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UNIT-I 

ARM Cortex-M3 processor 

 

The ARM Cortex-M3 processor, the first of the Cortex generation of proces sors 

released by ARM in 2006, was primarily designed to target the 32-bit microcontroller market. 

The Cortex-M3 processor provides excellent performance at low gate count and comes with 

many new features previously available only in high-end processors. 

Applications: 

i) Low-cost microcontrollers: 

The cortex M3 processor is ideally suited for low-cost micro controllers, which are commonly used in 

consumer products. Low power, high performance, ease-of-use are the advantages. 

ii) Automotive: 

The cortex M3 has high performance efficiency and low interrupts latency, allowing to be used in real 

time systems. 

iii) Data communication: 

The processor‘s low power and high efficiency, coupled with Thumb-2 instructions, make cortex M3 
ideal for many communication applications. (Bluetooth, Zigbee) 

iv) Industrial control: 

In industrial control applications simplicity, fast response and reliability are key factors. Cortex M3 has 
low interrupt latency so is best suited. 

v) Consumer products: 

The cortex M3 is a small processor and is highly efficient and low in power and supports an MPU 

enabling complex software to execute while providing robust memory protection.

 
A Simplified View of the Cortex-M3 
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Programming model: 

REGISTERS 

The Cortex-M3 processor has registers R0 through R15. R13 (the stack poin ter) is  banked, 

with only one copy of the R13 visible at a time. 

 

R0–R12: General-Purpose Registers 

R0–R12 are 32-bit general-purpose registers for data operations. Some 16-bit Thumb 

instructions can only access a subset of these registers (low register, R0–R7). 

 

R13: Stack Pointers 

The Cortex-M3 contains two stack pointers (R13). They are banked so that only one is visible at a time.  

The two stack pointers are as follows: 

•   Main Stack Pointer (MSP): 

 The default stack pointer, used by the operating system (OS) kernel and exception 

handlers 

•   Process Stack Pointer (PSP): Used by user application code the lowest 2 bits of the 

stack pointers are always 0, which means they are always word aligned. 

 

R14: The Link Register 

When a subroutine is called, the return address is stored in the link register. 

R15: The Program Counter The program counter is the current program address. This register 

can be written to control the program flow. 

 

Special Registers 

The Cortex-M3 processor also has a number of special registers.They are as follows: 

Program Status registers (PSRs) 

• Interrupt Mask registers (PRIMASK, FAULTMASK, and BASEPRI) 

• Control register (CONTROL) 

• These registers have special functions and can be accessed only by special instructions. 

They cannot be used for normal data processing. 

 

Special Registers in the Cortex-M3 
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Registers in the Cortex-M3 

 

 

 
Special Registers and Their Functions 

 
OPERATION MODES  
 

The Cortex-M3 processor has two modes and two privilege levels. The operation modes 

(thread mode and handler mode) determine whether the processor is running a normal program 

or running an exception handler like an interrupt handler or system exception handler (see 

Figure 2.4). The privilege levels (privileged level and user level) provide a mechanism for 

safeguarding memory accesses to critical regions as well as providing a basic security model.  

When the processor is running a main program (thread mode), it can be either in a 

privileged state or a user state, but exception handlers can only be in a privileged state. When 

the processor exits reset, it is in thread mode, with privileged access rights. In the privileged 

state, a program has access to all memory ranges (except when prohibited by MPU settings) 

and can use all supported instructions. Software in the privileged access level can switch the 

program into the user access level using the control register.  
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When an exception takes place, the processor will always switch back to the privileged  

state and return to the previous state when exiting the exception handler. A user program 

cannot change back to the privileged state by writing to the control register (see Figure 2.5). It 

has to go through an exception handler that programs the control register to switch the 

processor back into the privileged  access level when returning to thread mode.  

The separation of privilege and user levels improves system reliability by preventing 

system configuration registers from being accessed or changed by some untrusted programs. If 

an MPU is available, it can be used in conjunction with privilege levels to protect critical 

memory locations, such as programs and data for OSs. For example, with privileged accesses, 

usually used by the OS kernel, all memory locations can be accessed (unless prohibited by 

MPU setup). When the OS launches a user application, it is likely to be executed in the user 

access level to protect the system from failing due to a crash of untrusted user programs. 

