will there be any Revaluation or Re-Examination System?
No. There will double valuation of answer scripts. There will be a make up Examination after a reasonable preparation time after the End Semester Examination for specific cases mentioned in the Rules and Regulations. In addition to this, there shall be a ‘summer term’ (compressed term) followed by the End Semester Exam, to save the precious time of students.

21 How fast Syllabi can be and should be changed?
Autonomy allows us the freedom to change the syllabi as often as we need.

22 Will the Degree be awarded on the basis of only final year performance?
No. The CGPA will reflect the average performance of all the semester taken together.

23 What are Statutory Academic Bodies?
Governing Body, Academic Council, Examination Committee and Board of Studies are the different statutory bodies. The participation of external members in every body is compulsory. The institute has nominated professors from IIT, NIT, University (the officers of the rank of Pro-vice Chancellor, Deans and Controller of Examinations) and also the reputed industrialist and industry experts on these bodies.

24 Who takes Decisions on Academic matters?
The Governing Body of institute is the top academic body and is responsible for all the academic decisions. Many decisions are also taken at the lower level like Boards of Studies. Decisions taken at the Boared of Studies level are to be ratified at the Academic Council and Governing Body.

25 What is the role of Examination committee?
The Examinations Committee is responsible for the smooth conduct of internal, End Semester and make up Examinations. All matters involving the conduct of examinations spot valuations, tabulations preparation of Grade Sheet etc fall within the duties of the Examination Committee.

26 Is there any mechanism for Grievance Redressal?
The institute has grievance redressal committee, headed by Dean - Student affairs and Dean - IQAC.
27 How many attempts are permitted for obtaining a Degree?
All such matters are defined in Rules & Regulation

28 Who declares the result?
The result declaration process is also defined. After tabulation work wherein the SGPA, CGPA and final Grades are ready, the entire result is reviewed by the Moderation Committee. Any unusual deviations or gross level discrepancies are deliberated and removed. The entire result is discussed in the Examinations and Result Committee for its approval. The result is then declared on the institute notice boards as well put on the web site and Students Corner. It is eventually sent to the University.

29 Who will keep the Student Academic Records, University or IARE?
It is the responsibility of the Dean, Academics of the Autonomous College to keep and preserve all the records.

30 What is our relationship with the JNT University?
We remain an affiliated college of the JNT University. The University has the right to nominate its members on the academic bodies of the college.

31 Shall we require University approval if we want to start any New Courses?
Yes, It is expected that approvals or such other matters from an autonomous college will receive priority.

32 Shall we get autonomy for PG and Doctoral Programs also?
Yes, presently our PG programs also enjoying autonomous status.
MALPRACTICES RULES
DISCIPLINARY ACTION FOR / IMPROPER CONDUCT IN EXAMINATIONS

<table>
<thead>
<tr>
<th>S.No</th>
<th>Nature of Malpractices/Improper conduct</th>
<th>Punishment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (a)</td>
<td>Possesses or keeps accessible in examination hall, any paper, note book, programmable calculator, cell phone, pager, palm computer or any other form of material concerned with or related to the subject of the examination (theory or practical) in which he is appearing but has not made use of (material shall include any marks on the body of the candidate which can be used as an aid in the subject of the examination)</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject only.</td>
</tr>
<tr>
<td>(b)</td>
<td>Gives assistance or guidance or receives it from any other candidate orally or by any other body language methods or communicates through cell phones with any candidate or persons in or outside the exam hall in respect of any matter.</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject only of all the candidates involved. In case of an outsider, he will be handed over to the police and a case is registered against him.</td>
</tr>
<tr>
<td>2.</td>
<td>Has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination (theory or practical) in which the candidate is appearing.</td>
<td>Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted to appear for the remaining examinations of the subjects of that Semester/year. The Hall Ticket of the candidate is to be cancelled and sent to the Controller of Examinations.</td>
</tr>
<tr>
<td>3.</td>
<td>Impersonates any other candidate in connection with the examination.</td>
<td>The candidate who has impersonated shall be expelled from examination hall. The candidate is also debarred and forfeits the seat. The performance of the original candidate, who has been impersonated, shall be cancelled in all the subjects of the examination (including practicals and project work) already appeared and shall not be allowed to appear for examinations of the remaining subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all semester end examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. If the imposter is an outsider, he will be handed over to the police and a case is registered against him.</td>
</tr>
</tbody>
</table>
4. Smuggles in the Answer book or additional sheet or takes out or arranges to send out the question paper during the examination or answer book or additional sheet, during or after the examination.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all semester end examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.</td>
<td></td>
</tr>
</tbody>
</table>

