LECTURE NOTES
ON

MICRO CONTROLLERS AND
PROGRAMMABLE DIGITAL SIGNAL
PROCESSING

(BESB02)

| M.TECH I semester ECE (ES)
(AUTONOMOUS-R18)

Presented By:

Mr.K.Chaitanya

(Assistant Professor)

ELECRTONICS AND COMMUNICATION ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
DUNDIGAL, HYDERABAD - 500043

UNIT-I
ARM Cortex-M3 processor

UNIT-I
ARM Cortex-M3 processor

The ARM Cortex-M3 processor, the first of the Cortex generation of proces
released by ARM in 2006, was primarily designed to target the 32-bit microcontroller market.
The Cortex-M3 processor provides excellent performance at low gate count and comes with
many new features previously available only in high-end processors.

Applications:

i) Low-cost microcontrollers:

SOrs

The cortex M3 processor is ideally suited for low-cost micro controllers, which are commonly used in
consumer products. Low power, high performance, ease-of-use are the advantages.

ii) Automotive:

The cortex M3 has high performance efficiency and low interrupts latency, allowing to be used in real

time systems.

iii) Data communication:

The processor’s low power and high efficiency, coupled with Thumb-2 instructions, make cortex M3
ideal for many communication applications. (Bluetooth, Zigbee)

iv) Industrial control:

In industrial control applications simplicity, fast response and reliability are key factors. Cortex M3 has

low interrupt latency so is best suited.

v) Consumer products:

The cortex M3 is a small processor and is highly efficient and low in power and supports an MPU
enabling complex software to execute while providing robust memory protection.

Cortex-M3
Processor core system
5 Register | &
E SE| B bank |£
S— > 50 || 25 g £ Detug) Trace
b 28 | O system ']
gz || &= AU | B
g (=
[~
= Memory interface
i Memaory
Instruction bus L nrotection —i Data bus
unit i
_ Debug Debug
Bus interconnect — interface *+—=
Code Memory system Private Optional
memory and peripherals peripherals

A Simplified View of the Cortex-M3

3

Programming model:

REGISTERS
The Cortex-M3 processor has registers RO through R15. R13 (the stack poin ter) is banked,
with only one copy of the R13 visible at a time.

RO0-R12: General-Purpose Registers
RO-R12 are 32-bit general-purpose registers for data operations. Some 16-bit Thumb
instructions can only access a subset of these registers (low register, RO-R7).

R13: Stack Pointers
The Cortex-M3 contains two stack pointers (R13). They are banked so that only one is visible at a time.
The two stack pointers are as follows:

* Main Stack Pointer (MSP):

The default stack pointer, used by the operating system (OS) kernel and exception
handlers

* Process Stack Pointer (PSP): Used by user application code the lowest 2 bits of the
stack pointers are always 0, which means they are always word aligned.

R14: The Link Register
When a subroutine is called, the return address is stored in the link register.

R15: The Program Counter The program counter is the current program address. This register
can be written to control the program flow.

Special Registers

The Cortex-M3 processor also has a number of special registers.They are as follows:
Program Status registers (PSRs)

* Interrupt Mask registers (PRIMASK, FAULTMASK, and BASEPRI)

* Control register (CONTROL)

* These registers have special functions and can be accessed only by special instructions.
They cannot be used for normal data processing.

Name Functions

| ¥PSR | Program status registers)
| PRIMASK |

Interrupt mask Special

FAULTMASK , pec
| | registers ; registers
| BASEPRI |
| CONTROL | Control register
_

Special Registers in the Cortex-M3

Functiong (and banked registers)

General-purpose registar

R General-purpose register
A General-purpose register
General-purpose register

> Low registers
General-purpose register

General-purpose register
General-purpose register

. z
- Pl = g

R7 General-purpose register)
General-purpose register |
General-purpose register
R10 General-purpose register = High registers
General-purpose register
R12 General-purpose register
[R13(MSP) |[R13(PSP) | Main Stack Pointer (MSP), Process Stack Pointer (PSP)
Link Register (LR)
Program Counter (PC)

Registers in the Cortex-M3

Table 2.1 Special Registers and Their Functions

Register Function

¥PSR Provide arithmetic and logic procaessing flags (2ero Nlag and carmy flag),
execution status, and curmrent executing intermupt number

PRIMASK Disable all interrupts except the nonmaskable interrupt (NMI) and hard fault

FAULTMASK Disable all interrupts except the NM

BASEPRI Disable all interrupts of specific priorty level or lower prionty level

CONTROL Define privileged status and stack pointer selection

Special Registers and Their Functions

OPERATION MODES

The Cortex-M3 processor has two modes and two privilege levels. The operation modes
(thread mode and handler mode) determine whether the processor is running a normal program
or running an exception handler like an interrupt handler or system exception handler (see
Figure 2.4). The privilege levels (privileged level and user level) provide a mechanism for
safeguarding memory accesses to critical regions as well as providing a basic security model.

When the processor is running a main program (thread mode), it can be either in a
privileged state or a user state, but exception handlers can only be in a privileged state. When
the processor exits reset, it is in thread mode, with privileged access rights. In the privileged
state, a program has access to all memory ranges (except when prohibited by MPU settings)
and can use all supported instructions. Software in the privileged access level can switch the
program into the user access level using the control register.

When an exception takes place, the processor will always switch back to the privileged
state and return to the previous state when exiting the exception handler. A user program
cannot change back to the privileged state by writing to the control register (see Figure 2.5). It
has to go through an exception handler that programs the control register to switch the
processor back into the privileged access level when returning to thread mode.

The separation of privilege and user levels improves system reliability by preventing
system configuration registers from being accessed or changed by some untrusted programs. If
an MPU is available, it can be used in conjunction with privilege levels to protect critical
memory locations, such as programs and data for OSs. For example, with privileged accesses,
usually used by the OS kernel, all memory locations can be accessed (unless prohibited by
MPU setup). When the OS launches a user application, it is likely to be executed in the user
access level to protect the system from failing due to a crash of untrusted user programs.

Privileged User

When running an exception handler Handler mode

When not running an excaption
handler (e.q., main program)

Thread mode | Thread mode

Operation Modes and Privilege Levels in Cortex-M3

Privileged
handler
(reset)

Start

Exception
Exception
exit

User thread

Allowed Operation Mode Transitions

Program of
CONTROL
register

INTERRUPTS AND EXCEPTIONS

The Cortex-M3 processor implements a new exception model, introduced in the ARMv7-
M architecture. This exception model differs from the traditional ARM exception model,
enabling very efficient exception handling. It has a number of system exceptions plus a number
of external Interrupt Request (IRQs) (external interrupt inputs). There is no fast interrupt (FIQ)
(fast interrupt in ARM7/ARM9/ ARM10/ARM11) in the Cortex-M3; however, interrupt priority
handling and nested interrupt support are now included in the interrupt architecture. Therefore,
it is easy to set up a system that supports nested interrupts (a higher-priority interrupt can
override or preempt a lower-priority interrupt handler) and that behaves just like the FIQ in
traditional ARM processors. The interrupt features in the Cortex-M3 are implemented in the

6

NVIC. Aside from supporting external interrupts, the Cortex-M3 also supports a number of
internal exception sources, such as system fault handling. As a result, the Cortex-M3 has a
number of predefined exception types, as shown in Table 2.2.

Low Power and High Energy Efficiency

The Cortex-M3 processor is designed with various features to allow designers to
develop low power and high energy efficient products. First, it has sleep mode and deep sleep
mode supports, which can work with various system-design methodologies to reduce power
consumption during idle period.Second, its low gate count and design techniques reduce circuit
activities in the processor to allow active power to be reduced. In addition, since Cortex-M3
has high code density, it has lowered the program size requirement.

At the same time, it allows processing tasks to be completed in a short time, so that
the processor can return to sleep modes as soon as possible to cut down energy use. As a
result, the energy efficiency of Cortex-M3 is better than many 8-bit or 16-bit microcontrollers.

Starting from Cortex-M3 revision 2, a new feature called Wakeup Interrupt Controller
(WIC) is available. This feature allows the whole processor core to be powered down, while
processor states are retained and the processor can be returned to active state almost
immediately when an interrupt takes place. This makes the Cortex-M3 even more suitable for
many ultra-low power applications that previously could only be implemented with 8-bit or 16-
bit microcontrollers.

Table 2.2 Cortex-M3 Exception Types

Exception Priority (Default to

Number Exception Type 0 if Programmabile) Description

0 A MA No exception running

1 Reset =3 (Highest) Reasel

2 MRl -2 ML (external ML input)

3 Hard fault -1 All fault conditions, if the comesponding
fault handler is not enabled

4 Membdanage fault Programmatle Memaory management fault; MPLU
violation or access to illegal locations

5 Bus fault Programmable Bus error (prefetch abort or data abort)

6 LIsage fault Frogrammable Frogram arror

10 Resarved MA Resarved

11 SVCall Programmatile Supeanisor cal

12 Debug monitor Programmakble Debug monitor (break points,
watchpoints, or external debug request)

13 Resarved MA Resarved

14 Pendsy Frogrammable Pendable request for system senice

i5 SYSTICK Programmatile Systermn tick timer

16 IR 40 Programmatile External interrupt #0

17 IRC #1 Programmable External intermupt #1

255 IRCY #2309 Frogrammable Bxternal intermupt #239

The numbear of axtamal inferrupt inputs is dadfined by chip manufaciunars., A masamum of 240 extormal intamupd inputs can

be supportad. n addition, the Corfex-M3 also has an N intermuet input, Whan i@ is assarted, the NMIHISH s executod

unconditionai:

Reset Sequence Instruction Set

The Cortex-M3 supports the Thumb-2 instruction set. This is one of the most important
features of the Cortex-M3 processor because it allows 32-bit instructions and 16-bit
instructions to be used together for high code density and high efficiency. It is flexible and
powerful yet easy to use. In previous ARM processors, the central processing unit (CPU) had
two operation states: a 32-bit ARM state and a 16-bit Thumb state.

In the ARM state, the instructions are 32 bits and can execute all supported
instructions with very high performance. In the Thumb state, the instructions are 16 bits, so
there is a much higher instruction code density, but the Thumb state does not have all the
functionality of ARM instructions and may require more instructions to complete certain types
of operations. To get the best of both worlds, many applications have mixed ARM and
Thumb codes. However, the mixed-code arrangement does not always work best. There is
overhead (in terms of execution time and instruction space, see Figure 2.7) to switch between
the states, and ARM and Thumb codes might need to be compiled separately in different
files.

This increases the complexity of software development and reduces maximum efficiency
of the CPU core. With the introduction of the Thumb-2 instruction set, it is now possible to
handle all processing requirements in one operation state. There is no need to switch between
the two. In fact, the Cortex-M3 does not support the ARM code. Even interrupts are now
handled with the Thumb state. (Previously, the ARM core entered interrupt handlers in the
ARM state.) Since there is no need to switch between states, the Cortex-M3 processor has a
number of advantages over traditional ARM processors, such as:

o No state switching overhead, saving both execution time and instruction space
e No need to separate ARM code and Thumb code source files, making software
development andmaintenance easier
It’s easier to get the best efficiency and performance, in turn making it easier to write
software,
Because there is no need to worry about switching code between ARM and Thumb to try to

get the best density/performance
— Overhead —
|

ARM state Timing critical code Fatum
(32-Dit in ARM state (e.9.. BXLR)
instructions)

Thumb state . ‘ i
(16-bit Main program B Branch with

e

[Main program]

) : in Thumb state slate change in Thumb state
instructions) | (e.g., BLX) i

1 i I

' ! Time !]
Switching between ARM Code and Thumb Code in Traditional ARM Processors Such as the

ARM7

The Cortex-M3 processor has a number of interesting and powerful instructions. Here are a
few examples:
e UFBX, BFI, and BFC: Bit field extract, insert, and clear instructions * UDIV and SDIV:
Unsigned and signed divide instructions
o WFE, WFI, and SEV: Wait-For-Event, Wait-For-Interrupts, and Send-Event; these
allow the processor to enter sleep mode and to handle task synchronization on

8

multiprocessor systems
e MSR and MRS: Move to special register from general-purpose register and move
special register to general-purpose register; for access to the special registers

Since the Cortex-M3 processor supports the Thumb-2 instruction set only, existing
program code for ARM needs to be ported to the new architecture. Most C applications
simply need to be recompiled using new compilers that support the Cortex-M3. Some
assembler codes need modification and porting to use the new architecture and the new
unified assembler framework.

Note that not all the instructions in the Thumb-2 instruction set are implemented on the
Cortex-M3. The ARMv7-M Architecture Application Level Reference Manual only requires a
subset of the Thumb-2 instructions to be implemented. For example, coprocessor instructions
are not supported on the Cortex-M3 (external data processing engines can be added), and
Single Instruction—Multiple Data (SIMD) is not implemented on the Cortex-M3. In addition, a
few Thumb instructions are not supported, such as Branch with Link and Exchange (BLX)
with immediate (used to switch processor state from Thumb to ARM), a couple of change
process state (CPS) instructions, and the SETEND (Set Endian) instructions, which were
introduced in architecture V6.

Assembler Language: Unified Assembler Language

To support and get the best out of the Thumb®-2 instruction set, the Unified Assembler
Language (UAL) was developed to allow selection of 16-bit and 32-bit instructions and to
make it easier to port applications between ARM code and Thumb code by using the same
syntax for both. (With UAL, the syntax of Thumb instructions is now the same as for ARM
instructions.)

ADD RO, K1 : RD = RO + R1, using Traditional Thumb syntax
ADD RO, RO, R1 : Equivalent instructionm using UAL syntax

The traditional Thumb syntax can still be used. The choice between whether the instructions
are interpreted as traditional Thumb code or the new UAL syntax is normally defined by the
directive in the assembly file. For example, with ARM assembler tool, a program code header
with “CODEI16” directive implies the code is in the traditional Thumb syntax, and “THUMB”
directive implies the code is in the new UAL syntax.