 

 

 

 
 

Operation Modes and Privilege Levels in Cortex-M3 

 

 

 
 

Allowed Operation Mode Transitions 

 

INTERRUPTS AND EXCEPTIONS  
The Cortex-M3 processor implements a new exception model, introduced in the ARMv7-

M architecture. This exception model differs from the traditional ARM exception model, 

enabling very efficient exception handling. It has a number of system exceptions plus a number 

of external Interrupt Request  (IRQs) (external interrupt inputs). There is no fast interrupt (FIQ) 

(fast interrupt in ARM7/ARM9/ ARM10/ARM11) in the Cortex-M3; however, interrupt priority 

handling and nested interrupt support are now included in the interrupt architecture. Therefore, 

it is easy to set up a system that supports nested interrupts (a higher-priority interrupt can 

override or preempt a lower-priority interrupt handler) and that behaves just like the FIQ in 

traditional ARM processors. The interrupt features in the Cortex-M3 are implemented in the 
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NVIC. Aside from supporting external interrupts, the Cortex-M3 also supports a number of 

internal exception sources, such as system fault handling. As a result, the Cortex-M3 has a 

number of predefined exception types, as shown in Table 2.2. 
 
 

Low Power and High Energy Efficiency  
 

The Cortex-M3 processor is designed with various features to allow designers to 

develop low power  and high energy efficient products. First, it has sleep mode and deep sleep 

mode supports, which can  work with various system-design methodologies to reduce power 

consumption during idle period.Second, its low gate count and design techniques reduce circuit 

activities in the processor to allow  active power to be reduced. In addition, since Cortex-M3 

has high code density, it has lowered the    program size requirement.  

At the same time, it allows processing tasks to be completed in a short time,  so that 

the processor can return to sleep modes as soon as possible to cut down energy use. As a 

result,  the energy efficiency of Cortex-M3 is better than many 8-bit or 16-bit microcontrollers.  

Starting from Cortex-M3 revision 2, a new feature called Wakeup Interrupt Controller 

(WIC) is available. This feature allows the whole processor core to be powered down, while 

processor states are retained and the processor can be returned to active state almost 

immediately when an interrupt takes place. This makes the Cortex-M3 even more suitable for 

many ultra-low power applications that previously could only be implemented with 8-bit or 16-

bit microcontrollers. 
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Reset Sequence Instruction Set 
 

The Cortex-M3 supports the Thumb-2 instruction set. This is one of the most important 

features of the Cortex-M3 processor because it allows 32-bit instructions and 16-bit 

instructions to be used together for high code density and high efficiency. It is flexible and 

powerful yet easy to use. In previous ARM processors, the central processing unit (CPU) had 

two operation states: a 32-bit ARM state and a 16-bit Thumb state. 

 In the ARM state, the instructions are 32 bits and can execute all supported 

instructions with very high performance. In the Thumb state, the instructions are 16 bits, so 

there is a much higher instruction code density, but the Thumb state does not have all the 

functionality of ARM instructions and may require more instructions to complete certain types 

of operations. To get the best of both worlds, many applications have mixed ARM and 

Thumb codes. However, the mixed-code arrangement does not always work best. There is 

overhead (in terms of execution time and instruction space, see Figure 2.7) to switch between 

the states, and ARM and Thumb codes might need to be compiled separately in different 

files.  

This increases the complexity of software development and reduces maximum efficiency 

of the CPU core. With the introduction of the Thumb-2 instruction set, it is now possible to 

handle all processing requirements in one operation state. There is no need to switch between 

the two. In fact, the Cortex-M3 does not support the ARM code. Even interrupts are now 

handled with the Thumb state.  (Previously, the ARM core entered interrupt handlers in the 

ARM state.) Since there is no need to switch between states, the Cortex-M3 processor has a 

number of advantages over traditional ARM processors, such as: 

 No state switching overhead, saving both execution time and instruction space 

 No need to separate ARM code and Thumb code source files, making software 

development andmaintenance easier  

It‘s easier to get the best efficiency and performance, in turn making it easier to write 

software,  

Because there is no need to worry about switching code between ARM and Thumb to try to 

get the best density/performance 

 

 
Switching between ARM Code and Thumb Code in Traditional ARM Processors Such as the 

ARM7 

 

The Cortex-M3 processor has a number of interesting and powerful instructions. Here are a 

few examples: 

 UFBX, BFI, and BFC: Bit field extract, insert, and clear instructions •  UDIV and SDIV: 

Unsigned and signed divide instructions 

  WFE, WFI, and SEV:  Wait-For-Event,  Wait-For-Interrupts,  and  Send-Event;  these  

allow  the  processor to enter sleep mode and to handle task synchronization on 
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multiprocessor systems  

 MSR and MRS: Move to special register from general-purpose register and move 

special register to general-purpose register; for access to the special registers 

 

 

 

Since the Cortex-M3 processor supports the Thumb-2 instruction set only, existing 

program code for ARM needs to be ported to the new architecture. Most C applications 

simply need to be recompiled using new compilers that support the Cortex-M3. Some 

assembler codes need modification and porting to use the new architecture and the new 

unified assembler framework. 

