Hall Ticket	No		Question Paper Code: BCS301
E LARE NO	INSTITUTE	OF AERONAUTICA (Autonomous) ech I Semester Supplementary E Regulation: R16	L ENGINEERING

ADVANCED R PROGRAMMING

(Computer Science and Engineering)

Time: 3 Hours

Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT}-\mathbf{I}$

1	(-)	Commencies the stepse in succeive D succinement	[=] (]
1.	(a)	Summarize the stages in creating R environment.	[71VI]
	(b)	Write the features of R programming comparing with other programming languages.	[7M]
2.	(a)	Write R script to choose the data dynamically from local disc file and from standard input de	evice.
			[7M]
	(b)	Compare the different forms of data types available in R.	[7M]
		$\mathbf{UNIT} - \mathbf{II}$	
3.	(a)	Discuss the different ways to access different types of data.	[8M]
	(b)	State the apply() to perform sum of all element on vector.	[6M]
4.	(a)	List the ways to create array in R in terms of creation and manipulation of data.	[7M]
	(b)	Write a R script, to define swap() function for swapping of any two variables like two num integers and strings.	bers, $[7M]$
		$\mathbf{UNIT} - \mathbf{III}$	
5.	(a)	Write a R script to create a matrix object and transpose of matrix in R.	[8M]
	(b)	What are the inbuilt R functions used for combining two datasets.	[6M]
6.	(a)	Write a R program to check whether a number is even or odd.	[7M]
	(b)	What is the use of With ()function in R? Give Example.	[7M]
		$\mathbf{UNIT} - \mathbf{IV}$	
7.	(a)	In R programming, how missing values are identified represented?	[7M]
	(b)	What is the use of subset() and sample() function in R?	[7M]
8.	(a)	What is the difference between $seq(4)$ and $seq_along(4)$?	[7M]

(b) List the summary function in R with suitable example? [7M]

$\mathbf{UNIT}-\mathbf{V}$

9.	(a)	How many ways to create data frame object in R?	[7M]
	(b)	What are the functions used for merging of data frames horizontally and vertically in R?	[7M]
10.	(a)	Write R script to subset the data at different levels.	[7M]
	(b)	Write a function to create a vector and inverse of a vector.	[7M]

Hall Ticket No	Question Paper Code: BPE301
INSTITUTE OF AERONAUTICA (Autonomous)	L ENGINEERING
MOOC for M.Tech I Semester Supplementary E Regulation: R16 CONVERTER CIRCU	Examinations, July - 2017
(Power Electronics and Electronics)	ric Drives)
Time: 3 Hours	Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT}-\mathbf{I}$

1.	(a) Write the advantages and applications of power MOSFET.	[7M]
	(b) Describe Equivalent Circuit Modeling of Switching loss.	[7M]
2.	(a) Write comparison between thyristors bridge rectifier and diode bridge rectifier.	[7M]
	(b) Distinguish between BJT and IGBT.	[7M]

$\mathbf{UNIT}-\mathbf{II}$

3.	(a) Discuss the characteristics of IGBT.	[7M]
	(b) Explain about boost converter with neat diagrams.	[7M]
4.	(a) Explain about Cuk boost converter with neat diagrams.	[7M]
	(b) Discuss the characteristics of MOSFET in enhancement mode.	[7M]

$\mathbf{UNIT}-\mathbf{III}$

-		[== 3, 4]
	$\mathbf{UNIT} - \mathbf{IV}$	
	(b) Describe the buck converter operation using synchronous rectifier with neat diagrams.	[7M]
6.	(a) Explain synchronous boost converter with neat diagrams.	[7M]
	(b) Describe the half bridge inverter with RL load with neat diagrams.	[7M]
5.	(a) Explain the working of 3-Ø half controlled bridge rectifier for RL load discontinuous mode.	[7M]

7.	(a) Describe the operation of fly back converter operation.	[7M]
	(b) Describe the four quadrant chopper with neat diagrams.	[7M]
8.	(a) Describe the half bridge inverter for R load with neat diagrams.	[7M]
	(b) Explain the working of 1- \emptyset half controlled bridge rectifier for R load with neat diagram	ns. $[7M]$

$\mathbf{UNIT}-\mathbf{V}$

- 9. (a) Derive the step down chopper V_o , V_{rms} , Efficiency and Ri the effective input resistance. [7M]
 - (b) Describe the operation of 1 Ø full controlled bridge rectifier for RL load in continuous mode.

[7M]

- 10. (a) Discuss the operation of three phase inverter in 180 mode. [7M]
 - (b) A single phase full wave converter is operated from a 220V, 50Hz, supply. If the load is R=60 Ω and $\alpha = \frac{\pi}{2}$ determine peek inverse voltage of thyristors. [7M]

Answer ON	Ouestion from each Unit
Time: 3 Hours	Max Marks: 70
(Strue	tural Engineering)
MAT	ERIAL SCIENCE
I	Regulation: R16
MOOC for M.Tech I Semester	Supplementary Examinations, February – 2017
	Autonomous)
INSTITUTE OF AEI	RONAUTICAL ENGINEERING
Hall Ticket No	Question Paper Code: BST301

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only

$\mathbf{UNIT}-\mathbf{I}$

1.	(a) Give the relationship of elastic deformation to the stretching of atomic bonds.	[6M]
	(b) Define what do you meanly "structure leads to properties" explain in detail.	[8M]
2.	(a) How point defects facilitate solid state diffusion and also state the fick's law.	[5M]
	(b) How do you find the number of vacancies in a crystal with the help of arrehinius relat	ionshipin a
	step by step process.	[9M]

$\mathbf{UNIT}-\mathbf{II}$

3.	(a)	Write a short note on the big 4 properties which could be analyzed with the help of produced from tensile test.	a graph [8M]
	(b)	Explain the implementation of a high stress process for the creation of a plastic deform a perfect crystal?	ation of [6M]
4.	(a) (b)	Write a short note on edge dislocation of crystal. Find out the modulus of elasticity of a steel rod with the help of a stress strain curve.	[10M] $[4M]$
		$\mathbf{UNIT} - \mathbf{III}$	

5. (a) Write in detail on the theory of activation energy. [7M] (b) What are the applications of fcc and hcpalloys. [7M] 6. (a) How arrihenus relationship contribution to creep explain it with the help of arrihenius plot. [8M]

(b) What is a charpy tester why it is used andhoits used for testing of a engineering material. [6M]

$\mathbf{UNIT}-\mathbf{IV}$

7.	(a)	What is the difference b/w a good fracture and bad fracture in fractured toughness wi	ith their
		practical application.	[8M]
	(b)	What is a critical flaw explain it in detail.	[6M]

8. (a) Compare the tensile strength curve with fatigue strength curve and list out the major differences with reasons for it. [8M]
(b) Define fatigue in detail. [6M]

$\mathbf{UNIT}-\mathbf{V}$

9.	(a) Explain the lead tin phase diagram.	[6M]
	(b) Draw A TTT relation diagram for a eutectoid steel.	[8M]
10.	(a) What is an eutectic and eutectoid reaction and the eutectic point explain it in de application in steel industry.	tail and their [8M]
	(b) Explain the tin-bismuth experiment with the help of a phase diagram.	[6M]

 $-\circ\circ\bigcirc\circ\circ-$