One thing you need to be careful with reusing traditional Thumb is that some instructions
change the flags in APSR, even if the S suffix is not used. However, when the UAL syntax
is used, whether the instruction changes the flag depends on the S suffix. For example,

AND RO, R1 ; Traditional Thumb syntax
ANDS RO, RD, Rl ; Equivalent UAL syntax (53 suffix is added)

With the new instructions in Thumb-2 technology, some of the operations can be handled by
either a Thumb instruction or a Thumb-2 instruction. For example, RO = RO + 1 can be
implemented as a 16-bit Thumb instruction or a 32-bit Thumb-2 instruction. With UAL, you
can specify which instruction you want by adding suffixes:

ADDS RO, #1 ; Use 16-bit Thumb instruction by default
;: for smaller size

ADDS.N RO, #1 ; Use 16-bit Thumb instruction (N=Narrow)

ADDS . W RD, #1 : Use 32-bit Thumb-2 instruction (W=wide)

The W (wide) suffix specifies a 32-bit instruction. If no suffix is given, the assembler tool
can choose either instruction but usually defaults to 16-bit Thumb code to get a smaller size.
Depending on tool support, you may also use the .N (narrow) suffix to specify a 16-bit
Thumb instruction. Again, this syntax is for ARM assembler tools. Other assemblers might
have slightly different syntax. If no suffix is given, the assembler might choose the
instruction for you, with the minimum code size.

In most cases, applications will be coded in C, and the C compilers will use 16-bit
instructions if possible due to smaller code size. However, when the immediate data exceed a
certain range or when the operation can be better handled with a 32-bit Thumb-2 instruction,
the 32-bit instruction will be used.

The 32-bit Thumb-2 instructions can be half word aligned. For example, you can have a 32-
bit instruction located in a half word location.

0x1000 : LOR rO,[rl] :a 16-bit dnstructions (occupy 0x1000-0x1001)
0x1002 : REBIT.W rD :a 32-bit Thumb-2 instruction {occupy
0x1002-0x1005)

Most of the 16-bit instructions can only access registers R0-R7; 32-bit Thumb-2
instructions do not have this limitation. However, use of PC (R15) might not be allowed in
some of the instructions. Refer to the ARM v7-M Architecture Application Level Reference
Manual

MEMORY MAPS

The Cortex-M3 processor has a fixed memory map (see Figure 5.1). This makes it easier to
port software from one Cortex-M3 product to another. For example, components described in
previous sections, such as Nested Vectored Interrupt Controller (NVIC) and Memory
Protection Unit (MPU), have the same memory locations in all Cortex-M3 products.
Nevertheless, the memory map definition allows great flexibility so that manufacturers can
differentiate their Cortex-M3-based product from others.

Some of the memory locations are allocated for private peripherals such as debugging
components. They are located in the private peripheral memory region. These debugging
components include the following:

Fetch Patch and Breakpoint Unit (FPB)
Data Watchpoint and Trace Unit (DWT)
Instrumentation Trace Macrocell (ITM)
Embedded Trace Macrocell (ETM)
Trace Port Interface Unit (TPIU)

ROM table

The details of these components are discussed in later chapters on debugging features.
The Cortex-M3 processor has a total of 4 GB of address space. Program code can be located
in the code region, the Static Random Access Memory (SRAM) region, or the external RAM
region. However, it is best to put the program code in the code region because with this
arrangement, the instruction fetches and data accesses are carried out simultaneously on two

10

separate bus interfaces. The SRAM memory range is for connecting internal SRAM. Access to
this region is carried out via the system interface bus.

In this region, a 32-MB range is defined as a bit-band alias. Within the 32-bit-band alias
memory range, each word address represents a single bit in the 1-MB bit-band region. A data
write access to this bit-band alias memory range will be converted to an atomic READ
MODIFY-WRITE operation to the bit-band region so as to allow a program to set or clear
individual data bits in the memory. The bit-band operation applies only to data accesses not
instruction fetches. By putting Boolean information (single bits) in the bit-band region, we
can pack multiple Boolean data in a single word while still allowing them to be accessible
individually via bit-band alias, thus saving memory space without the need for handling
READ-MODIFY-WRITE in software. More details on bit-band alias can be found later in
this chapter. Another 0.5-GB block of address range is allocated to on-chip peripherals.

OXEOOFFO00 ROM lable Laddddiiid
OXEOOFEFFF Extarnal privale paflpheral bus Vandor specilic
OXEDO42000
OXEDO4 1000 ETM OXED100000
OXEO040000 TPIL Privale peripheral bus DxEDOFFFEF
Debug/external CXEDO40000
OXEOOIFFFF Private perpheral bus: OxXEQUIFFFF
Reservad
DREQDOFO00 internal OXEDGO0000
OXEDODEDNG MVIC OXDFFFFFFF
OXECOODFFF Resarvad
OXEDO03000
OXEDO0Z000 FPE sriemal gavies
OxECO0000 owT
OXEDODO000 ™ 1GB | OxADOODODOD
OXSFFFFFFF
x4 3FFEFFF
Extarnal RAM
Bit-pand allas
Ox42000000 | 32 MB 1GB | Cx60000000
04 | FFFFFF OXEFFFFFFF
Ox40100000 | 31 MB
Feripherals
Bit-pand reglon
Ox40000000 | 1 MB 05GE | Ox40000000
Ox3FFFFFFF
OX2IFFFFFF T s
05GE | (x20000000
Bit-band allas OX1FFFFFFF
Ox22000000 | 32 MB
02 | FFFFFF cose
020100000 | 31 MB 0.5 GB | 0x00000000
0X20000000 | 1 MB it-band faglon

Cortex-M3 Predefined Memory Map

Similar to the SRAM region, this region supports bit-band alias and is accessed via the
system bus interface. However, instruction execution in this region is not allowed. The bit-
band support in the peripheral region makes it easy to access or change control and status

11

bits of peripherals, making it easier to program peripheral control. Two slots of 1-GB
memory space are allocated for external RAM and external devices. The difference between
the two is that program execution in the external device region is not allowed, and there are
some differences with the caching behaviors. The last 0.5-GB memory is for the system-level
components, internal peripheral buses, external peripheral bus, and vendor-specific system
peripherals. There are two segments of the private peripheral bus (PPB):

Advanced High-Performance Bus (AHB) PPB, for Cortex-M3 internal AHB peripherals
only; thisincludes NVIC, FPB, DWT, and ITM

Advance Peripheral Bus (APB) PPB, for Cortex-M3 internal APB devices as well as
external peripherals (external to the Cortex-M3 processor); the Cortex-M3 allows chip
vendors to add additional on-chip APB peripherals on this private peripheral bus via an
APB interface

The NVIC is located in a memory region called the system control space (SCS) (see
Figure 5.2). Besides providing interrupt control features, this region also provides the control
registers for SYSTICK, MPU, and code debugging control. The remaining unused vendor-
specific memory range can be accessed via the system bus interface. However, instruction
execution in this region is not allowed. The Cortex-M3 processor also comes with an optional
MPU. Chip manufacturers can decide whether to include the MPU in their products The
System Control Space.

Private System
peripharal bus control space
OxEQOFFFFF OxEDOOEFFFE
OxFFFFFFFF Extermnal NVIC, CPU
OxE 0040000 PPB D,
Systemlevel | / = 0000 Feeeeemeee-ea- SYSTICK,
OxEDDAFFFF MPLU. core
______________ Internal '
OxEQOFFFFF d e
PPB — abug, elc.
OxE00DOO00 OxE 0000000 OxEQODEDOD

What we have shown in the memory map is merely a template; individual
semiconductor vendors provide detailed memory maps including the actual location and size of
ROM, RAM, and peripheral memory locations.

MEMORY ACCESS ATTRIBUTES

The memory map shows what is included in each memory region. Aside from decoding
which memory block or device is accessed, the memory map also defines the memory
attributes of the access. The memory attributes you can find in the Cortex-M3 processor
include the following:

e Bufferable: Write to memory can be carried out by a write buffer while the processor
continues on next instruction execution.

e Cacheable: Data obtained from memory read can be copied to a memory cache so
that next time it is accessed the value can be obtained from the cache to speed up
the program execution.

e Executable: The processor can fetch and execute program code from this memory
region.

12

e Sharable: Data in this memory region could be shared by multiple bus masters.
Memory system needs to ensure coherency of data between different bus masters in
shareable memory region.

The Cortex-M3 bus interfaces output the memory access attributes information to the
memory system for each instruction and data transfer. The default memory attribute settings
can be overridden if MPU is present and the MPU region configurations are programmed
differently from the default. Though the Cortex-M3 processor does not have a cache memory
or cache controller, a cache unit can be added on the microcontroller which can use the
memory attribute information to define the memory access behaviors. In addition, the cache
attributes might also affect the operation of memory controllers for on-chip memory and off-
chip memory, depending on the memory controllers used by the chip manufacturers.

13

The memory access attributes for each memory region are as follows:

» Code memory region (0x00000000-0x1FFFFFFF): This region is executable, and the cache
attributes iswrite through (WT). You can put data memory in this region as well. If data
operations are carried out for this region, they will take place via the data bus interface.
Write transfers to this region are bufferable.

e SRAM memory region (0x20000000-0x3FFFFFFF): This region is intended for on-chip
RAM. Write transfers to this region are bufferable, and the cache attribute is write
back, write allocated (WB-WA). This region is executable, so you can copy program
code here and execute it.

o Peripheral region (0x40000000-OX5FFFFFFF): This region is intended for

peripherals. The accesses are noncacheable. You cannot execute instruction code in
this region (Execute Never, or XN in ARM documentation, such as the Cortex-M3
TRM).

e External RAM region (0x60000000-0x7FFFFFFF): This region is intended for either on-
chip or off-chip memory. The accesses are cacheable (WB-WA), and you can execute
code in this region.

e External RAM region (0x80000000-0x9FFFFFFF): This region is intended for either on-
chip or off-chip memory. The accesses are cacheable (WT), and you can execute code
in this region.

e External devices (0xA0000000-0xBFFFFFFF): This region is intended for external
devices and/or shared memory that needs ordering/nonbuffered accesses. It is also a
nonexecutable region.

o External devices (0xC0000000-0xDFFFFFFF): This region is intended for external
devices and/or shared memory that needs ordering/nonbuffered accesses. It is also a
nonexecutable region.

e System region (OXEOO000000-OxFFFFFFFF): This region is for private peripherals and
vendor-specific devices. It is nonexecutable. For the PPB memory range, the accesses
are strongly ordered (noncacheable, nonbufferable). For the vendor-specific memory
region, the accesses are bufferable and noncacheable.

Note that the Cortex-M3, the code region memory attribute export to external memory system
is hardwired to cacheable and nonbufferable. This cannot be overridden by MPU
configuration. This update only affects the memory system outside the processor (e.g., level 2
cache and certain types of memory controllers with cache features). Within the processor, the
internal write buffer can still be used for write transfers accessing the code region.

DEFAULT MEMORY ACCESS PERMISSIONS

The Cortex-M3 memory map has a default configuration for memory access permissions.
This prevents user programs (non-privileged) from accessing system control memory spaces
such as the NVIC. The default memory access permission is used when either no MPU is
present or MPU is present but disabled. If MPU is present and enabled, the access permission
in the MPU setup will determine whether user accesses are allowed.
The default memory access permissions are shown in Table.

Table 5.1 Default Memory Access Permissions

Memory Region Address Access in User Program

Viendor spocific (a0 00000 OseFFFFFFFF Full access

ROM table OxEDOFFOO0-OnEDOFFFFF Blocked; user access results in bus fault
External PPE (e ED04 20000 EOOFEFFF Blocked: user accass rasults in bus fault
ETM (o004 D000 EOODA FFF Blocked; user access results in bus fault

14

Table 5.1 Default Memory Access Permissions Continued

Memory Region Address Access in User Program

1R ¥ O EQOANO00-DhED0A0FHF Blocked; user access resulls in bus fault

Intemal PPE (e EOOOFO00- O EDOEFFFF Blocked:; user access results in bus fault

MW (e EOOOEODO-D ECODOEHHF Blocked; user access resulls in bus fault, except

Software Tngger Intermupt Register that can be
programmed to allow user accesses

FHRB O EQOO2 000D D003 Blocked; user access resulls in bus fault

DWT (=000 000-The 0001 FFF Blocked; user access results in bus fault

[T (e ECO0O 000 EODOOFFF Read allowed; write ignored except for stimulus

porls with user access enabled

Extemnal device CoeAQOOOO00-0x DFFFFFFF Full access

External HAM (e O0O0000-Cee SFHFHRFF Full access

Penpheral CeeAOOO0000- O SFFFFFFF Full access

SHAM (200000000 3FHFHRFF Full access

Codea (0000000 FFFFFFF Full access

When a user access s biocked, the ol excaption akes place mmedalely:

BIT-BAND OPERATIONS

Bit-band operation support allows a single load/store operation to access (read/write) to
a single data bit. In the Cortex-M3, this is supported in two predefined memory regions
called bit-band regions. One of them is located in the first 1 MB of the SRAM region, and
the other is located in the first 1 MB of the peripheral region. These two memory regions
can be accessed like normal memory, but they can also be accessed via a separate memory
region called the bit-band alias (see Figure 5.3). When the bit-band alias address is used,
each individual bit can be accessed separately in the least significant bit (LSB) of each word-
aligned address.

For example, to set bit 2 in word data in address 0x20000000, instead of using three
instructions to read the data, set the bit, and then write back the result, this task can be
carried out by a single instruction (see Figure 5.4). The assembler sequence for these two
cases could be like the one shown in Figure 5.5.

Similarly, bit-band support can simplify application code if we need to read a bit in a
memory location. For example, if we need to determine bit 2 of address 0x20000000, we use
the steps outlined in Figure 5.6. The assembler sequence for these two cases could be like
the one shown in Figure 5.7. Bit-band operation is not a new idea; in fact, a similar feature
has existed for more than 30 years on 8-bit microcontrollers such as the 8051. Although the
Cortex-M3 does not have special instructions for bit operation, special memory regions are
defined so that data accesses to these regions are automatically converted into bit-band
operations.

Note that the Cortex-M3 uses the following terms for the bit-band memory addresses:

+ Bit-band region: This is a memory address region that supports bit-band operation.
+ Bit-band alias: Access to the bit-band alias will cause an access (a bit-band operation) to
the bit-band region. (Note: A memory remapping is performed.