 

Note that not all the instructions in the Thumb-2 instruction set are implemented on the 

Cortex-M3.  The ARMv7-M Architecture Application Level Reference Manual only requires a 

subset of the Thumb-2 instructions to be implemented. For example, coprocessor instructions 

are not supported on the Cortex-M3 (external data processing engines can be added), and 

Single Instruction–Multiple Data (SIMD) is not implemented on the Cortex-M3. In addition, a 

few Thumb instructions are not supported,  such as Branch with Link and Exchange (BLX) 

with immediate (used to switch processor state from  Thumb to ARM), a couple of change 

process state (CPS) instructions, and the SETEND (Set Endian) instructions, which were 

introduced in architecture v6. 

 

Assembler Language: Unified Assembler Language 

 

To support and get the best out of the Thumb®-2 instruction set, the Unified Assembler 

Language  (UAL) was developed to allow selection of 16-bit and 32-bit instructions and to 

make it easier to port  applications between ARM code and Thumb code by using the same 

syntax for both. (With UAL, the syntax of Thumb instructions is now the same as for ARM 

instructions.) 

 

 
 

The traditional Thumb syntax can still be used. The choice between whether the instructions 

are interpreted as traditional Thumb code or the new UAL syntax is normally defined by the 

directive in the assembly file. For example, with ARM assembler tool, a program code header 

with ―CODE16‖ directive implies the code is in the traditional Thumb syntax, and ―THUMB‖ 

directive implies the code is in the new UAL syntax. 

 

One thing you need to be careful with reusing traditional Thumb is that some instructions 

change the flags in APSR, even if the S suffix is not used. However, when the UAL syntax 

is used, whether the instruction changes the flag depends on the S suffix. For example, 

 
 

With the new instructions in Thumb-2 technology, some of the operations can be handled by 

either a Thumb instruction or a Thumb-2 instruction. For example, R0 = R0 + 1 can be 

implemented as a 16-bit Thumb instruction or a 32-bit Thumb-2 instruction. With UAL, you 

can specify which instruction you want by adding suffixes: 

 

 



 

10 
 

The .W (wide) suffix specifies a 32-bit instruction. If no suffix is given, the assembler tool 

can choose either instruction but usually defaults to 16-bit Thumb code to get a smaller size. 

Depending on tool support, you may also use the .N (narrow) suffix to specify a 16-bit 

Thumb instruction. Again, this syntax is for ARM assembler tools. Other assemblers might 

have slightly different syntax.  If no suffix is given, the assembler might choose the 

instruction for you, with the minimum code size. 

 

 

 

 

 

 

 

 

In most cases, applications will be coded in C, and the C compilers will use 16-bit 

instructions if possible due to smaller code size. However, when the immediate data exceed a 

certain range or when the operation can be better handled with a 32-bit Thumb-2 instruction, 

the 32-bit instruction will be used. 

 

The 32-bit Thumb-2 instructions can be half word aligned. For example, you can have a 32-

bit instruction located in a half word location.  

 

 
Most of the 16-bit instructions can only access registers R0–R7; 32-bit Thumb-2 

instructions do not  have this limitation. However, use of PC (R15) might not be allowed in 

some of the instructions. Refer  to the ARM v7-M Architecture Application Level Reference 

Manual  

 
MEMORY MAPS 

 

The Cortex-M3 processor has a fixed memory map (see Figure 5.1). This makes it easier to 

port software from one Cortex-M3 product to another. For example, components described in 

previous sections, such as Nested Vectored Interrupt Controller (NVIC) and Memory 

Protection Unit (MPU), have the same memory locations in all Cortex-M3 products. 

Nevertheless, the memory map definition allows great flexibility so that manufacturers can 

differentiate their Cortex-M3-based product from others. 

Some of the memory locations are allocated for private peripherals such as debugging 

components.  They are located in the private peripheral memory region. These debugging 

components include the following: 

 

Fetch Patch and Breakpoint Unit (FPB) 

Data Watchpoint and Trace Unit (DWT) 

Instrumentation Trace Macrocell (ITM) 

Embedded Trace Macrocell (ETM) 

Trace Port Interface Unit (TPIU) 

ROM table 

 

The details of these components are discussed in later chapters on debugging features. 

The Cortex-M3 processor has a total of 4 GB of address space. Program code can be located 

in the code region, the Static Random Access Memory (SRAM) region, or the external RAM 

region. However, it is best to put the program code in the code region because with this 

arrangement, the instruction fetches and data accesses are carried out simultaneously on two 
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separate bus interfaces. The SRAM memory range is for connecting internal SRAM. Access to 

this region is carried out via the system interface bus.  

