| Hall Ticket No |  |  |  |  |  |  |  |  |  |  | Question Paper Code: AME005 |
|----------------|--|--|--|--|--|--|--|--|--|--|-----------------------------|
|----------------|--|--|--|--|--|--|--|--|--|--|-----------------------------|



#### INSTITUTE OF AERONAUTICAL ENGINEERING

#### (Autonomous)

Dundigal, Hyderabad - 500 043

#### MODEL QUESTION PAPER

B. Tech III Semester End Examinations, November – 2018

**Regulations: IARE-R16** 

#### METALLURGY AND MATERIAL SCIENCE

(MECHANICAL ENGINEERING)

Time: 3 hours Max. Marks: 70

# Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

#### UNIT - I

- 1. a) Write about metallic bond? Explain about various type of bonding does influence the properties of crystals? Distinguish between a family of planes and family of directions. [7M]
  - b) Discuss about Atomic packing factor (APF)? Find APF of a Body Centered Cube [7M] and a Face Centered Cube?
- 2. a) Explain the effects of crystal structure and atomic radii on formation of solid solution between two metallic elements. [7M]
  - b) Discuss about intermediate phases? Explain most common types of intermediate phases with examples. [7M]

[7M]

[7M]

#### UNIT - II

- 3. a) Discuss about cooling curve? With the help of appropriate diagram explain the cooling curve for (i) Pure metal (ii) Binary solid solution (iii) Binary eutectic system.
  - b) Elements A and B melt at 600°C and 900°C respectively. They form an eutectic at 40 % B and at temperature 400°C. Draw a typical phase diagram between A and B. Find (i) Amount of free A and eutectic in 20 % B alloy

    (ii)Amount of free B and eutectic in 60 % B alloy
- 4. a) Draw and explain the various areas of an isomorphous system (phase diagram) in which two metals are completely soluble in solid as well as liquid. [7M]
  - b) Explain How is the cored structure formed and how can it be eliminated? [7M]

#### UNIT - III

5. a) A1.0% hypereutectoid plain carbon steel is slowly cooled from 900°C to a temperature just above 723°C. Calculate the weight percentage of proeutectoid cementite and austenite present in steel.

|     | b)       | Explain the effect of small quantities of (i) Sulphur (ii) Manganese (iii) Phosphorus (iv) Silicon upon the properties of steel?                                                                                                                                                               | [7M]          |
|-----|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 6.  | a)<br>b) | Describe the Austempering and Martempering process for Plain carbon steel. Draw the cooling curves for these processes.  Recommend a heat treatment process to improve the machinability of high carbon steel. Explain the process and indicate the microstructure desired with a neat sketch. | [7M]          |
|     |          | UNIT – IV                                                                                                                                                                                                                                                                                      |               |
| 7.  | a)       | Explain the composition and properties, uses of (i) SG Iron (ii) White Cast iron (iii) Malleable cast iron.                                                                                                                                                                                    | [ <b>7M</b> ] |
|     | b)       | Write a short note on (i) Ni-resist Cast iron (ii) Ni-hard Cast iron.                                                                                                                                                                                                                          | [ <b>7M</b> ] |
| 8.  | a)       | State composition and properties of any three bearing materials.                                                                                                                                                                                                                               | [7M]          |
|     | b)       | Describe the tin bronzes based on composition, properties and applications.                                                                                                                                                                                                                    | [7M]          |
|     |          | UNIT – V                                                                                                                                                                                                                                                                                       |               |
| 9.  | a)       | Describe the structure, properties and applications of the following engineering thermoplastic polymers (i) Nylons (ii) Polyethylene terephthalate (PET).                                                                                                                                      | [7M]          |
|     | b)       | Describe the properties and applications of following structural ceramics (i) Alumina (ii) Silicon carbide (iii) Silicon nitride.                                                                                                                                                              | [7M]          |
| 10. | a)       | Describe the following particulate reinforced composites (i) Cermets (ii) Cast metal particulate composites.                                                                                                                                                                                   | [ <b>7M</b> ] |
|     | b)       | Compare the advantages and limitations of Fibre reinforced polymer matrix and ceramic composites.                                                                                                                                                                                              | [7M]          |



## **INSTITUTE OF AERONAUTICAL ENGINEERING**

### (Autonomous) Dundigal, Hyderabad - 500 043

#### **COURSE OBJECTIVES:**

| I   | Understanding of metallurgical engineering concepts and properties.                               |
|-----|---------------------------------------------------------------------------------------------------|
| II  | Analyze of microstructures of metals and alloys and relationship to heat treatment.               |
| III | Compare the properties of ceramics, glasses, composites and polymers for industrial applications. |