15

Bit
Y 24 16 8 0
ox200FFFFG [[[[[[TTTTOTI0TITTTI0TTTITTTITTT]
Bit-band E INERIRRREREEREREEERNNRRRRERRREND
region : :
addrass ' :
0x20000008 | [[[[[][] IO Q0 QOO QTOTTTIT]
oxzoooo004 || [[[[{TTTTOTOPTTTPTPTTTTITTITHT]
mmmHHMHH'HHHTIHHHTHH 022000060
0x2200002C 0x22000010
\ Bltbaru:leilas—///
addrass
Bit Accesses to Bit-Band Region via the Bit-Band Alias.
Without bit-band With bit-band
[\ [Read data from |
Read 0x20000000
L af
I . Writa 1 to Mapped to 2
e [0x22000008 J bus transfors
[Wite register o | \ [write to
Ox20000000 0xZ20000000 from
- Lhuﬁerw-ilhbiiEst
Write to Bit-Band Alias
Without bit-band With bit-band
LOR RO, =0x20000000 : Setup address LDR RO, =0x22000008 : Setup add
LDE R1, [RO] ; Read MOV R1, #1 ; Setup dat
ORE.W R1, f0x4 : Modify bit STR R1, [RO] : Write
STR R1. [RO] : Write back result

16

Example Assembler Sequence to Write a Bit with and without Bit-Band

Within the bit-band region, each word is represented by an LSB of 32 words in the
bit-band alias address range. What actually happens is that when the bit-band alias address is
accessed, the address is remapped into a bit-band address. For read operations, the word is
read and the chosen bit location is shifted to the LSB of the read return data. For write
operations, the written bit data are shifted to the required bit position, and a READ-

MODIFY-WRITE is performed.

Without bit-band ‘With bit-band
Read 0x20000000 Mapped lo 1
to register Read from bus transfers
2000008 —_— FRead data from
Shift bit 2 to LSB 020000000, and
and mask other bits exiract bit 2 to
reqister
Read from the Bit-Band Alias.
Without bit-band With bit-band
LDR RO, =0x20000000 ; Setup address LDR RO,=0x22000008 ; Setup address
LDR R1, [RO] : Read LDR R1, [RO] : Read

USFE. W R1,

R1., #2, #1 ;

Extract bit[Z]

Read from the Bit-Band Alias

Bit-Band Region
O 20000000 bafo]
O 2 OO00000 bat[1]
O 20000000 bat2]
O 20000000 batf31]
O 20000004 batf0]

Ox20000004 bitf31]

Ox200FFHRG bitl31]

Table 5.2 Remapping of Bit-Band Addresses in SRAM Region

Aliased Equivalent

OxZ2000000 bit0]
22000004 bit{0]
022000008 bit[0]

02200007 C bitf0]
(he22000080 bit[0]

(x220000FC bitfO]

O 3H-HHHRG bat0]

There are two regions of memory for bit-band operations:
0x20000000-0x200FFFFF (SRAM, 1 MB)
0x40000000-0x400FFFFF (peripherals, 1 MB)

For the SRAM memory region, the remapping of the bit-band alias is shown in Table 5.2.
Similarly, the bit-band region of the peripheral memory region can be accessed via bit-band
aliased addresses, as shown in Table 5.3.

17

Table 5.3 Remapping of Bit-Band Addresses in Peripheral Memory Region |
Bit-Band Region Alased Equivalent I
Do QOO0 Bit]0] (hed 2000000 bit[0]
DA QOO000 bit[1] (hed 2000004 bit[0]
Do A QOO0 Bit[2] (eed 2000008 bit[0]
Doed QOO0000 bit[31] DheA200007C bit]0]
0xA40000004 bit[0] Ox42000080 bit[0]
OxA40000004 bit[31) OxA20000FC bitfO]
OxA00FFFFC bit]3] OxASFFEFFC bitfO]

Advantages of Bit-Band Operations

So, what are the uses of bit-band operations? We can use them to, for example,
implement serial data transfers in general-purpose input/output (GPIO) ports to serial devices.
The application code can be implemented easily because access to serial data and clock
signals can be separated.Bit-band operation can also be used to simplify branch decisions. For
example, if a branch should be carried out based on 1 single bit in a status register in a
peripheral, instead of

Reading the whole register

Masking the unwanted bits

Comparing and branching

Reading the status bit via the bit-band alias (get 0 or 1)
Comparing and branching

Besides providing faster bit operations with fewer instructions, the bit-band feature in
the Cortex-M3 is also essential for situations in which resources are being shared by more
than one process. One of the most important advantages or properties of a bit-band operation
is that it is atomic. In other words, the READ-MODIFY-WRITE sequence cannot be
interrupted by other bus activities. Without this behavior in, for example, using a software
READ-MODIFY-WRITE sequence, the following problem can occur: consider a simple output
port with bit 0 used by a main program and bit 1 used by an interrupt handler. A software-
based READ-MODIFY-WRITE operation can cause data conflicts, as shown in Figure.

With the Cortex-M3 bit-band feature, this kind of race condition can be avoided
because the READMODIFY-WRITE is carried out at the hardware level and is atomic (the
two transfers cannot be pulled apart) and interrupts cannot take place between them (see
Figure 5.9). Similar issues can be found in multitasking systems. For example, if bit 0 of the
output port is used by Process A and bit 1 is used by Process B, a data conflict can occur in
software-based READMODIFY-WRITE.

18

Without bit-band oparation

Handlar mode
Thread mode J _ \
Ehr;l modified
e
f’ handgrq“\
Output Fort Write to
Interrupt handler r N tport
Main Tam
P B0 o B0 loar intormpt handier lost
I./"' D":'Q'El“‘l'\ I/'" program “"
Rdpn e CBEE e o
register oulput port ragistar mﬂm[port
L L L
Output port
value | 000 e 1 003 0x00 |

Timea

Data Are Lost When an Exception Handler Modifies a Shared Memory Location

With bit-band oparation
Handler mode

Thread mode

/ |

Bit 1 modified by interrupt

Interrupt handler handler by :ll'l‘a': to bit-band
Main program
Bit 0 sat by main program w"g;ﬁmﬁa
by write (o bil-band alias bit-band alias
Locked mad-l Locked mad-l Locked read-
madify-write modify-write ¥ modify-write
value [00 | (01 [Dx00] 02 |

Data Loss Prevention with Locked

Tima
Transfers Using the Bit-Band Feature

19

Without bit-band operation

Currant task | Task A | TaskB | TaskA | Task B | Taska |
Bit 1 modified
/7 by task By
Output port Write to
Task B re‘?d output port
Task A Change made by
Bit 0 set by Bit O clear by task B is lost
[T lask A Ty /7 task A ™y
Cutput port Write: to Cutput port Write to
read to register output port read to register output port
T ¥ L L
Output port | 00 Dx01 0x03] 0x00
value
Time -

Data Are Lost When a Different Task Modifies a Shared Memory Location

With bit-band oparation

Current lask | Task A | TaskB | TaskA | TaskB | TaskA
Bit 1 modified by lask B by
Task B write to bit-band alias
Task A
Wrile o
Bit 0 sat by task A by write output port via
o bit-band alias bit-band alias
Locked read- Locked read- Locked read-
modify-writa Y modify-writa N "}mcdly-write
Output port { Ty {
vahia | =00 | D0 | [I'::Dﬂ-| Ox02 |

Y

Timia

Data Loss Prevention with Locked Transfers Using the Bit-Band Feature

Again, the bit-band feature can ensure that bit accesses from each task are separated so
that no data conflicts occur (see Figure 5.11). Besides 1/O functions, the bit-band feature can
be used for storing and handling Boolean data in the SRAM region. For example, multiple
Boolean variables can be packed into one single memory location to save memory space,
whereas the access to each bit is still completely separated when the access is carried out via
the bit-band alias address range. For system-on-chip (SoC) designers designing a bit-band-
capable device, the device’s memory address should be located within the bit-band memory,
and the lock (HMASTLOCK) signal from the = AHB interface must be checked to make sure
that writable register contents will not be changed except by the bus when a locked transfer
is carried out.

Bit-Band Operation of Different Data Sizes

Bit-band operation is not limited to word transfers. It can be carried out as byte
transfers or half word transfers as well. For example, when a byte access instruction

20

(LDRB/STRB) is used to access a bit-band alias address range, the accesses generated to the
bit-band region will be in byte size. The same applies to half word transfers (LDRH/STRH).
When you use nonword transfers to bit-band alias addresses, the address value should still be
word aligned

UNALIGNED AND EXCLUSIVE TRANSFERS

Unaligned Transfers

The Cortex-M3 supports unaligned transfers on single accesses. Data memory accesses
can be defined as aligned or unaligned. Traditionally, ARM processors (such as the
RM7/ARM9/ARM10) allow only aligned transfers. That means in accessing memory, a word
transfer must have address bit [1] and bit [0] equal to O, and a half word transfer must have
address bit[0] equal to 0. For example, word data can be located at 0x1000 or 0x1004, but it
cannot be located in 0x1001, 0x1002, or 0x1003. For half word data, the address can be
0x1000 or 0x1002, but it cannot be 0x1001. So, what does an unaligned transfer look like?
Figures 5.12 through 5.16 shows some examples. Assuming that the memory infrastructure is
32-bit (4 bytes) wide, an unaligned transfer can be any word size read/write such that the
address is not a multiple of 4, as shown in Figures 5.12-5.14, or when the transfer is in half
word size, and the address is not a multiple of 2, as shown in Figures 5.15 and 5.16. All the
byte-size transfers are aligned on the Cortex-M3 because the minimum address step is 1 byte.

Byla Byta Byte Biyta
3 2 1 0
Address N 4 [31:24] | Unaligned word data
Addrass N [23:16] [15:8] [7:0] at addross N 1

FIGURE 5.12
Unaligned Transfer Example 1.

Byte Byte Byte Byta

Addrass N+4 [31:24] | [23:16] | Unaligned word data
Address N [15:8] [7-0] al address N +2

FIGURE 5.13
Unaligned Transfer Example 2.

Byle Byta Byte Byta
3 2 1 0
Address N4 [31:24] | [23:16] [15:8] | Unaligned word data
Address N [7-0] at address N+3

FIGURE 5.14
Unaligned Transfer Example 3.

Byle Biyte: Biyte: Byla

Address N+4 Unalignad half word data
Address N [15:38] [#10] at address N+1

FIGURE 5.15
Unaligned Transfer Example 4.
In the Cortex-M3, unaligned transfers are supported in normal memory accesses (such as LDR,
LDRH, STR, and STRH instructions). There are a number of limitations:
21

. Unaligned transfers are not supported in Load/Store multiple instructions.

» Stack operations (PUSH/POP) must be aligned.
» Exclusive accesses (such as LDREX or STREX) must be aligned; otherwise, a fault
exception (usage fault) will be triggered.

. Unaligned transfers are not supported in bit-band operations. Results will be unpredictable
if you attempt to do so.

When unaligned transfers are used, they are actually converted into multiple aligned
transfers by the processor’s bus interface unit. This conversion is transparent, so application
programmers do not have to worry about it. However, when an unaligned transfer takes place,
it is broken into separate transfers, and as a result, it takes more clock cycles for a single data
access and might not be good for situations in which high performance is required. To get the
best performance, it’s worth making sure that data are aligned properly.

It is also possible to set up the NVIC so that an exception is triggered when an
unaligned transfer takes place. This is done by setting the UNALIGN_TRP (unaligned trap) bit
in the configuration control register in the NVIC (OXEOOOED14). In this way, the Cortex-M3
generates usage fault exceptions when unaligned transfers take place. This is useful during
software development to test whether an application produces unaligned transfers.

EXCLUSIVE ACCESSES

You might have noticed that the Cortex-M3 has no SWP instruction (swap), which was
used for semaphore operations in traditional ARM processors like ARM7TDMI. This is now
being replaced by exclusive access operations. Exclusive accesses were first supported in
architecture v6 (for example, in the ARM1136). Semaphores are commonly used for allocating
shared resources to applications. When a shared resource can only service one client or
application processor, we also call it Mutual Exclusion (MUTEX). In such cases, when a
resource is being used by one process, it is locked to that process and cannot serve another
process until the lock is released. To set up a MUTEX semaphore, a memory location is
defined as the lock flag to indicate whether a shared resource is locked by a process. When a
process or application wants to use the resource, it needs to check whether the resource has
been locked first. If it is not being used, it can set the lock flag to indicate that the resource
is now locked. In traditional ARM processors, the access to the lock flag is carried out by the
SWP instruction. It allows the lock flag read and write to be atomic, preventing the resource
from being locked by two processes at the same time.

In newer ARM processors, the read/write access can be carried out on separated buses.
In such situations, the SWP instructions can no longer be used to make the memory access
atomic because the read and write in a locked transfer sequence must be on the same bus.
Therefore, the locked transfers are replaced by exclusive accesses. The concept of exclusive
access operation is quite simple but different from SWP; it allows the possibility that the
memory location for a semaphore could be accessed by another bus master or another process
running on the same processor.

22

.

Exclusive Raad |

Read lock bit [(0.9.. LDREX)

Failed: Lock bit already set,

. indicates the requested
Check lock bit set? resource is used by another
Mo Y85 process of processor
Exclusiva Writa
Sel lock bit [(e.q.. STREX) J
Failed: Memory region
1Fr€tnu:.nrs';tatui where the lock bil is could
mwri{; ’ “Ew) N have bean accessed by
O another process or another
(success)? Yos

proCessor

Success. The lock bit is set
and the processor can have
access to the shared
resourcea

To allow exclusive access to work properly in a multiple processor environment, an
additional hardware called “exclusive access monitor” is required. This monitor checks the
transfers toward shared address locations and replies to the processor if an exclusive access is
success. The processor bus interface also provides additional control signalsl to this monitor to
indicate if the transfer is an exclusive access.

If the memory device has been accessed by another bus master between the exclusive
read and the exclusive write, the exclusive access monitor will flag an exclusive failed through
the bus system when the processor attempts the exclusive write. This will cause the return
status of the exclusive write to be 1. In the case of failed exclusive write, the exclusive access
monitor also blocks the write transfer from getting to the exclusive access address.

Exclusive access instructions in the Cortex-M3 include LDREX (word), LDREXB (byte),
LDREXH (half word), STREX (word), STREXB (byte), and STREXH (half word). A simple
example of the syntax is as follows:

LDREX <Rxf>, [Rn, #offset]
STREX <Rd>, <Rxf>,[Rn, #offset]

Where Rd is the return status of the exclusive write (0 = success and 1 = failure).
Example code for exclusive accesses can be found in Chapter 10. You can also access
exclusive access instructions in C using intrinsic functions provided in Cortex Microcontroller
Software Interface Standard (CMSIS) compliant device driver libraries from microcontroller
vendors: _ LDREX, _ LEDEXH, _ LDREXB, _ STREX, _ STREXH, _ STREXB. More details
of these functions are covered in Appendix G.