In this region, a 32-MB range is defined as a bit-band alias. Within the 32-bit-band alias 

memory range, each word address represents a single bit in the 1-MB bit-band region. A data 

write access to this bit-band alias memory range will be converted to an atomic READ 

MODIFY-WRITE operation to the bit-band region so as to allow a program to set or clear 

individual data bits in the memory. The bit-band operation applies only to data accesses not 

instruction fetches.  By putting Boolean information (single bits) in the bit-band region, we 

can pack multiple Boolean data in a single word while still allowing them to be accessible 

individually via bit-band alias, thus saving memory space without the need for handling 

READ-MODIFY-WRITE in software. More details on bit-band alias can be found later in 

this chapter. Another 0.5-GB block of address range is allocated to on-chip peripherals.  

 

 

 

 
Cortex-M3 Predefined Memory Map 

 

 

 

Similar to the SRAM region, this region supports bit-band alias and is accessed via the 

system bus interface. However, instruction execution in this region is not allowed. The bit-

band support in the peripheral region makes it easy to access or change control and status 
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bits of peripherals, making it easier to program peripheral control. Two slots of 1-GB 

memory space are allocated for external RAM and external devices. The difference between 

the two is that program execution in the external device region is not allowed, and there are 

some differences with the caching behaviors. The last 0.5-GB memory is for the system-level 

components, internal peripheral buses, external peripheral bus, and vendor-specific system 

peripherals. There are two segments of the private peripheral bus (PPB): 

 

Advanced High-Performance Bus (AHB) PPB, for Cortex-M3 internal AHB peripherals 

only; this includes NVIC, FPB, DWT, and ITM  

 Advance Peripheral Bus (APB) PPB, for Cortex-M3 internal APB devices as well as 

external peripherals (external to the Cortex-M3 processor); the Cortex-M3 allows chip 

vendors to add additional on-chip APB peripherals on this private peripheral bus via an 

APB interface 

 

 

 

 

 

 

 

The NVIC is located in a memory region called the system control space (SCS) (see 

Figure 5.2).  Besides providing interrupt control features, this region also provides the control 

registers for SYSTICK, MPU, and code debugging control. The remaining unused vendor-

specific memory range can be accessed via the system bus interface.  However, instruction 

execution in this region is not allowed. The Cortex-M3 processor also comes with an optional 

MPU. Chip manufacturers can decide whether to include the MPU in their products The 

System Control Space.  

 
  

What we have shown in the memory map is merely a template; individual 

semiconductor vendors provide detailed memory maps including the actual location and size of 

ROM, RAM, and peripheral  memory locations. 

 

 

MEMORY ACCESS ATTRIBUTES  

 

The memory map shows what is included in each memory region. Aside from decoding 

which memory block or device is accessed, the memory map also defines the memory 

attributes of the access. The memory attributes you can find in the Cortex-M3 processor 

include the following: 

 Bufferable: Write to memory can be carried out by a write buffer while the processor 

continues on next instruction execution. 

 Cacheable: Data obtained from memory read can be copied to a memory cache so 

that next time it is accessed the value can be obtained from the cache to speed up 

the program execution. 

 Executable: The processor can fetch and execute program code from this memory 

region. 
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 Sharable: Data in this memory region could be shared by multiple bus masters. 

Memory system needs to ensure coherency of data between different bus masters in 

shareable memory region. 

 
The Cortex-M3 bus interfaces output the memory access attributes information to the 

memory system for each instruction and data transfer. The default memory attribute settings 

can be overridden if MPU is present and the MPU region configurations are programmed 

differently from the default.  Though the Cortex-M3 processor does not have a cache memory 

or cache controller, a cache unit can be added on the microcontroller which can use the 

memory attribute information to define the memory access behaviors. In addition, the cache 

attributes might also affect the operation of memory controllers for on-chip memory and off-

chip memory, depending on the memory controllers used by the chip manufacturers. 
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The memory access attributes for each memory region are as follows: 

• Code memory region (0x00000000–0x1FFFFFFF):  This region is executable, and the cache 

attributes iswrite through (WT). You can put data memory in this region as well. If data 

operations are carried out for this region, they will take place via the data bus interface. 

Write transfers to this region are bufferable. 

 SRAM memory region (0x20000000–0x3FFFFFFF): This region is intended for on-chip 

RAM.  Write transfers to this region are bufferable, and the cache attribute is write 

back, write allocated (WB-WA). This region is executable, so you can copy program 

code here and execute it. 

 Peripheral region (0x40000000–0x5FFFFFFF):  This  region  is  intended  for  

peripherals.  The accesses are noncacheable. You cannot execute instruction code in 

this region (Execute Never, or XN in ARM documentation, such as the Cortex-M3 

TRM).  

 External RAM region (0x60000000–0x7FFFFFFF): This region is intended for either on-

chip or off-chip memory. The accesses are cacheable (WB-WA), and you can execute 

code in this region. 

 External RAM region (0x80000000–0x9FFFFFFF): This region is intended for either on-

chip or off-chip memory. The accesses are cacheable (WT), and you can execute code 

in this region.  