5. Uses objectionable, abusive or offensive language in the answer paper or in letters to the examiners or writes to the examiner requesting him to award pass marks.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancellation of the performance in that subject.</td>
<td></td>
</tr>
</tbody>
</table>

6. Refuses to obey the orders of the Controller of Examinations /Additional Controller of Examinations any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the COE or any person on duty in or outside the examination hall of any injury to his person or to any of his relations whether by words, either spoken or written or by signs or by visible representation, assaults the COE or any person on duty in or outside the examination hall or any of his relations, or indulges in any other act of misconduct or mischief which result in damage to or destruction of property in the examination hall or any part of the Institute premises or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the examination.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>In case of students of the college, they shall be expelled from examination halls and cancellation of their performance in that subject and all other subjects the candidate(s) has (have) already appeared and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. The candidates also are debarred and forfeit their seats. In case of outsiders, they will be handed over to the police and a police case is registered against them.</td>
<td></td>
</tr>
</tbody>
</table>

7. Leaves the exam hall taking away answer script or intentionally tears off the script or any part thereof inside or outside the examination hall.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all semester end examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>8.</td>
<td>Possess any lethal weapon or firearm in the examination hall.</td>
</tr>
<tr>
<td>9.</td>
<td>If student of the college, who is not a candidate for the particular examination or any person not connected with the college indulges in any malpractice or improper conduct mentioned in clause 6 to 8.</td>
</tr>
<tr>
<td>10.</td>
<td>Comes in a drunken condition to the examination hall.</td>
</tr>
<tr>
<td>11.</td>
<td>Copying detected on the basis of internal evidence, such as, during valuation or during special scrutiny.</td>
</tr>
<tr>
<td>12.</td>
<td>If any malpractice is detected which is not covered in the above clauses 1 to 11 shall be reported to the University for further action to award suitable punishment.</td>
</tr>
</tbody>
</table>
UNDERTAKING BY STUDENT / PARENT

“To make the students attend the classes regularly from the first day of starting of classes and be aware of the College regulations, the following Undertaking Form is introduced which should be signed by both student and parent. The same should be submitted to the Dean, Academic”.

I, Mr. / Ms. ___________________________ joining I Semester / III Semester for the academic year 2018-2019 / 2019-2020 in Institute of Aeronautical Engineering, Hyderabad, do hereby undertake and abide by the following terms, and I will bring the ACKNOWLEDGEMENT duly signed by me and my parent and submit it to the Dean, Academic.

1. I will attend all the classes as per the timetable from the starting day of the semester specified in the institute Academic Calendar. In case, I do not turn up even after two weeks of starting of classes, I shall be ineligible to continue for the current academic year.

2. I will be regular and punctual to all the classes (theory/laboratory/project) and secure attendance of not less than 75% in every course as stipulated by Institute. I am fully aware that an attendance of less than 65% in more than 60% of theory courses in a semester will make me lose one year.

3. I will compulsorily follow the dress code prescribed by the college.

4. I will conduct myself in a highly disciplined and decent manner both inside the classroom and on campus, failing which suitable action may be taken against me as per the rules and regulations of the institute.

5. I will concentrate on my studies without wasting time in the Campus/Hostel/Residence and attend all the tests to secure more than the minimum prescribed Class/Sessional Marks in each course. I will submit the assignments given in time to improve my performance.

6. I will not use Mobile Phone in the institute premises and also, I will not involve in any form of ragging inside or outside the campus. I am fully aware that using mobile phone in the institute premises is not permissible and involving in Ragging is an offence and punishable as per JNTUH/UGC rules and the law.

7. I declare that I shall not indulge in ragging, eve-teasing, smoking, consuming alcohol drug abuse or any other anti-social activity in the college premises, hostel, on educational tours, industrial visits or elsewhere.

8. I will pay tuition fees, examination fees and any other dues within the stipulated time as required by the Institution / authorities, failing which I will not be permitted to attend the classes.

9. I will not cause or involve in any sort of violence or disturbance both within and outside the college campus.

10. If I absent myself continuously for 3 days, my parents will have to meet the HOD concerned/Principal.

11. I hereby acknowledge that I have received a copy of IARE - R18 Academic Rules and Regulations, Syllabus copy and hence, I shall abide by all the rules specified in it.

ACKNOWLEDGEMENT

I have carefully gone through the terms of the undertaking mentioned above and I understand that following these are for my/his/her own benefit and improvement. I also understand that if I/he/she fail to comply with these terms, shall be liable for suitable action as per Institute/JNTUH/AICTE/UGC rules and the law. I undertake that I/he/she will strictly follow the above terms.

Signature of Student with Date

Signature of Parent with Date

Name & Address with Phone Number