When exclusive accesses are used, the internal write buffers in the Cortex-M3 bus
interface will be bypassed, even when the MPU defines the region as bufferable. This ensures
that semaphore information on the physical memory is always up to date and coherent between
bus masters. SoC designers using Cortex-M3 on multiprocessor systems should ensure that the
memory system enforces data coherency when exclusive transfers occur.

PIPELINE

The Cortex-M3 processor has a three-stage pipeline. The pipeline stages are instruction
fetches, instruction decode, and instruction execution (see Figure 6.1). Some people might argue
that there are four stages because of the pipeline behavior in the bus interface when it accesses

23

memory, but this stage is outside the processor, so the processor itself still has only three
stages.

When running programs with mostly 16-bit instructions, you will find that the processor
might not fetch instructions in every cycle. This is because the processor fetches up to two
instructions (32-bit) in one go, so after one instruction is fetched, the next one is already
inside the processor. In this case, the processor bus interface may try to fetch the instruction
after the next or, if the buffer is full, the bus interface could be idle. Some of the instructions
take multiple cycles to execute; in this case, the pipeline will be stalled.

In executing a branch instruction, the pipeline will be flushed. The processor will have
to fetch instructions from the branch destination to fill up the pipeline again. However, the
Cortex-M3 processor supports a number of instructions in v7-M architecture, so some of the
short-distance branches can be avoided by replacing them with conditional execution codes.

Instruction N Fatch Dacoda | Executa

Instruction N + 1 Fetch Dacode | Execute

Instruction M+ 2 Fetch Decode | Exacule
Instruction M+ 3 Fatch Decode | Exacute

The Three-Stage Pipeline in the Cortex-M3.

Instruction Unaligned 32-bit Thumb-2
MEmary Instruction In memory

-IL Exacuting

— Decoding

4
a
N IMC D " Ca '-II_—/! Feiching

Instruction

bufter
{Inst C1) Pipaiing stage

iy

Instruckion N pecods
Instruction | : fatch Y Executa
{Insl Gz & D) _l'" (Imest B) —|,-'" {inst A)

Use of a Buffer in the Instruction Fetch Unit to Improve 32-Bit Instruction Handling

Because of the pipeline nature of the processor and to ensure that the program is
compatible with Thumb® codes, the read value will be the address of the instruction plus 4,
when the program counter is read during instruction execution. If the program counter is used
for address generation for memory accesses, the word aligned value of the instruction address
plus 4 would be used. This offset is constant, independent of the combination of 16-bit Thumb
instructions and 32-bit Thumb-2 instructions. This ensures consistency between Thumb and
Thumb-2.

Inside the instruction prefetch unit of the processor core, there is also an instruction
24

buffer (see Figure 6.2). This buffer allows additional instructions to be queued before they are
needed. This buffer prevents the pipeline being stalled when the instruction sequence contains
32-bit Thumb-2 instructions that are not word aligned. However, this buffer does not add an

extra stage to the pipeline, so it does not increase the branch penalty.

BUS INTERFACES ON THE CORTEX-M3

Unless you are designing an SoC product using the Cortex-M3 processor, it is unlikely
that you can directly access the bus interface signals described here. Normally, the chip
manufacturer will hook up all the bus signals to memory blocks and peripherals, and in a few
cases, you might find that the chip manufacturer connected the bus to a bus bridge and allows
external bus systems to be connected offchip. The bus interfaces on the Cortex-M3 processor
are based on AHB-Lite and APB protocols.

The 1-Code Bus

The I-Code bus is a 32-bit bus based on the AHB-Lite bus protocol for instruction
fetches in memory regions from 0x00000000 to Ox1FFFFFFF. Instruction fetches are performed
in word size, even for 16-bit Thumb instructions. Therefore, during execution, the CPU core
could fetch up to two Thumb instructions at a time.

The D-Code Bus

The D-Code bus is a 32-bit bus based on the AHB-Lite bus protocol; it is used for
data access in memory regions from 0x00000000 to Ox1FFFFFFF. Although the Cortex-M3
processor supports unaligned transfers, you won’t get any unaligned transfer on this bus,
because the bus interface on the processor core converts the unaligned transfers into aligned
transfers for you. Therefore, devices (such as memory) that attach to this bus need only support
AHB-Lite (AMBA 2.0) aligned transfers.

The System Bus

The system bus is a 32-bit bus based on the AHB-Lite bus protocol; it is used for
instruction fetch and data access in memory regions from 0x20000000 to OXDFFFFFFF and
0xE0100000 to OXFFFFFFFF. Similar to the D-Code bus, all the transfers on the system bus
are aligned.

The External PPB

The External PPB is a 32-bit bus based on the APB bus protocol. This is intended for
private peripheral accesses in memory regions 0XE0040000 to OXEOOFFFFF. However, since
some part of this APB memory is already used for TPIU, ETM, and the ROM table, the
memory region that can be used for attaching extra peripherals on this bus is only 0xE0042000
to OXEOOFF000. Transfers on this bus are word aligned.

The DAP Bus

The DAP bus interface is a 32-bit bus based on an enhanced version of the APB
specification. This is for attaching debug interface blocks such as SWJ-DP or SW-DP. Do not
use this bus for other purposes. More information on this interface can be found in Chapter
15, or in the ARM document CoreSight Technology System Design Guide.

25

UNIT — 11
EXCEPTIONS AND INTERRUPTS

This chapter describes the interrupt and exception-handling mechanism when operating
in protected mode on an Intel 64 or 1A-32 processor. Most of the information provided here
also applies to interrupt and exception mechanisms used in real-address, virtual-8086 mode,
and 64-bit mode.

OVERVIEW OF INTERRUPT AND EXCEPTION:

Interrupts and exceptions are events that indicate that a condition exists somewhere in
the system, the processor, or within the currently executing program or task that requires the
attention of a processor. They typically result in a forced transfer of execution from the
currently running program or task to a special software routine or task called an interrupt
handler or an exception handler. The action taken by a processor in response to an interrupt or
exception is referred to as servicing or handling the interrupt or exception.

Interrupts occur at random times during the execution of a program, in response to signals
from hardware. System hardware uses interrupts to handle events external to the processor,
such as requests to service peripheral devices. Software can also generate interrupts by
executing the INT n instruction.

Exceptions occur when the processor detects an error condition while executing an
instruction, such as division by zero. The processor detects a variety of error conditions
including protection violations, page faults, and internal machine faults. The machine-checks
architecture of the Pentium 4, Intel Xeon, P6 family, and Pentium processors also permits a
machine- check exception to be generated when internal hardware errors and bus errors are
detected.

When an interrupt is received or an exception is detected, the currently running
procedure or task is suspended while the processor executes an interrupt or exception
handler. When execution of the handler is complete, the processor resumes execution of the
interrupted procedure or task. The resumption of the interrupted procedure or task happens
without loss of program continuity, unless recovery from an exception was not possible or an
interrupt caused the currently running program to be terminated.

This chapter describes the processor’s interrupt and exception- handling mechanism,
when operating in protected mode. A description of the exceptions and the conditions that
cause them to be generated is given at the end of this chapter.

EXCEPTION AND INTERRUPTVECTORS

To aid in handling exceptions and interrupts, each architecturally defined exception
and each interrupt condition requiring special handling by the processor is assigned a unique
identification number, called a vector number. The processor uses the vector number
assigned to an exception or interrupt as an index into the interrupt descriptor table (1 DT).
The table provides the entry point to an exception or interrupt handler (“Interrupt Descriptor
Table (IDT)”).

The allowable range for vector numbers is 0 to 255. Vector numbers in the range 0
through 31 are reserved by the Intel 64 and IA- 32 architectures for architecture- defined
exceptions and interrupts. Not all of the vector numbers in this range have a currently defined
function. The unassigned vector numbers in this range are reserved. Do not use the reserved
vectornumbers.

Vector numbers in the range 32 to 255 are designated as user- defined interrupts and are
not reserved by the Intel 64 and IA- 32 architecture. These interrupts are generally assigned to

26

external 1 / O devices to enable those devices to send interrupts to the processor through one of
the external hardware interrupt mechanisms (““‘Sources of Iinterrupts”).

Table shows vector number assignments for architecturally defined exceptions and for
the NMI interrupt. This table gives the exception type (“Exception Classifications™) and
indicates whether an error code is saved on the stack for the exception. The source of each
predefined exception and the NMI interrupt is also given.

SOURCES OFINTERRUPTS

The processor receives interrupts from two sources:
o External (hardware generated) interrupts.

e Software-generated interrupts.
External Interrupts

External interrupts are received through pins on the processor or through the local
API C. The primary interrupt pins on Pentium 4, | ntel Xeon, P6 family, and Pentium
processors are the LINT [1: O] pins, which are connected to the local APl C (see Chapter 10,
“Advanced Programmable I nterrupt Controller (API C)”). When the local API C is enabled,
the LI NT[1: 0] pins can be programmed through the APIC’s local vector table (LVT) to be
associated with any of the processor’s exception or interrupt vectors.

Vector |Mne- Description Type Error Code/Source
No. monic
0 HDE Divide Error Fault No DIV and IDIV instructions.
1 #DB RESERVED Fault/ |No For Intel use only.
Trap
2 NMI Interrupt Interrupt No Nonmaskable external interrupt.
3 #BP Breakpoint Trap No INT 3 instruction.
4 #HOF Overflow Trap No INTO instruction.
5 #BR BOUND Range Exceeded [Fault No BOUND instruction.
s [UD Invalid Opcode (Undefined |Fault ~ [No UD?2 instruction or reserved
Opcode) opcode.
7 #NM Device Not Available (No [Fault No Floating-point or WAIT/FWAIT
Math instruction.
Coprocessor)
8 WDF Double Fault Abort [Yes Any instruction that can generate an
(zero) exception, an NMI, or an INTR.
9 Coprocessor Segment Fault No Floating-point instruction.2
Overrun
(reserved)
10 W@TS Invalid TSS Fault Yes Task switch or TSS access.
11 #NP Segment Not Present Fault Yes Loading segment registers or accessing
system segments.
12 #SS Stack-Segment Fault Fault Yes Stack operations and SS register loads.
13 HGP General Protection Fault Yes Any memory reference and other
protection checks.
14 #PF Page Fault Fault Yes /Any memory reference.
15 (Intel reserved. Do not use.) No

27

28

16 HMF x87 FPU Floating-Point Error |Fault No x87 FPU floating-point or
(Math WAIT/FWAIT
Fault) instruction.
17 #AC Alignment Check Fault Yes /Any data reference in memory.3
(Zero)
18 HMC Machine Check Abort No Error codes (if any) and source are model
dependent.4
20 H#HVE Virtualization Exception Fault No EPT violations®
21-31 Intel reserved. Do not use.
32-255 — User Defined (Non-reserved) |Interrupt External interrupt or INTn instruction.
Interrupts

Table -Protected-Mode Exceptions and Interrupts

When the local APIC is global/ hardware disabled, these pins are configured as |
NTR and NMI pins, respectively. Asserting the I NTR pin signals the processor that an
external interrupt has occurred. The processor reads from the system bus the interrupt vector
number provided by an external interrupt controller, such as an 8259A (“Exception and
Interrupt Vectors”). Asserting the NMI pin signals a non- maskable interrupt (NMI), which is
assigned to interrupt vector 2.

The processor’s local APIC is normally connected to a system-based 1/O APIC. Here,

external interrupts received at the I/O APIC’s pins can be directed to the local APIC through

the system bus (Pentium 4, Intel Core Duo, Intel Core 2, Intel® Atom™, and I ntel Xeon
processors) or the API C serial bus (P6 family and Pentium processors). The | / O APIC
determines the vector number of the interrupt and sends this number to the local APIC. When a
system contains multiple processors, processors can also send interrupts to one another by
means of the system bus (Pentium 4, Intel Core Duo, Intel Core 2, | ntel Atom, and Intel Xeon
processors) or the APIC serial bus (P6 family and Pentium processors).

The LI NT[1: 0] pins are not available on the | ntel486 processor and earlier Pentium
processors that do not contain an on- chip local APl C. These processors have dedicated NMI
and I NTR pins. With these processors, external inter- rupts are typically generated by a
system- based interrupt controller (8259A), with the interrupts being signaled through the
INTR pin.

Note that several other pins on the processor can cause a processor interrupt to occur.
However, these interrupts are not handled by the interrupt and exception mechanism
described in this chapter. These pins include the RESET#, FLUSH#, STPCLK#, SMI#, R/
S#, and INIT# pins. Whether they are included on a particular processor is implementation
dependent. Pin functions are described in the data books for the individual processors. The
SMI# pinis described in Chapter 34, “System Management Mode.”

29

Maskable Hardware Interrupts

Any external interrupt that is delivered to the processor by means of the | NTR pin or
through the local API C is called a maskable hardware interrupt. Maskable hardware interrupts
that can be delivered through the INTR pin include all IA- 32 architecture defined interrupt
vectors from O through 255; those that can be delivered through the local API C include
interrupt vectors 16 through 255.The IF flag in the EFLAGS register permits all maskable
hardware interrupts to be masked as a group (“Masking Maskable Hardware Interrupts”). Note
that when interrupts O through 15 are delivered through the local APl C, the API C indicates
the receipt of an illegal vector.

Software-Generated Interrupts

The INT n instruction a permit interrupts to be generated from within software by
supplying an interrupt vector number as an operand.

For example, the INT 35 instruction forces an implicit call to the interrupt handler for
interrupt 35.

Any of the interrupt vectors from 0 to 255 can be used as a parameter in this instruction.
I f the processor’s predefined NMI vector is used, however, the response of the processor will
not be the same as it would be from an NMI interrupt generated in the normal manner. | f
vector number 2 (the NMI vector) is used in this instruction, the NMI interrupt handler is
called, but the processor’s NMI- handling hardware is not activated.

Interrupts generated in software with the I NT n instruction cannot be masked by the IF flag
in the EFLAGS register.

SOURCES OFEXCEPTIONS

The processor receives exceptions from three sources:
* Processor-detected program-error exceptions.

e Software-generated exceptions.

* Machine-check exceptions.

Program-Error Exceptions

The processor generates one or more exceptions when it detects program errors during
the execution in an application program or the operating system or executive. Intel 64 and 1A-
32 architectures define a vector number for each processor- detectable exception. Exceptions
are classified as faults, traps, and aborts (see Section 6.5, “Exception Classifications”).