 External devices (0xA0000000–0xBFFFFFFF): This region is intended for external 

devices and/or shared memory that needs ordering/nonbuffered accesses. It is also a 

nonexecutable region. 

 External devices (0xC0000000–0xDFFFFFFF): This region is intended for external 

devices and/or shared memory that needs ordering/nonbuffered accesses. It is also a 

nonexecutable region. 

 System region (0xE0000000–0xFFFFFFFF): This region is for private peripherals and 

vendor-specific devices. It is nonexecutable. For the PPB memory range, the accesses 

are strongly ordered (noncacheable, nonbufferable). For the vendor-specific memory 

region, the accesses are bufferable and noncacheable. 

 

Note that the Cortex-M3, the code region memory attribute export to external memory system 

is hardwired to cacheable and nonbufferable. This cannot be overridden by MPU 

configuration. This update only affects the memory system outside the processor (e.g., level 2 

cache and certain types of memory controllers with cache features). Within the processor, the 

internal write buffer can still be used for write transfers accessing the code region. 

 

DEFAULT MEMORY ACCESS PERMISSIONS  

The Cortex-M3 memory map has a default configuration for memory access permissions. 

This prevents user  programs (non-privileged) from accessing system control memory spaces 

such as the NVIC. The default  memory access permission is used when either no MPU is 

present or MPU is present but disabled. If MPU is present and enabled, the access permission 

in the MPU setup will determine whether user  accesses are allowed. 

The default memory access permissions are shown in Table. 
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BIT-BAND OPERATIONS 
 

 Bit-band operation support allows a single load/store operation to access (read/write) to 

a single data bit. In the Cortex-M3, this is supported in two predefined memory regions 

called bit-band regions. One of them is located in the first 1 MB of the SRAM region, and 

the other is located in the first 1 MB of the peripheral region. These two memory regions 

can be accessed like normal memory, but they can also be accessed via a separate memory 

region called the bit-band alias (see Figure 5.3). When the bit-band alias address is used, 

each individual bit can be accessed separately in the least significant bit (LSB) of each word-

aligned address. 

For example, to set bit 2 in word data in address 0x20000000, instead of using three 

instructions  to read the data, set the bit, and then write back the result, this task can be 

carried out by a single  instruction (see Figure 5.4). The assembler sequence for these two 

cases could be like the one shown in Figure 5.5. 

Similarly, bit-band support can simplify application code if we need to read a bit in a 

memory location. For example, if we need to determine bit 2 of address 0x20000000, we use 

the steps outlined in Figure 5.6. The assembler sequence for these two cases could be like 

the one shown in Figure 5.7. Bit-band operation is not a new idea; in fact, a similar feature 

has existed for more than 30 years on 8-bit microcontrollers such as the 8051. Although the 

Cortex-M3 does not have special instructions for bit operation, special memory regions are 

defined so that data accesses to these regions are automatically converted into bit-band 

operations. 

Note that the Cortex-M3 uses the following terms for the bit-band memory addresses: 

• Bit-band region: This is a memory address region that supports bit-band operation. 

 • Bit-band alias: Access to the bit-band alias will cause an access (a bit-band operation) to 

the bit-band region. (Note: A memory remapping is performed. 
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Bit Accesses to Bit-Band Region via the Bit-Band Alias. 

 

 

 

 

 

 
Write to Bit-Band Alias 
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 Example Assembler Sequence to Write a Bit with and without Bit-Band 
 

Within the bit-band region, each word is represented by an LSB of 32 words in the 

bit-band alias address range. What actually happens is that when the bit-band alias address is 

accessed, the address is remapped into a bit-band address. For read operations, the word is 

read and the chosen bit location is shifted to the LSB of the read return data. For write 

operations, the written bit data are shifted to the required bit position, and a READ-

MODIFY-WRITE is performed. 

 

 
Read from the Bit-Band Alias. 

 

 
Read from the Bit-Band Alias 

 

 
 

 

There are two regions of memory for bit-band operations: 

0x20000000–0x200FFFFF (SRAM, 1 MB) 

 0x40000000–0x400FFFFF (peripherals, 1 MB) 

 

For the SRAM memory region, the remapping of the bit-band alias is shown in Table 5.2. 

Similarly, the bit-band region of the peripheral memory region can be accessed via bit-band 

aliased addresses, as shown in Table 5.3. 
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Advantages of Bit-Band Operations  

 

So, what are the uses of bit-band operations? We can use them to, for example, 

implement serial data transfers in general-purpose input/output (GPIO) ports to serial devices. 