#### **COURSE OUTCOMES:**

| S. No.     | Description                                                                                                                                                                  | Blooms<br>Taxonomy<br>Level |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| CAME005.01 | Analyze the structure of materials at different levels, basic concepts of crystalline materials like unit cell, FCC, BCC, HCP, Atomic packing factor, Coordinate number etc. | Understand                  |
| CAME005.02 | Explain the necessity of alloying, types of solid solution and intermediate alloy phases.                                                                                    | Understand                  |
| CAME005.03 | Explain the concept of phase and phase diagram and understand the basic terminologies associated with metallurgy.                                                            | Remember                    |
| CAME005.04 | Construction of phase diagrams and identification of different phases and invariant reaction.                                                                                | Remember                    |
| CAME005.05 | Understand and suggest the heat treatment processes and types, and significance of mechanical and metallurgical properties with respect to microstructures.                  | Remember                    |
| CAME005.06 | Explain the concept of Hardenability and demonstrate the test used to find the Hardenability of steels.                                                                      | Remember                    |
| CAME005.07 | Analyze the microstructure of metallic materials using phase diagram and modify the microstructure and properties using different heat treatment processes.                  | Remember                    |
| CAME005.08 | Define and differentiate engineering materials on the basis of structure and properties for engineering applications.                                                        | Understand                  |
| CAME005.09 | Explain features, classification, and application of materials like polymers like thermosetting, thermoplastics.                                                             | Understand                  |
| CAME005.10 | Explain features, classification, and application of materials like ceramics.                                                                                                | Understand                  |
| CAME005.11 | Explain features, classification, and application of materials like composites.                                                                                              | Understand                  |
| CAME005.12 | Differentiate the properties and application of various materials like ceramics, composites and polymers.                                                                    | Understand                  |

| CAME005.13    | To make the students conversant with ISO and IS standards of the      | Understand |  |  |
|---------------|-----------------------------------------------------------------------|------------|--|--|
| CAME003.13    | material composition and mechanical properties.                       |            |  |  |
| CAME005.14    | To design and develop materials for high temperature applications and | Understand |  |  |
| CAME003.14    | understand mechanical properties at elevated temperatures.            |            |  |  |
| CAME005.15    | To familiarize on different international standards for composite     | Remember   |  |  |
| CAMEUUS.13    | materials and its applications                                        |            |  |  |
| CAME005.16    | To design materials for strength to weight ratio applications.        | Remember   |  |  |
| C/11/1L005.10 |                                                                       |            |  |  |

## MAPPING OF MODEL QUESTION PAPER QUESTIONS TO THE ACHIEVEMENT OF COURSE OUTCOMES

| SEE<br>Question<br>No. |   |            | Blooms<br>Taxonomy                                                   |            |
|------------------------|---|------------|----------------------------------------------------------------------|------------|
| 1                      | a | CAME005.01 | Analyze the crystal structure of materials                           | Understand |
| 1                      | b | CAME005.01 | Analyze the crystal structure of materials                           | Understand |
| 2                      | a | CAME005.02 | Relate properties of metals to micro structure                       | Remember   |
|                        | b | CAME005.03 | Explain the concept of phase and phase diagram.                      | Remember   |
| 3 -                    | a | CAME005.04 | Construction of phase diagrams and identification of reactions.      | Remember   |
|                        | b | CAME005.04 | reactions.                                                           |            |
| 4                      | a | CAME005.04 | Construction of phase diagrams and identification of reactions.      | Remember   |
| 4                      | b | CAME005.04 | Construction of phase diagrams and identification of reactions.      | Understand |
| 5                      | a | CAME005.05 | Understand the heat treatment processes and its types.               | Understand |
| 3                      | b | CAME005.05 | Understand the heat treatment processes and its types.               | Understand |
| -                      | a | CAME005.06 | Apply the principles of heat treatment for improving properties.     | Understand |
| 6                      | b | CAME005.06 | Apply the principles of heat treatment for improving properties.     | Understand |
| 7                      | a | CAME005.07 | Select metals and alloys for engineering applications                | Understand |
| /                      | b | CAME005.07 | Understand                                                           |            |
| 8                      | a | CAME005.08 | Identify suitable metals, non-metals for various industrial products | Remember   |
| 8                      | b | CAME005.08 | Identify suitable metals, non-metals for various industrial products | Remember   |
| 9                      | a | CAME005.09 | Understand various advantages and limitations of polymers.           | Remember   |
| 9                      | b | CAME005.10 | Understand various advantages and limitations of Ceramics.           | Remember   |
| 10                     | a | CAME005.11 | Understand various advantages and limitations of composites.         | Remember   |
| 10                     | b | CAME005.12 | Compare properties of ceramics and composites.                       | Understand |

## **Signature of Course Coordinator**

Mr. M Prashanth Reddy, Assistant Professor Department of Mechanical Engineering, IARE, Dundigal, Hyderabad.

**HOD, Mechanical Engineering**