Software-Generated Exceptions

The INTO, INT 3, and BOUND instructions permit exceptions to be generated in
software. These instructions allow checks for exception conditions to be performed at points
in the instruction stream. For example, INT 3 causes a breakpoint exception to be generated.

The INT n instruction can be used to emulate exceptions in software; but there is a
limitation. If INT n provides a vector for one of the architecturally- defined exceptions, the
processor generates an interrupt to the correct vector (to access the exception handler) but does
not push an error code on the stack. This is true even if the associated hardware- generated
exception normally produces an error code. The exception handler will still attempt to pop an

30

error code from the stack while handling the exception. Because no error code was pushed, the
handler will pop off and discard the El P instead (in place of the missing error code). This
sends the return to the wrong location.

31

Machine-Check Exceptions

The P6 family and Pentium processors provide both internal and external machine-
check mechanisms for checking the operation of the internal chip hardware and bus
transactions. These mechanisms are implementation depen- dent. When a machine- check
error is detected, the processor signals a machine-check exception (vector 18) and returns an
error code.(“Interrupt 18—Machine- Check Exception (#MC)” and Chapter 15, “Machine-
Check Architecture,” for more information about the machine-check mechanism.

EXCEPTION CLASSIFICATIONS

E
xceptions are classified as faults, traps, or aborts depending on the way they are reported
and whether the instruction that caused the exception can be restarted without loss of
program or task continuity.

o Faults— A fault is an exception that can generally be corrected and that, once
corrected, allows the program to be restarted with no loss of continuity. When a fault
is reported, the processor restores the machine state to the state prior to the beginning
of execution of the faulting instruction. The return address (saved contents of the CS
and EIP registers) for the fault handler points to the faulting instruction, rather than to
the instruction following the faulting instruction.

e Traps — A trap is an exception that is reported immediately following the execution
of the trapping instruction. Traps allow execution of a program or task to be
continued without loss of program continuity. The return address for the trap handler
points to the instruction to be executed after the trapping instruction.

o Aborts— An abort is an exception that does not always report the precise location of
the instruction causing the exception and does not allow a restart of the program or
task that caused the exception. Aborts are used to report severe errors, such as
hardware errors and inconsistent or illegal values in system tables.

NOTE:

One exception subset normally reported as a fault is not restartable. Such exceptions result
in loss of some processor state. For example, executing a POPAD instruction where the stack
frame crosses over the end of the stack segment causes a fault to be reported. I n this situation,
the exception handler sees that the instruction pointer (CS: EI P) has been restored as if the
POPAD instruction had not been executed. However, internal processor state (the general-
purpose registers) will have been modified. Such cases are considered programming errors. An
application causing this class of exceptions should be terminated by the operating system.

When a page- fault exception occurs, the exception handler can load the page into
memory and resume execution of the program or task by restarting the faulting instruction.
To insure that the restart is handled trans- parently to the currently executing program or task,
the processor saves the necessary registers and stack pointers to allow a restart to the state
prior to the execution of the faulting instruction.

For trap-class exceptions, the return instruction pointer points to the instruction
following the trapping instruction. | f a trap is detected during an instruction which transfers
execution, the return instruction pointer reflects the transfer. For example, if a trap is
detected while executing a JMP instruction, the return instruction pointer points to the
destination of the JMP instruction, not to the next address past the JMP instruction. All trap
exceptions allow program or task restart with no loss of continuity. For example, the
overflow exception is a trap exception. Here, the return instruction pointer points to the
instruction following the INTO instruction that tested EFLAGS OF (over- flow) flag. The
trap handler for this exception resolves the overflow condition. Upon return from the trap
handler, program or task execution continues at the instruction following the INTO
instruction.

32

The abort-class exceptions do not support reliable restarting of the program or task.
Abort handlers are designed to collect diagnostic information about the state of the processor
when the abort exception occurred and then shut down the application and system as
gracefully as possible.

Interrupts rigorously support restarting of interrupted programs and tasks without loss of
continuity. The return instruction pointer saved for an interrupt points to the next instruction to
be executed at the instruction boundary where the processor took the interrupt. | f the
instruction just executed has a repeat prefix, the interrupt is taken at the end of the current
iteration with the registers set to execute the nextiteration.

Theability of aP6 family processor to speculatively execute instructions does not affect
the taking of interrupts by the processor. interrupts ae taken at instruction boundaries
located during the retirement phase of instruction execution; so they are always taken in the
“in-order” instruction stream. See Chapter 2, “Intel® 64 and IA- 32 Architectures,” in the
Intel® 64 and IA- 32 Architectures Software Developer’s Manual, VVolume 1, for more
information about the P6 family processors’ micro architecture and its support for out- of-
order instruction execution.

Note that the Pentium processor and earlier I A- 32 processors also perform varying
amounts of perfecting and preliminary decoding. With these processors as well, exceptions and
interrupts are not signaled until actual “in- order” execution of the instructions. For a given code
sample, the signaling of exceptions occurs uniformly when the code is executed on any family
of 1A- 32 processors (except where new exceptions or new opcodes have been defined).

NONMASKABLE INTERRUPT (NMI)

The nonmaskable interrupt (NMI) can be generated in either of two ways:
eExternal hardware asserts the NMI pin.

eThe processor receives a message on the system bus (Pentium 4, Intel Core Duo, Intel
Core 2, Intel Atom, and Intel Xeon processors) or the API C serial bus (P6 family and
Pentium processors) with a delivery mode NMI

When the processor receives a NMI from either of these sources, the processor handles
it immediately by calling the NMI handler pointed to by interrupt vector number 2. The
processor also invokes certain hardware conditions to insure that no other interrupts,
including NMI interrupts, are received until the NMI handler has completed executing (see
Section 6.7.1, “Handling Multiple NMIs™).

Also, when an NMI is received from either of the above sources, it cannot be masked by
the IF flag in the EFLAGS register.

It is possible to issue a maskable hardware interrupt (through the INTR pin) to vector 2
to invoke the NMI interrupt handler; however, this interrupt will not truly be an NMI interrupt.
A true NMI interrupt that activates the processor’s NMI - handling hardware can only be
delivered through one of the mechanisms listed above.

Handling MultipleNMIs

While an NMI interrupt handler is executing, the processor blocks delivery of subsequent
NMI s until the next execution of the | RET instruction. This blocking of NMI s prevents nested
execution of the NMI handler. 1t is recommended that the NMI interrupt handler be accessed
through an interrupt gate to disable maskable hardware interrupts (‘“Masking Maskable
Hardware Interrupts™)

An execution of the I RET instruction unblocks NMls even if the instruction causes a fault.
For example, if the | RET instruction executes with EFLAGS.VM = 1 and IOPL of less than 3,
a general- protection exception is generated (“‘Sensitive Instructions™). In such a case, NMIs are
unmasked before the exception handler is invoked.

33

ENABLING AND DISABLINGINTERRUPTS

The processor inhibits the generation of some interrupts, depending on the state of the
processor and of the | F and RF flags in the EFLAGS register, as described in the following
sections.

Masking Maskable Hardware Interrupts

The IF flag can disable the servicing of maskable hardware interrupts received on the
processor’s INTR pin or through the local APIC (see Section 6.3.2, “Maskable Hardware
Interrupts”). When the |IF flag is clear, the processor inhibits interrupts delivered to the | NTR
pin or through the local API C from generating an internal inter- rupt request; when the IF flag
is set, interrupts delivered to the | NTR or through the local API C pin are processed as normal
external interrupts.

The | F flag does not affect non- maskable interrupts (NM1 s) delivered to the NMI pin or
delivery mode NMI messages delivered through the local APl C, nor does it affect processor
generated exceptions. As with the other flags in the EFLAGS register, the processor clears the |
F flag in response to hardware reset.

The fact that the group of maskable hardware interrupts includes the reserved interrupt and
exception vectors 0 through 32 can potentially cause confusion. Architecturally, when the IF flag is set,
an interrupt for any of the vectors from 0 through 32 can be delivered to the processor through the | NTR
pin and any of the vectors from 16 through 32 can be delivered through the local API C. The processor
will then generate an interrupt and call the interrupt or exception handler pointed to by the vector
number. So for example, it is possible to invoke the page- fault handler through the I NTR pin (by means
of vector 14); however, this is not a true page- fault exception. | t is an interrupt. As with the | NT n
instruction (see Section 6.4.2, “Software- Generated Exceptions”), when an inter- rupt is generated
through the I NTR pin to an exception vector, the processor does not push an error code on the stack, so
the exception handler may not operate correctly.

The IF flag can be set or cleared with the STI (set interrupt- enable flag) and CLI (clear
interrupt- enable flag) instructions, respectively. These instructions may be executed only if the CPL is
equal to or less than the | OPL. A general- protection exception (#GP) is generated if they are executed
when the CPL is greater than the IOPL. (The effect of the IOPL on these instructions is modified slightly
when the virtual mode extension is enabled by setting the VME flag in control register CR4: The IF flag
is also affected by the following operations:

o The PUSHF instruction stores all flags on the stack, where they can be examined and modified.

The POPF instruction can be used to load the modified flags back into the EFLAGS register.

e Task switches and the POPF and IRET instructions load the EFLAGS register; therefore, they
can be used to modify the setting of the IF flag.

e When an interrupt is handled through an interrupt gate, the | F flag is automatically cleared,
which disables maskable hardware interrupts. (I f an interrupt is handled through a trap gate, the

IF flag is not cleared.)

Masking Instruction Breakpoints

The RF (resume) flag in the EFLAGS register controls the response of the processor to
instruction- breakpoint conditions (see the description of the RF flag in Section 2.3, “System Flags and
Fields in the EFLAGS Register”).

When set, it prevents an instruction breakpoint from generating a debug exception (#DB); when
clear, instruction breakpoints will generate debug exceptions. The primary function of the RF flag is to
prevent the processor from going into a debug exception loop on an instruction- breakpoint. See Section
17.3.1.1, “Instruction-Breakpoint Exception Condition,” for more information on the use of this flag.

34

Masking Exceptions and Interrupts When Switching Stacks
To switch to a different stack segment, software often uses a pair of instructions, for example:
MOV SS, AX
MOV ESP, Stack Top
If can interrupt or exception occurs after the segment selector has been loaded into the SS register
but before the ESP register has been loaded, these two parts of the logical address into the stack space
are inconsistent for the duration of the interrupt or exception handler.

To prevent this situation, the processor inhibits interrupts, debug exceptions, and single- step
trap exceptions after either a MOV to SS instruction or a POP to SS instruction, until the instruction
boundary following the next instruction is reached. All other faults may still be generated. | f the LSS
instruction is used to modify the contents of the SS register (which is the recommended method of
modifying this register), this problem does not occur.

PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND INTERRUPTS

| f more than one exception or interrupt is pending at an instruction boundary; the processor
services them in a predictable order. Table shows the priority among classes of exception and interrupt
sources.

Table-Priority among Simultaneous Exceptions and Interrupts
Priority Description

1 (Highest) [Hardware Reset and Machine Checks
RESET
Machine Check

2 Trap on Task Switch
- T flag in TSS is set

3 External Hardware Interventions
FLUSH

STOPCLK

SMI

INIT

4 Traps on the Previous Instruction
Breakpoints
Debug Trap Exceptions (TF flag set or data/I-O breakpoint)
Nonmaskable Interrupts (NMI) 1
Maskable Hardware Interrupts 1
Code Breakpoint Fault

Faults from Fetching Next Instruction
Code-Segment Limit Violation
Code Page Fault

| N| o) O1

9 Faults from Decoding the Next Instruction
Instruction length > 15 bytes
Invalid Opcode

Coprocessor Not Available

35

10 (Lowest) [Faults on Executing an Instruction
- Overflow
Bound error
Invalid TSS
Segment Not Present
Stack fault
General Protection
Data Page Fault
Alignment Check
x87 FPU Floating-point exception
SIMD floating-point exception
Virtualization exception

NOTE
1. The Intel® 486 processor and earlier processors group nonmaskable and maskable interrupts in the
same priority class.

While priority among these classes listed in Table 6- 2 is consistent throughout the architecture,
exceptions within each class are implementation- dependent and may vary from processor to processor.
The processor first services pending exception or interrupt from the class which has the highest priority,
transferring execution to the first instruction of the handler. Lower priority exceptions are discarded;
lower priority interrupts are held pending.

Discarded exceptions are re- generated when the interrupt handler returns execution to the point
in the program or task where the exceptions and/ or interrupts occurred.

INTERRUPT DESCRIPTOR TABLE (IDT)

The interrupt descriptor table (IDT) associates each exception or interrupt vector with a gate
descriptor for the procedure or task used to service the associated exception or interrupt. Like the GDT
and LDTs, the IDT is an array of 8- byte descriptors (in protected mode). Unlike the GDT, the first entry
of the I DT may contain a descriptor. To form an index into the | DT, the processor scales the exception
or interrupt vector by eight (the number of bytes in a gate descriptor). Because there are only 256
interrupt or exception vectors, the IDT need not contain more than 256 descriptors. | t can contain fewer
than 256 descriptors, because descriptors are required only for the interrupt and exception vectors that
may occur. All empty descriptor slots in the | DT should have the present flag for the descriptor set to 0.

The base addresses of the IDT should be aligned on an 8- byte boundary to maximize
performance of cache line fills. The limit value is expressed in bytes and is added to the base address to
get the address of the last valid byte. A limit value of O results in exactly 1 valid byte. Because IDT
entries are always eight bytes long, the limit should always be one less than an integral multiple of eight
(that is, 8N — 1).

The IDT may reside anywhere in the linear address space. As shown in Figure 6- 1, the
processor locates the IDT using the IDTR register. This register holds both a 32- bit base address and 16-
bit limit for the IDT.

The LIDT (load IDT register) and SI DT (store | DT register) instructions load and store the
contents of the IDTR register, respectively. The LIDT instruction loads the IDTR register with the base
address and limit held in a memory operand. This instruction can be executed only when the CPL is 0. I t
normally is used by the initialization code of an operating system when creating an IDT. An operating
system also may use it to change from one | DT to another. The SI DT instruction copies the base and
limit value stored in | DTR to memory. This instruction can be executed at any privilege level.

If a vector references a descriptor beyond the limit of the IDT, a general- protection exception
(#GP) is generated.

36

NOTE

Because interrupts are delivered to the processor core only once, an incorrectly configured IDT
could result in incomplete interrupt handling and/ or the blocking of interrupt delivery.