The application code can be implemented easily because access to serial data and clock 

signals can be separated.Bit-band operation can also be used to simplify branch decisions. For 

example, if a branch should be carried out based on 1 single bit in a status register in a 

peripheral, instead of 

 

 Reading the whole register    

 Masking the unwanted bits  

 Comparing and branching 

 Reading the status bit via the bit-band alias (get 0 or 1) 

 Comparing and branching 

 

Besides providing faster bit operations with fewer instructions, the bit-band feature in 

the Cortex-M3 is also essential for situations in which resources are being shared by more 

than one process. One of the most important advantages or properties of a bit-band operation 

is that it is atomic. In other words, the READ-MODIFY-WRITE sequence cannot be 

interrupted by other bus activities. Without this behavior in, for example, using a software 

READ-MODIFY-WRITE sequence, the following problem can occur: consider a simple output 

port with bit 0 used by a main program and bit 1 used by an interrupt handler. A software-

based READ-MODIFY-WRITE operation can cause data conflicts, as shown in Figure. 

With the Cortex-M3 bit-band feature, this kind of race condition can be avoided 

because the READMODIFY-WRITE is carried out at the hardware level and is atomic (the 

two transfers cannot be pulled apart) and interrupts cannot take place between them (see 

Figure 5.9). Similar issues can be found in multitasking systems. For example, if bit 0 of the 

output port is used by Process A and bit 1 is used by Process B, a data conflict can occur in 

software-based READMODIFY-WRITE. 
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Data Are Lost When an Exception Handler Modifies a Shared Memory Location 

 

 
Data Loss Prevention with Locked Transfers Using the Bit-Band Feature 
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Data Are Lost When a Different Task Modifies a Shared Memory Location 

 

 
Data Loss Prevention with Locked Transfers Using the Bit-Band Feature 

 

Again, the bit-band feature can ensure that bit accesses from each task are separated so 

that no data  conflicts occur (see Figure 5.11). Besides I/O functions, the bit-band feature can 

be used for storing and handling Boolean data in the  SRAM region. For example, multiple 

Boolean variables can be packed into one single memory location  to save memory space, 

whereas the access to each bit is still completely separated when the access is  carried out via 

the bit-band alias address range. For system-on-chip (SoC) designers designing a bit-band-

capable device, the device‘s memory  address should be located within the bit-band memory, 

and the lock (HMASTLOCK) signal from the  AHB interface must be checked to make sure 

that writable register contents will not be changed except  by the bus when a locked transfer 

is carried out. 

 

Bit-Band Operation of Different Data Sizes 

 

 Bit-band operation is not limited to word transfers. It can be carried out as byte 

transfers or half word transfers as well. For example, when a byte access instruction 
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(LDRB/STRB) is used to access a bit-band alias address range, the accesses generated to the 

bit-band region will be in byte size. The same applies to half word transfers (LDRH/STRH). 

When you use nonword transfers to bit-band alias addresses, the address value should still be 

word aligned 

 

 

UNALIGNED AND EXCLUSIVE TRANSFERS 
 

Unaligned Transfers 

 

 The Cortex-M3 supports unaligned transfers on single accesses. Data memory accesses 

can be defined as aligned or unaligned. Traditionally, ARM processors (such as the 

RM7/ARM9/ARM10) allow only aligned transfers. That means in accessing memory, a word 

transfer must have address bit [1] and bit [0] equal to 0, and a half word transfer must have 

address bit[0] equal to 0. For example, word data can be located at 0x1000 or 0x1004, but it 

cannot be located in 0x1001, 0x1002, or 0x1003. For half word data, the address can be 

0x1000 or 0x1002, but it cannot be 0x1001. So, what does an unaligned transfer look like? 

Figures 5.12 through 5.16 shows some examples.  Assuming that the memory infrastructure is 

32-bit (4 bytes) wide, an unaligned transfer can be any word size read/write such that the 

address is not a multiple of 4, as shown in Figures 5.12–5.14, or when the transfer is in half 

word size, and the address is not a multiple of 2, as shown in Figures 5.15 and 5.16. All the 

byte-size transfers are aligned on the Cortex-M3 because the minimum address step is 1 byte. 

 

 
In the Cortex-M3, unaligned transfers are supported in normal memory accesses (such as LDR,  

LDRH, STR, and STRH instructions). There are a number of limitations: 
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. Unaligned transfers are not supported in Load/Store multiple instructions. 

•  Stack operations (PUSH/POP) must be aligned. 

•  Exclusive accesses (such as LDREX or STREX) must be aligned; otherwise, a fault 

exception (usage fault) will be triggered.  

. Unaligned transfers are not supported in bit-band operations. Results will be unpredictable 

if you attempt to do so. 

 

When unaligned transfers are used, they are actually converted into multiple aligned 

transfers by the processor‘s bus interface unit. This conversion is transparent, so application 

programmers do not have to worry about it. However, when an unaligned transfer takes place, 

it is broken into separate transfers, and as a result, it takes more clock cycles for a single data 

access and might not be good for situations in which high performance is required. To get the 

best performance, it‘s worth making sure that data are aligned properly. 