IA- 32 architecture rules need to be followed for setting up IDTR base/ limit/ access fields and
each field in the gate descriptors. The same apply for the Intel 64 architecture. This includes implicit
referencing of the destination code segment through the GDT or LDT and accessing the stack.
Relationship of the IDTR and IDT

IDTR Register
47 16 15 0

‘ IDT Base Address | IDT Limit

l Interrupt

Descriptor Table (IDT
»@ - p (IDT)

Gate for
Interrupt #n (n-1)*8

16

31 0

37

IDT DESCRIPTORS

The IDT may contain any of three kinds of gate descriptors:

e Task- gate descriptor

e Interrupt- gate descriptor

e Trap- gate descripto

Figure shows the formats for the task- gate, interrupt- gate, and trap- gate descriptors. The

format of a task gate used in an | DT is the same as that of a task gate used in the GDT or an LDT
(“Task- Gate Descriptor”). The task gate contains the segment selector for a TSS for an exception and/
or interrupt handler task.

Interrupt and trap gates are very similar to call gates. They contain a far pointer (segment
selector and offset) that the processor uses to transfer program execution to a handler procedure in an
exception- or interrupt- handler code segment. These gates differ in the way the processor handles the | F
flag in the EFLAGS register.

IDT Gate Descriptors

Task Gate
31 16 1514 13 12 87 0
4
31 16 15 0
TSS Segment Selector 0
Interrupt Gate
31 16 1514 13 12 8 7 54 0
4
31 16 15 0
Segment Selector Offset 15..0 0
Trap Gate
31 16 1514 13 12 8 7 54 0
4
31 16 15 0
Segment Selector Offset 15..0 0
DPL Descriptor Privilege Level
Offset Offset to procedure entry point
P Segment Present flag
Selector Segment Selector for destination code segment
D

38

EXCEPTION AND INTERRUPT HANDLING

The processor handles calls to exception- and interrupt- handlers similar to the way it handles
calls with a CALL instruction to a procedure or a task. When responding to an exception or interrupt, the
processor uses the exception or interrupt vector as an index to a descriptor in the | DT. I f the index
points to an interrupt gate or trap gate, the processor calls the exception or interrupt handler in a manner
similar to a CALL to a call gate. If index points to a task gate, the processor executes a task switch to the
exception- or interrupt- handler task in a manner similar to a CALL to a task gate.

Exception- or Interrupt-Handler Procedures

An interrupt gate or trap gate references an exception- or interrupt- handler procedure that runs
in the context of the currently executing task (see Figure 6- 3). The segment selector for the gate points
to a segment descriptor for an executable code segment in either the GDT or the current LDT. The offset
field of the gate descriptor points to the beginning of the exception- or interrupt- handling procedure.
When the processor performs a call to the exception- or interrupt- handler procedure:

* | f the handler procedure is going to be executed at a numerically lower privilege level, a stack
switch occurs. When the stack switch occurs:

* The segment selector and stack pointer for the stack to be used by the handler are obtained from the
TSS for the currently executing task. On this new stack, the processor pushes the stack segment
selector and stack pointer of the interrupted procedure.

* The processor then saves the current state of the EFLAGS, CS, and EI P registers on the new stack
(see Figures 6- 4).

e | fan exception causes an error code to be saved; it is pushed on the new stack after the EI P value.

* | f the handler procedure is going to be executed at the same privilege level as the interrupted
procedure:

* The processor saves the current state of the EFLAGS, CS, and EIP registers on the current stack
(see Figures 6- 4).

e | f an exception causes an error code to be saved, it is pushed on the current stack after the EIP
value.

39

Stack Usage with No
Privilege-Level Change

Interrupted Procedure’s
and Handler's Stack

-*—— ESP Before

EFLAGS

Transfer to Handler

Cs

EIP

Error Code

-«——ESP After

Transfer to Handler

Stack Usage with
Privilege-Level Change

Interrupted Procedure’s

Stack

€—ESP Before

Transfer to Handler

ESP After—»

Transfer to Handler

Handler's Stack

83

ESP

EFLAGS

Cs

EIP

Eror Code

40

Interrupt Procedure Call

To return from an exception- or interrupt- handler procedure, the handler must use the | RET (or
I RETD) instruction. The IRET instruction is similar to the RET instruction except that it restores the
saved flags into the EFLAGS register. The IOPL field of the EFLAGS register is restored only if the
CPL is 0. The I F flag is changed only if the CPL is less than or equal to the | OPL. If a stack switch
occurred when calling the handler procedure, the I RET instruction switches back to the interrupted
procedure’s stack on the return.
Protection of Exception- and Interrupt-Handler Procedures

The privilege- level protection for exception- and interrupt- handler procedures is similar to that
used for ordinary procedure calls when called through a call gate. The processor does not permit transfer
of execution to an exception- or interrupt- handler procedure in a less privileged code segment
(numerically greater privilege level) than the CPL.

An attempt to violate this rule results in a general- protection exception (#GP). The protection
mechanism for exception- and interrupt- handler procedures is different in the following ways:

e Because interrupt and exception vectors have no RPL, the RPL is not checked on implicit calls
to exception and interrupt handlers.

e The processor checks the DPL of the interrupt or trap gate only if an exception or interrupt is
generated with an INT n, I NT 3, or INTO instruction. Here, the CPL must be less than or equal
to the DPL of the gate. This restriction prevents application programs or procedures running at
privilege level 3 from using software interrupt to access critical exception handlers, such as the
page- fault handler, providing that those handlers are placed in more privileged code segments
(numerically lower privilege level). For hardware- generated interrupts and processor- detected
exceptions, the processor ignores the DPL of interrupt and trap gates.

41

TS5 for Interrupt-

DT Handling Task
Intermupt
Vector — Task Gate
TS5 Selector T3S
Base
GDT Address

- T35 Descriptor

Interrupt Task Switch

ERROR CODE

When an exception condition is related to a specific segment selector or IDT vector, the
processor pushes an error code onto the stack of the exception handler (whether it is a procedure or task).
The error code has the format shown in Figure. The error code resembles a segment selector; however,
instead of a T1 flag and RPL field, the error code contains 3 flags:
EXT External event (bit 0) — When set, indicates that the exception occurred during delivery of an
event external to the program, such as an interrupt or an earlier exception.
I DT Descriptor location (bit 1) — When set, indicates that the index portion of the error code refers
to a gate descriptor in the | DT; when clear, indicates that the index refers to a descriptor in the GDT or
the current LDT.
TI GDT/ LDT (bit 2) — only used when the IDT flag is clear. When set, the TI flag indicates that
the index portion of the error code refers to a segment or gate descriptor in the LDT; when clear, it
indicates that the index refers to a descriptor in the current GDT

Reserved Segment Selector Index [T|I [E
I DX
T

42

31 3210

Error Code

The segment selector index field provides an index into the IDT, GDT, or current LDT to the
segment or gate selector being referenced by the error code. In some cases the error code is null (all bits
are clear except possibly EXT). A null error code indicates that the error was not caused by a reference
to a specific segment or that a null segment descriptor was referenced in an operation.

The format of the error code is different for page- fault exceptions (#PF). See the “Interrupt 14—
Page- Fault Exception (#PF)” section in this chapter.

The error code is pushed on the stack as a double word or word (depending on the default
interrupt, trap, or task gate size). To keep the stack aligned for double word pushes, the upper half of the
error code is reserved. Note that the error code is not popped when the IRET instruction is executed to
return from an exception handler, so the handler must remove the error code before executing a return.
Error codes are not pushed on the stack for exceptions that are generated externally (with the INTR or
LINT [1: O] pins) or the I NT n instruction, even if an error code is normally produced for those
exceptions.

EXCEPTION AND INTERRUPT HANDLING IN 64-BIT MODE

In 64- bit mode, interrupt and exception handling is similar to what has been described for non-
64- bit modes. The following are the exceptions:

e All interrupt handlers pointed by the IDT are in 64- bit code (this does not apply to the SMI
handler).

* The size of interrupt- stack pushes is fixed at 64 bits; and the processor uses 8- byte, zero extended
stores.

* The stack pointer (SS: RSP) is pushed unconditionally on interrupts. | n legacy modes, this push is
conditional and based on a change in current privilege level (CPL).

* The new SSis set to NULL if there is a change in CPL.
* |IRET behavior changes.

* There is a new interrupt stack- switch mechanism.

* The alignment of interrupt stack frame is different.

64-Bit Mode IDT

Interrupt and trap gates are 16 bytes in length to provide a 64- bit offset for the instruction
pointer (RIP). The 64- bit RIP referenced by interrupt- gate descriptors allows an interrupt service
routine to be located anywhere in the linear-address space. See Figure.

43

InterruptTrap Gate
3 o
Reserved 12
] 0
Offzet 63..32 8
3 16 15 14 13 12 11 g 7T 54 2 0
Offset 3116 sl 5 lol e |0 0 olofo] s |4
L
3 181]
Segment Selector Offzat 15..0 0
DPL Descriptor Privilege Level
Oiffset (Offset to procedure entry point
P Segment Present flag
Selector Segment Selector for destination code segment
IST Interrupt Stack Table

64-Bit IDT Gate Descriptors

In 64- bit mode, the IDT index is formed by scaling the interrupt vector by 16. The first eight
bytes (bytes 7: 0) of a 64- bit mode interrupt gate are similar but not identical to legacy 32- bit interrupt
gates. The type field (bits 11: 8 in bytes 7: 4) is described in Table 3- 2. The Interrupt Stack Table (IST)
field (bits 4: 0 in bytes 7: 4) is used by the stack switching mechanisms described in Section 6.14.5,
“Interrupt Stack Table.” Bytes 11: 8 hold the upper 32 bits of the target RIP (interrupt segment offset) in
canonical form. A general- protection exception (#GP) is generated if software attempts to reference an
interrupt gate with a target RI P that is not in canonical form.

The target code segment referenced by the interrupt gate must be a 64- bit code segment (CS.L =
1, CS.D = 0). I f the target is not a 64-bit code segment; a general- protection exception (#GP) is
generated with the | DT vector number reported as the error code.

Only 64- bit interrupt and trap gates can be referenced in I1A- 32e mode (64- bit mode and
compatibility mode). Legacy 32- bit interrupt or trap gate types (OEH or OFH) are redefined in IA- 32e
mode as 64- bit interrupt and trap gate types. No 32- bit interrupt or trap gate type exists in 1A- 32e
mode. | f a reference is made to a 16-bit interrupt or trap gate (06H or O7H), a general- protection
exception (#GP (0)) is generated.

64-Bit Mode Stack Frame

In legacy mode, the size of an IDT entry (16 bits or 32 bits) determines the size of interrupt-
stack- frame pushes. SS: ESP is pushed only on a CPL change. | n 64- bit mode, the size of interrupt
stack- frame pushes is fixed at eight bytes. This is because only 64- bit mode gates can be referenced.
64- Bit mode also pushes SS: RSP unconditionally, rather than only on a CPL change.

Aside from error codes pushing SS: RSP unconditionally presents operating systems with a
consistent interrupt- stack frame size across all interrupts. Interrupt service- routine entry points that
handle interrupts generated by the INTn instruction or external I NTR# signal can push an additional
error code place- holder to maintain consistency.

44

In legacy mode, the stack pointer may be at any alignment when an interrupt or exception causes
a stack frame to be pushed. This causes the stack frame and succeeding pushes done by an interrupt
handler to be at arbitrary alignments. In I1A- 32e mode, the RSP is aligned to a 16- byte boundary before
pushing the stack frame. The stack frame itself is aligned on a 16- byte boundary when the interrupt
handler is called. The processor can arbitrarily realign the new RSP on interrupts because the previous
(possibly unaligned) RSP is unconditionally saved on the newly aligned stack. The previous RSP will be
automatically restored by a subsequent | RET.

Aligning the stack permits exception and interrupt frames to be aligned on a 16- byte boundary
before interrupts are re- enabled. This allows the stack to be formatted for optimal storage of 16- byte
XMM registers, which enables the interrupt handler to use faster 16- byte aligned loads and stores
(MOVAPS rather than MOVUPS) to save and restore XMM registers.

Although the RSP alignment is always performed when LMA =1, it is only of consequence for
the kernel- mode case where there is no stack switch or | ST used. For a stack switch or I ST, the OS
would have presumably put suitably aligned RSP values in the TSS.

IRET in 1A-32e Mode

In 1A- 32e mode, IRET executes with an 8- byte operand size. There is nothing that forces this
requirement. The stack is formatted in such a way that for actions where IRET is required, the 8- byte
IRET operand size works correctly.

Because interrupt stack- frame pushes are always eight bytes in 1A- 32e mode, an IRET must
pop eight byte items off the stack. This is accomplished by preceding the IRET with a 64- bit operand-
size prefix. The size of the pop is determined by the address size of the instruction. The SS/ ESP/ RSP
size adjustment is determined by the stack size.

| RET pops SS: RSP unconditionally off the interrupt stack frame only when it is executed in 64-
bit mode. In compat- ibility mode, | RET pops SS: RSP off the stack only if there is a CPL change. This
allows legacy applications to execute properly in compatibility mode when using the IRET instruction.
64- bit interrupt service routines that exit with an | RET unconditionally pop SS: RSP off of the interrupt
stack frame, even if the target code segment is running in 64- bit mode or at CPL = 0. This is because the
original interrupt always pushes SS: RSP.

In 1A- 32e mode, IRET is allowed to load a NULL SS under certain conditions. | f the target
mode is 64- bit mode and the target CPL <> 3, | RET allows SS to be loaded with a NULL selector. As
part of the stack switch mechanism, an interrupt or exception sets the new SS to NULL, instead of
fetching a new SS selector from the TSS and loading the corresponding descriptor from the GDT or
LDT. The new SS selector is set to NULL in order to properly handle returns from subsequent nested far
transfers. | f the called procedure itself is interrupted, the NULL SS is pushed on the stack frame. On the
subsequent IRET, the NULL SS on the stack acts as a flag to tell the processor not to load a new SS
descriptor.

The I A- 32 architecture provides a mechanism to automatically switch stack frames in response
to an interrupt. The 64- bit extensions of | ntel 64 architecture implement a modified version of the
legacy stack- switching mechanism and an alternative stack- switching mechanism called the interrupt
stack table (IST).

In I A- 32 modes, the legacy | A- 32 stack- switch mechanism is unchanged. In I A- 32e mode,
the legacy stack- switch mechanism is modified. When stacks are switched as part of a 64- bit mode
privilege- level change (resulting from an interrupt), a new SS descriptor is not loaded. IA- 32e mode
loads only an inner- level RSP from the TSS. The new SS selector is forced to NULL and the SS
selector’s RPL field is set to the new CPL. The new SS is set to NULL in order to handle nested far
transfers (far CALL, | NT, interrupts and exceptions). The old SS and RSP are saved on the new stack
(Figure 6- 8). On the subsequent | RET, the old SS is popped from the stack and loaded into the SS
register. In summary, a stack switch in 1A- 32e mode works like the legacy stack switch, except that a
new SS selector is not loaded from the TSS. Instead, the new SS is forced to NULL.

45

Legacy Mode Stack US&gE‘ with 1A-32e Mode
Privilege-Level Change

Handler's Stack Handler's Stack
+20 55 35 +40
+16 ESP RSP +32
+12 EFLAGS RFLAGS +24
+8 cs CS +16
+4 EIP RIP +8
0 Emor Code | <€— Stack Pointer After —=| Emor Code 0
Transfer to Handler

IA-32e Mode Stack Usage after Privilege Level Change

Interrupt Stack Table

In IA- 32e mode, a new interrupt stack table (IST) mechanism is available as an alternative to
the modified legacy stack- switching mechanism described above. This mechanism unconditionally
switches stacks when it is enabled. I t can be enabled on an individual interrupt-vector basis using a
field in the 1 DT entry. This means that some inter- rupt vectors can use the modified legacy mechanism
and others can use the IST mechanism.

The IST mechanism is only available in IA- 32e mode. | t is part of the 64- bit mode TSS. The
motivation for the IST mechanism is to provide a method for specific interrupts (such as NMI , double-
fault, and machine- check) to always execute on a known good stack. | n legacy mode, interrupts can use
the task- switch mechanism to set up a known- good stack by accessing the interrupt service routine
through a task gate located in the IDT. However, the legacy task- switch mechanism is not supported in |
A- 32e mode.

The IST mechanism provides up to seven IST pointers in the TSS. The pointers are referenced

by an interrupt- gate descriptor in the interrupt- descriptor table (IDT); see Figure 6- 7. The gate
descriptor contains a 3- bit I ST index field that provides an offset into the IST section of the TSS. Using
the IST mechanism, the processor loads the value pointed by an IST pointer into the RSP.
When an interrupt occurs, the new SS selector is forced to NULL and the SS selector’s RPL field is set
to the new CPL. The old SS, RSP, RFLAGS, CS, and RIP are pushed onto the new stack. Interrupt
processing then proceeds as normal. | f the IST index is zero, the modified legacy stack- switching
mechanism described above is used.

EXCEPTION AND INTERRUPT REFERENCE
The following sections describe conditions which generate exceptions and interrupts. They are
arranged in the order of vector numbers. The information contained in these sections are as follows:

* Exception Class — indicates whether the exception class is a fault, trap, or abort type. Some
exceptions can be either a fault or trap type, depending on when the error condition is detected.
(This section is not applicable to interrupts.)

* Description — Gives a general description of the purpose of the exception or interrupts type. I t
also describes how the processor handles the exception or interrupt.

* Exception Error Code — indicates whether an error code is saved for the exception. | f one is
saved, the contents of the error code are described. (This section is not applicable to interrupts.)

e Saved I nstruction Pointer — Describes which instruction the saved (or return) instruction
pointer points to. It also indicates whether the pointer can be used to restart a faulting instruction.

Program State Change — describes the effects of the exception or interrupt on the state of the currently
running program or task and the possibilities of restarting the program or task without loss of continuity.

46

Because exceptions and interrupts generally do not occur at predictable times, these privilege rules
effectively impose restrictions on the privilege levels at which exception and interrupt- handling
procedures can run. Either of the following techniques can be used to avoid privilege- level violations.

* The exception or interrupt handler can be placed in a conforming code segment. This
technique can be used for handlers that only need to access data available on the stack (for
example, divide error exceptions). | f the handler needs data from a data segment, the data
segment needs to be accessible from privilege level 3, which would make it unprotected.

* The handler can be placed in a nonconforming code segment with privilege level 0. This
handler would always run, regardless of the CPL that the interrupted program or task is
running at.

Flag Usage By Exception- or Interrupt-Handler Procedure

When accessing an exception or interrupt handler through either an interrupt gate or a trap gate,
the processor clears the TF flag in the EFLAGS register after it saves the contents of the EFLAGS
register on the stack. (On calls to exception and interrupt handlers, the processor also clears the VM,
RF, and NT flags in the EFLAGS register, after they are saved on the stack.) Clearing the TF flag
prevents instruction tracing from affecting interrupt response. A subsequent | RET instruction restores
the TF (and VM, RF, and NT) flags to the values in the saved contents of the EFLAGS register on the
stack.

The only difference between an interrupt gate and a trap gate is the way the processor handles
the I F flag in the EFLAGS register. When accessing an exception- or interrupt- handling procedure
through an interrupt gate, the processor clears the IF flag to prevent other interrupts from interfering
with the current interrupt handler. A subse- quent I RET instruction restores the IF flag to its value in
the saved contents of the EFLAGS register on the stack. Accessing a handler procedure through a trap
gate does not affect the IF flag.

Interrupt Tasks

When an exception or interrupt handler is accessed through a task gate in the IDT, a task switch

results. Handling an exception or interrupt with a separate task offers several advantages:

* The entire context of the interrupted program or task is saved automatically.

* A new TSS permits the handler to use a new privilege level 0 stack when handling the exception or
interrupt. | f an exception or interrupt occurs when the current privilege level 0 stack is corrupted,
accessing the handler through a task gate can prevent a system crash by providing the handler with
a new privilege level 0 stack.

* The handler can be further isolated from other tasks by giving it a separate address space. This is
done by giving it a separate LDT.

The disadvantage of handling an interrupt with a separate task is that the amount of machine
state that must be saved on a task switch makes it slower than using an interrupt gate, resulting in
increased interrupt latency.

A task gate in the IDT references a TSS descriptor in the GDT (see Figure 6-5). A switch to the
handler task is handled in the same manner as an ordinary task switch (see Section 7.3, “Task
Switching”). The link back to the interrupted task is stored in the previous task link field of the handler
task’s TSS. I f an exception caused an error code to be generated, this error code is copied to the stack of
the new task.

When exception- or interrupt- handler tasks are used in an operating system, there are actually
two mechanisms that can be used to dispatch tasks: the software scheduler (part of the operating system)
and the hardware sched- uler (part of the processor's interrupt mechanism). The software scheduler needs
to accommodate interrupt tasks that may be dispatched when interrupts are enabled.

NOTE

Because IA- 32 architecture tasks are not re- entrant, an interrupt- handler task must disable interrupts
between the time it completes handling the interrupt and the time it executes the IRET instruction. This
action prevents another interrupt from occurring while the interrupt task’s TSS is still marked busy,
which would cause a general- protection (#GP) exception.

47

TSS for Interrupt-

IDT Handling Task
Interrupt
Vector Task Gate
TSS Selector TSS
Base
GDT Address

\

TSS Descriptor

Protected-Mode Exceptions and Interrupts (Contd.)

Exception Handling

The trouble with programmed I/O is that it both wastes CPU resources and it has potential for
incorrect operation.
What we really want:

1. (Since most I/O devices are slow), have 1/0O devices signal the CPU when they have a change in
status. This would be more efficient than polling the devices at the devices' maximum operating
speed.

2. The I/O devices tell the processor that they become "ready."

In order to do this we need:

1. Hardware (wires) from devices to the CPU.

2. A way for special software to be invoked when the a device signals on the wire.

The modern solution bundles the software to deal with these signals (interrupts) and other situations into
an exception handler. (Effectively part of the OS.)
Exceptions

There are 2 categories of exceptions: interrupts and traps. All processors use the same
mechanism (a combination of hardware and software) to deal with exceptions.
Note: The Java and C++ languages have overloaded the term exception. Processors have used this term
since the 1950s. OO languages developed many years later. For this class, the
term exception does not refer to Java or C++ exceptions.
The 2 categories:

1. interrupts

v' initiated outside the instruction stream

v"arrive asynchronously (at no specific time), with respect to the timing of the fetch and execute
cycle

48

examples:
v 1/0 device status change
v"1/O device error condition
v"thermal override shutdown
v"internal error detection

49

When should the interrupt be dealt with? Answer: as soon as conveniently possible, and before the
condition that caused the interrupt might cause yet-another interrupt (losing the first!)
2. traps
v’ occur due to something in instruction stream
v"arrive synchronously (while instruction is executing). A good test: if program was re-run (with
the same input), the trap would occur in precisely the same place in the code.
Examples:
o unaligned address error
e arithmetic overflow
o syscall
When should the trap be dealt with? Answer: right now! The user program cannot continue until
whatever caused the trap is dealt with.
Exception Handling
The mechanism for dealing with exceptions is simple; its implementation can get complex. The
implementation varies among architectures.
Situation: a user program (also called an application) is running (executing), and a device generates an
interrupt request.
Mechanism to respond: the hardware temporarily suspends the user program, and instead runs code
called an exception handler. After the handler is finished doing whatever it needs to, the hardware
returns control to the user program. The user program continues from where it left off.
Limitations of exception handler:
Since it is being invoked (potentially) in the middle of a user program, the handler must take extra care
not to change the state of the user program.
e it cannot change register values
e it cannot change the stack
So, how can it do anything at all?
-- The key to this answer is that any portion of the processor state that the handler wishes to change must
be saved before the change and restored before returning to the wuser program.
-- The handler often uses the system stack to temporarily save register values.

When to handle an interrupt -- 2 possibilities:

1. Right now! Note that this could be in the middle of an instruction. In order to do this, the
hardware must be able to know where the instruction is in its execution and be able to "take up
where it left off". This is very difficult to do, because the hardware is complex. But, it has been
done in simpler forms on a few machines. Example: arbitrary memory to memory copy on I1BM
360.

2. Wait until the currently executing instruction finishes, then handle. THIS IS THE METHOD OF
CHOICE. It handles interrupts in between 2 instructions.

The instruction fetch/execute cycle must be expanded to
If an interrupt is pending, handle it.
instruction fetch
PC update
decode
operand load
operation
7. store results
The MIPS R2000 exception handling mechanism
When an exception occurs, the hardware does the following things. Note that there is no inherent
ordering of #1-4. They all happen "between" instructions, and before #5.
v’ processor sets state giving cause of exception

ocouakrwbdpE

within ~ the Cause register -- coprocessor ~ CO, register $13, a 32-bit register
bits 6..2 (5 bits) specify the type of the exception, called the ExcCode.
Here are some mappings of encodings to causes.

50

51

Examples:
00000 (0) Interrupt
00100 (4) load from an illegal address
01000 (8) syscall instruction
01100 (12) arithmetic overflow

v"changes to kernel mode, saving the previous mode in a hardware stack (3 levels deep)
The mode is in the Status register -- coprocessor CO, register 12, bit 1.
user mode = 1
kernel mode = 0
defined in the processor's architecture are 2 modes,

v’ user -- the mode that user programs run under.
Certain instructions are not available, like those that can write to the control registers (Status
register and Cause register).

v' kernel -- the operating system mode.
Allows the OS to retain control over "vital" system aspects. All instructions are available.

1. disable further interrupts bit 0 of the Status register the field is called IEc (Interrupt Enable,
Current) determines whether interrupts are currently enabled = 1
disabled = 0

If interrupts are disabled, then the hardware is not checking to see if there are further interrupts to
handle. Disabling makes sure that the handling of an interrupt is not interrupted.

2. save current PC coprocessor CO, register 14, called the Exception Program Counter.

Gives return address within user program. Where to return to when done handling the exception.

3. jumps to hardwired address 0x8000 0080.
This is where the exception handler code is.

Then, the instruction fetch and execute cycle starts up again, only now the code within the exception
handler is being executed.

This handler code does the following:
1. Save some registers (on system stack).
2. The handler needs to use registers too! It may not change (clobber, overwrite) the register
contents of the user program. So, it saves them (on stack or in memory).
Figure out exception type. (in ExcCode)
mfcO $kO, $13 # get Cause register
andi $kO0, $k0, 0x3c # Mask out all but ExcCode
Use ExcCode in combination with a jump tableto jump to the correct location within the
exception handler.
Handle the exception (whatever it is!)
Restore registers saved in step 1.
9. atomically: (as if done in 1 step, not 3)

o kw

© N

52

See Useful diagrams for the MIPS R2000, as distributed in class!
The EPC (Exception Program Counter)

The Status Register

The Cause Register

some terms
e Interrupt request -- the activation of hardware somewhere that signals the initial request for an

interrupt.

e pending interrupt -- an interrupt that has not been handled yet, but needs to be

o Kernel -- the exception handler. In most minds, when people think of a kernel, they think of
critical portions of an operating system. The exception handler is a critical portion of an operating
system!

e Handler -- the code of the exception handler.

e nonreentrant -- what we talk about (mostly) in 354. While running an exception handler (the

kernel), further pending interrupts are ignored.
e reentrant -- An exception handler that is carefully crafted such that the handling of one exception

can be interrupted to handle a second exception.

about Jump Tables
A clever mechanism for implementing a switch statement. A jump to one of many locations

Keep a table of addresses (casel, case2, and case3):

JumpTable: .word case0 # different syntax!
.word casel # the address assigned to these labels
.word case2 # becomes the contents of an array element

sll $8, $8, 2 # case number shifted left 2 bits

(need a word offset into table, not byte)
Iw $9, JumpTable($8) # load address into $9
jr $9 # jump to address contained in $9

case0: #code for caseO here

casel: #code for casel here

case2: #code for case2 here

Note that the cases do not have to go in any specific order.
not-yet-seen Addressing mode: label($rb)

Effective address is gotten by: label + ($rb)
label does not fit into 16 bit displacement field of load/store instruction. So, the MAL->TAL synthesis of

this must be something like:

la $1, label
add $1, $1, $rb
53

Then use 0 ($1) as addressing mode in load/store instructions

54

some advanced topics
Priorities
A problem: Multiple interrupt requests can arrive simultaneously.
Which one should get handled first?
Possible solutions:
v FCFS -- the first one to arrive gets handled first.
Difficulty 1) This might allow a malicious/recalcitrant device or program to gain control of the
processor.
Difficulty 2) There must be hardware that maintains an ordering of pending exceptions. (a queue)
v’ Prioritize all exceptions -- the one with the highest priority gets handled first. This is a common
method for solving the problem.
Priorities for various exceptions are assigned either by the manufacturer, or by a system administrator
through software. The priorities are normally defined (and fixed) when a machine is booted (the OS is
started up).
Difficulty 1) Exceptions with the same priority must still be handled in some order. Example of same
priority exceptions might be all keyboard interrupts. Consider a machine with many terminals hooked
up.
The instructions fetch/execute cycle becomes:
1. If any interrupts with a higher priority than whatever is currently running pending, handle them
now
instruction fetch
PC update
decode
get operands
do the instruction's operation
. put result away
NOTE: This implies that there is some hardware notion of the priority for whatever code is currently
running (application, keyboard interrupt handler, clock interrupt handler, etc.).
Priorities are a matter of which is most urgent, and therefore cannot wait, and how long it takes to
process the interrupt.
o clock is urgent, clock interrupts occur frequently, and handling takes little processing, maybe
only a variable increment.
o power failure is very urgent, but takes a lot or processing, because the machine will be stopped.
o overflow is urgent to the program which caused it, because the program cannot continue.
e keyboard is urgent because we do not want to lose a second key press before the first is handled.
So, what ordering ought to be imposed?
Reentrant Exception Handlers
The best solution combines priorities with an exception handler that can itself be interrupted. There are
many details to get right to make this possible.
o The instruction fetch/execute cycle remains the same. At the beginning of every instruction (even
those within the exception handler), a check is made to see
v' if there are pending interrupts
v if listening for interrupts is enabled

Noogok~owd

Only those with higher priorities than whatever is currently running will be processed.
o The exception handler must be modified so that it can be interrupted. Its own state must be saved
(safely).