It is also possible to set up the NVIC so that an exception is triggered when an 

unaligned transfer takes place. This is done by setting the UNALIGN_TRP (unaligned trap) bit 

in the configuration control register in the NVIC (0xE000ED14). In this way, the Cortex-M3 

generates usage fault exceptions when unaligned transfers take place. This is useful during 

software development to test whether an application produces unaligned transfers. 

 

 

 

 

 

 

 

EXCLUSIVE ACCESSES 
 

 You might have noticed that the Cortex-M3 has no SWP instruction (swap), which was 

used for semaphore operations in traditional ARM processors like ARM7TDMI. This is now 

being replaced by exclusive access operations. Exclusive accesses were first supported in 

architecture v6 (for example, in the ARM1136). Semaphores are commonly used for allocating 

shared resources to applications. When a shared  resource  can  only  service  one  client  or  

application  processor,  we  also  call  it  Mutual  Exclusion  (MUTEX). In such cases, when a 

resource is being used by one process, it is locked to that process and cannot serve another 

process until the lock is released. To set up a MUTEX semaphore, a memory location is 

defined as the lock flag to indicate whether a shared resource is locked by a process. When  a 

process or application wants to use the resource, it needs to check whether the resource has 

been  locked first. If it is not being used, it can set the lock flag to indicate that the resource 

is now locked. In traditional ARM processors, the access to the lock flag is carried out by the 

SWP instruction. It allows the lock flag read and write to be atomic, preventing the resource 

from being locked by two processes  at the same time. 

In newer ARM processors, the read/write access can be carried out on separated buses. 

In such situations, the SWP instructions can no longer be used to make the memory access 

atomic because the read and write in a locked transfer sequence must be on the same bus. 

Therefore, the locked transfers are replaced by exclusive accesses. The concept of exclusive 

access operation is quite simple but different from SWP; it allows the possibility that the 

memory location for a semaphore could be accessed by another bus master or another process 

running on the same processor. 
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To allow exclusive access to work properly in a multiple processor environment, an 

additional hardware called ―exclusive access monitor‖ is required. This monitor checks the 

transfers toward shared address locations and replies to the processor if an exclusive access is 

success. The processor bus interface also provides additional control signals1 to this monitor to 

indicate if the transfer is an    exclusive access.  

If the memory device has been accessed by another bus master between the exclusive 

read and the exclusive write, the exclusive access monitor will flag an exclusive failed through 

the bus system when  the processor attempts the exclusive write. This will cause the return 

status of the exclusive write to  be 1. In the case of failed exclusive write, the exclusive access 

monitor also blocks the write transfer  from getting to the exclusive access address. 

Exclusive access instructions in the Cortex-M3 include LDREX (word), LDREXB (byte), 

LDREXH  (half word), STREX (word), STREXB (byte), and STREXH (half word). A simple 

example of the syntax is as follows: 

 

LDREX <Rxf>, [Rn, #offset] 

STREX <Rd>, <Rxf>,[Rn, #offset] 

 

 

 

Where Rd is the return status of the exclusive write (0 = success and 1 = failure).  

Example code for exclusive accesses can be found in Chapter 10. You can also access 

exclusive access instructions in C using intrinsic functions provided in Cortex Microcontroller 

Software Interface Standard (CMSIS) compliant device driver libraries from microcontroller 

vendors: __LDREX, __LEDEXH, __LDREXB, __STREX, __STREXH, __STREXB. More details 

of these functions are  covered in Appendix G.  

When exclusive accesses are used, the internal write buffers in the Cortex-M3 bus 

interface will be bypassed, even when the MPU defines the region as bufferable. This ensures 

that semaphore information on the physical memory is always up to date and coherent between 

bus masters. SoC designers using Cortex-M3 on multiprocessor systems should ensure that the 

memory system enforces data coherency when exclusive transfers occur. 

 

PIPELINE  

 

The Cortex-M3 processor has a three-stage pipeline. The pipeline stages are instruction 

fetches, instruction decode, and instruction execution (see Figure 6.1). Some people might argue 

that there are four stages because of the pipeline behavior in the bus interface when it accesses 
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memory, but this stage is outside the processor, so the processor itself still  has only three 

stages. 

When running programs with mostly 16-bit instructions, you will find that the processor 

might not fetch instructions in every cycle. This is because the processor fetches up to two 

instructions (32-bit)  in one go, so after one instruction is fetched, the next one is already 

inside the processor. In this case, the processor bus interface may try to fetch the instruction 

after the next or, if the buffer is full, the bus interface could be idle. Some of the instructions 

take multiple cycles to execute; in this case, the pipeline will be stalled. 