Within the handler:

1. While interrupts are disabled, save important state that cannot get clobbered. (EPC, current
priority level, maybe registers $26 and $27).
Question: Where do these things get saved?

2. Re-enable interrupts for devices with higher priorities than current level. If the priority level

55

checking is done in hardware, then all interrupts can be re-enabled.
3. This invocation of the exception handler eventually finishes.

56

INTERRUPT INPUTS AND PENDING BEHAVIOUR

This section describes the behaviour of IRQ inputs and pending behaviour. It also applies to
NMI input, except that an NMI will be executed immediately in most cases, unless the core is already
executing an NMI handler, halted by a debugger, or locked up because of some serious system error.
When an interrupt input is asserted, it will be pended, which means it is put into a state of waiting for the
processor to process the request. Even if the interrupt source deasserts the interrupt, the pended interrupt
status will still cause the interrupt handler to be executed when the priority is allowed.

Once the interrupt handler is started, the pending status is cleared automatically. This is shown
in Figure. However, if the pending status is cleared before the processor starts responding to the pended
interrupt (for example, the interrupt was not taken immediately because PRIMASK/FAULTMASK is set
to 1, and the pending status was cleared by software writing to NVIC interrupt control registers), the
interrupt can be cancelled (Figure 7.10). The pending status of the interrupt can be accessed in the NVIC
and is writable, so you can clear a pending interrupt or use software to pend a new interrupt by setting
the pending register.

Interrupt
requast

Irterrapt
pending status

I

y
[1
f Handler mode

Processor Thread
mode mode

FIGURE
Interrupt Pending.

Interrupt
request
Intarrupt

pending status

1 Pending status

clearad by softwarne
Procassor Thread y

mode mode

FIGURE
Interrupt Pending Cleared Before Processor Takes Action.

When the processor starts to execute an interrupt, the interrupt becomes active and the pending
bit will be cleared automatically (Figure 7.11). When an interrupt is active, you cannot start processing
the same interrupt again, until the interrupt service routine is terminated with an interrupt return (also
called an exception exit, as discussed in Chapter 9). Then the active status is cleared, and the interrupt
can be processed again if the pending status is 1. It is possible to repend an interrupt before the end of
the interrupt service routine. If an interrupt source continues to hold the interrupt request signal active,
the interrupt will be pended again at the end of the interrupt service routine as shown in Figure. This is
just like the traditional ARM7TDMI. If an interrupt is pulsed several times before the processor starts
processing it, it will be treated as one single interrupt request as illustrated in Figure. If an interrupt is
disserted and then pulsed again during the interrupt service routine, it will be pended again as shown in
Figure.

57

Interrupt request

i rrupd clear by software
request |\ |
Imterrupt |

pending status

Intermpt
active status

'
Handlar mode " Interrupt retum

Processor Thread
mode mode

FIGURE

Interrupt Active Status Set as Processor Enters Handler.

Interrupt Interrupt request stay active

request

Imterrupt [

. A
pending status 1\
Intermpt
active s:mul::g Interrupt returm r‘J'I
Handler mode
Processor Thread \(R
mode mode Interrupt reenterad

FIGURE

Continuous Interrupt Reguest Pends Again After Interrupt Exit.

58

Multiple interrupt pulses
Interrupt before entering I3R

request [

Interrupt l

panding status

Interrupt |

active status

Handlar mode

Processor Thread
mode mode Interrupt retum
FIGURE

Interrupt Pending Only Once, Even with Multiple Pulses Before the Handler.

Interrupt request

Intermpt pulsed again
request | [

Interrupt pandead
Interrupt | | [again |

pending status

Interrupt | N

aclive status
Handler mode

Processor Thraad Interrupt return ”\’W
rnada maode

Interrupt reentered

FIGURE
Interrupt Pending Occurs Again during the Handler.

Pending of an interrupt can happen even if the interrupt is disabled; the pended interrupt can then trigger
the interrupt sequence when the enable is set later. As a result, before enabling an interrupt, it could be
useful to check whether the pending register has been set. The interruptsource might have been activated
previously and have set the pending status. If necessary, you can clear the pending status before you
enable an interrupt.

FAULT EXCEPTIONS:

Bus faults are produced when an error response is received during a transfer on the AHB
interfaces. It can happen at these stages: ¢ Instruction fetch, commonly called prefetch abort ¢ Data
read/write, commonly called data abort In the Cortex-M3, bus faults can also occur during the following:
* Stack PUSH in the beginning of interrupt processing, called a stacking error » Stack POP at the end of
interrupt processing, called an unstacking error * Reading of an interrupt vector address (vector fetch)
when the processor starts the interrupthandling sequence (a special case classified as a hard fault) When
these types of bus faults (except vector fetches) take place and if the bus fault handler is enabled and no
other exceptions with the same or higher priority are running, the bus fault handler will be executed. If
the bus fault handler is enabled but at the same time the core receives another exception handler with
higher priority, the bus fault exception will be pending. Finally, if the bus fault handler is not enabled or
when the bus fault happens in an exception handler that has the same or higher priority than the bus fault
handler, the hard fault handler will be executed instead. If another bus fault takes place when running the
hard fault handler, the core will enter a lockup state.

To enable the bus fault handler, you need to set the BUSFAULTENA bit in the System Handler
Control and State register in the NVIC. Before doing that, make sure that the bus fault handler starting
address is set up in the vector table if the vector table has been relocated to RAM. Hence, how do you

59

find out what went wrong when the processor entered the bus fault handler? The NVIC has a number of
Fault Status registers (FSRs). One of them is the Bus Fault Status register (BFSR). From this register, the
bus fault handler can find out if the fault was caused by data/instruction access or an interrupt stacking or

unstacking operation.

60

For precise bus faults, the offending instruction can be located by the stacked program counter,
and if the BFARVALID bit in BFSR is set, it is also possible to determine the memory location that
caused the bus fault. This is done by reading another NVIC register called the Bus Fault Address
register (BFAR). However, the same information is not available for imprecise bus faults because by the
time the processor receives the error, the processor could have already executed a number of other
instructions.

Table Bus Fault Status Register (OxEQQQED29)

Bits MName Type Reset Value Description

7 BRARVALID — 0 Indicates BRAR is valid

6:5 — — — —

e STKERR R 0 Stacking ermor

3 UNSTRERR R 0 Unstacking error

2 IMPRECISERR R 0 Imprecise data access violation
1 PRECISERR R 0 Precise data access viclation

0 IBUSERR R 0 Instruction access violation

Supervisor Call and Pendable Service Call:

Supervisor Call (SVC) and Pendable Service Call (PendSV) are two exceptions targeted at
software and operating systems. SVC is for generating system function calls. For example, instead of
allowing user programs to directly access hardware, an operating system may provide access to
hardware through an SVC. So when a user program wants to use certain hardware, it generates the SVC
exception using SVC instructions, and then the software exception handler in the operating system is
executed and provides the service the user application requested.

In this way, access to hardware is under the control of the OS, which can provide a more robust
system by preventing the user applications from directly accessing the hardware. SVC can also make
software more portable because the user application does not need to know the programming details of
the hardware. The user program will only need to know the application programming interface (API)
function ID and parameters; the actual hardware-level programming is handled by device drivers. SVC
exception is generated using the SVC instruction. An immediate value is required for this instruction,
which works as a parameter-passing method. The SVC exception handler can then extract the parameter
and determine what action it needs to perform.

For example,

SVC #0x3; Call SVC function 3
The traditional syntax for SVC is also acceptable (without the “#”):

SVC 0x3; Call SVC function 3

For C language development, the SVC instruction can be generated using __svc function (for
ARM Real View C Compiler or KEIL Microcontroller Development Kit for ARM), or using inline
assembly in other C compilers.

Privileged

Unprivileged Keml i Hardware

= ILC |

|

User —I"n, = ,

Davice)
rogram

prog sucf> API _l"l drivers > Paripherals

I

|

Operating system :

1

61

When the SVC handler is executed, you can determine the immediate data value in the SVC
instruction by reading the stacked program counter value, then reading the instruction from that address
and masking out the unneeded bits. If the system uses a Process Stack Pointer for user applications, you
might need to determine which stack was used first. This can be determined from the link register value
when the handler is entered.

Because of the interrupt priority model in the Cortex-M3, you cannot use SVC inside an SVC
handler (because the priority is the same as the current priority). Doing so will result in a usage fault. For
the same reason, you cannot use SVC in an NMI handler or a hard fault handler.

PendSV (Pendable Service Call) works with SVC in the OS. Although SVC (by SVC
instruction) cannot be pended (an application calling SVC will expect the required task to be done
immediately), PendSV can be pended and is useful for an OS to pend an exception so that an action can
be performed after other important tasks are completed. PendSV is generated by writing 1 to the
PENDSVSET bit in the NVIC Interrupt Control State register.

A typical use of PendSV is context switching (switching between tasks). For example, a system
might have two active tasks, and context switching can be triggered by the following:

* Calling an SVC function

® The system timer (SYSTICK) Let’s look at a simple example of having only two tasks in a system,
and a context switch is triggered by SYSTICK exceptions (see Figure). If an interrupt request takes
place before the SYSTICK exception, the SYSTICK exception will preempt the IRQ handler. In
this case, the OS should not carry out the context switching. Otherwise the

) Context Context Context
Priority switching switching switching

SVSTICK { T8

| | ! I

| I 1 L | | 1

| I I I I I]

IRC — I I I | [I I

| I | I 1 I |

i J | I 1 [|

[L |
Thread - \
Time -

FIGURE
A Simple Scenario Using SYSTICK to Switch between Two Tasks.

62

Uzage fault: retum 1o
Thread with active interrupt

) Gq:n-nte_xt
Priority switching Context switching
SYSTICK { 05) {03)
| i ; !
[} i i |
RO | R G
I I I
| " |
Thread Y TaskB)
\ Time / >
IR processing
delayead
FIGURE
Problem with Context Switching at the IRQ.
Priorty
7 SYSTICK (08)
SYSTICK = !
I b
e

ISR started ! s ISR continue
intermup - =
nterrupt SVC (0S) pend Context ';[9] ISA completed

PendSy switch in L Context switch

)
]
[2] PendSV i[5] Interrupt { InPendsv
SVC &] 1" occurred b
PendSV | . !
n I; B M ! 1[10]
¥ 1
TaskA | v TaskB | Task A
Thread 4 ‘(:J! {)
Time -
FIGURE

Example Context Switching with PendSy.

NESTED VECTORED INTERRUPT CONTROLLER AND INTERRUPT CONTROL.:

As we’ve seen, the Nested Vectored Interrupt Controller (NVIC)is an integrated part of the
Cortex™-M3 processor. It is closely linked to the Cortex-M3 CPU core logic. Its control registers are
accessible as memory-mapped devices. Besides control registers and control logic for interrupt
processing, the NVIC unit also contains control registers for the SYSTICK Timer, and debugging
controls. In this chapter, we’ll examine the control logic for interrupt processing. Memory Protection
Unit and debugging control logic are discussed in later chapters. The NVIC supports 1-240 external
interrupt inputs (commonly known as interrupt request [IRQs]). The exact number of supported
interrupts is determined by the chip manufacturers when they develop their Cortex-M3 chips. In
addition, the NVIC also has a Nonmaskable Interrupt (NMI) input. The actual function of the NMI is
also decided by the chip manufacturer. In some cases, this NMI cannot be controlled from an external
source. The NVIC can be accessed in the System Control Space (SCS) address range, which is memory
location OXEOOOEO000. Most of the interrupt control/status registers are accessible only in privileged
mode, except the Software Trigger Interrupt register (STIR), which can be set up to be accessible in user
mode. The interrupt control/status register can be accessed in word, half word, or byte transfers. In
addition, a few other interrupt-masking registers are also involved in the interrupts. They are the “special
registers” covered in Chapter 3 and are accessed through special registers access instructions: move

63

special register to general-purpose register (MRS) and move to special register from general-purpose
register (MSR) instructions.

64

The Basic Interrupt Configuration
Each external interrupt has several registers associated with it.

* Enable and Clear Enable registers

* Set-Pending and Clear-Pending registers

* Priority level

* Active status In addition, a number of other registers can also affect the interrupt processing:
* Exception-masking registers (PRIMASK, FAULTMASK, and BASEPRI)

* Vector Table Offset register

* STIR

* Priority group

Interrupt Enable and Clear Enable:

The Interrupt Enable register is programmed through two addresses. To set the enable bit, you
need to write to the SETENA register address; to clear the enable bit, you need to write to the CLRENA
register address. In this way, enabling or disabling an interrupt will not affect other interrupt enable
states. The SETENA/CLRENA registers are 32 bits wide; each bit represents one interrupt input. As
there could be more than 32 external interrupts in the Cortex-M3 processor, you might find more than
one SETENA and CLRENA register