In executing a branch instruction, the pipeline will be flushed. The processor will have 

to fetch instructions from the branch destination to fill up the pipeline again. However, the 

Cortex-M3 processor supports a number of instructions in v7-M architecture, so some of the 

short-distance branches can be avoided by replacing them with conditional execution codes. 

 

 

 
 

The Three-Stage Pipeline in the Cortex-M3. 

 

 
Use of a Buffer in the Instruction Fetch Unit to Improve 32-Bit Instruction Handling 

 

 

Because of the pipeline nature of the processor and to ensure that the program is 

compatible with Thumb® codes, the read value will be the address of the instruction plus 4, 

when the program counter is read during instruction execution. If the program counter is used 

for address generation for memory accesses, the word aligned value of the instruction address 

plus 4 would be used. This offset is constant, independent of the combination of 16-bit Thumb 

instructions and 32-bit Thumb-2 instructions. This ensures consistency between Thumb and 

Thumb-2. 

 

Inside the instruction prefetch unit of the processor core, there is also an instruction 
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buffer (see Figure 6.2). This buffer allows additional instructions to be queued before they are 

needed. This buffer prevents the pipeline being stalled when the instruction sequence contains 

32-bit Thumb-2 instructions that are not word aligned. However, this buffer does not add an 

extra stage to the pipeline, so it does not increase the branch penalty. 

 

BUS INTERFACES ON THE CORTEX-M3 

 

Unless you are designing an SoC product using the Cortex-M3 processor, it is unlikely 

that you can  directly access the bus interface signals described here. Normally, the chip 

manufacturer will hook up  all the bus signals to memory blocks and peripherals, and in a few 

cases, you might find that the chip  manufacturer connected the bus to a bus bridge and allows 

external bus systems to be connected offchip. The bus interfaces on the Cortex-M3 processor 

are based on AHB-Lite and APB protocols. 

 

The I-Code Bus  
 

The I-Code bus is a 32-bit bus based on the AHB-Lite bus protocol for instruction 

fetches in memory regions from 0x00000000 to 0x1FFFFFFF. Instruction fetches are performed 

in word size, even for 16-bit Thumb instructions. Therefore, during execution, the CPU core 

could fetch up to two Thumb instructions at a time. 

 

The D-Code Bus  
 

The D-Code bus is a 32-bit bus based on the AHB-Lite bus protocol; it is used for 

data access in    memory regions from 0x00000000 to 0x1FFFFFFF. Although the Cortex-M3 

processor supports unaligned transfers, you won‘t get any unaligned transfer on this bus, 

because the bus interface on the processor core converts the unaligned transfers into aligned 

transfers for you. Therefore, devices (such as memory) that attach to this bus need only support 

AHB-Lite (AMBA 2.0) aligned transfers. 

 

The System Bus  
 

The system bus is a 32-bit bus based on the AHB-Lite bus protocol; it is used for 

instruction fetch and data access in memory regions from 0x20000000 to 0xDFFFFFFF and 

0xE0100000 to 0xFFFFFFFF.  Similar to the D-Code bus, all the transfers on the system bus 

are aligned. 

 

The External PPB  
 

The External PPB is a 32-bit bus based on the APB bus protocol. This is intended for 

private peripheral accesses in memory regions 0xE0040000 to 0xE00FFFFF. However, since 

some part of this APB memory is already used for TPIU, ETM, and the ROM table, the 

memory region that can be used for attaching extra peripherals on this bus is only 0xE0042000 

to 0xE00FF000. Transfers on this bus are word aligned. 

 

The DAP Bus  
 

The DAP bus interface is a 32-bit bus based on an enhanced version of the APB 

specification. This is for attaching debug interface blocks such as SWJ-DP or SW-DP. Do not 

use this bus for other purposes.  More information on this interface can be found in Chapter 

15, or in the ARM document CoreSight Technology System Design Guide. 
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UNIT – II 

EXCEPTIONS AND INTERRUPTS 
 

          

        This chapter describes the interrupt and exception- handling mechanism when operating 

in protected mode on an Intel 64 or IA- 32 processor. Most of the information provided here 

also applies to interrupt and exception mechanisms used in real- address, virtual- 8086 mode, 

and 64- bit mode. 

 

OVERVIEW OF INTERRUPT AND EXCEPTION: 

            Interrupts and exceptions are events that indicate that a condition exists somewhere in 

the system, the processor, or within the currently executing program or task that requires the 

attention of a processor. They typically result in a forced transfer of execution from the 

currently running program or task to a special software routine or task called an interrupt 

handler or an exception handler. The action taken by a processor in response to an interrupt or 

exception is referred to as servicing or handling the interrupt or exception. 

        Interrupts occur at random times during the execution of a program, in response to signals 

from hardware. System hardware uses interrupts to handle events external to the processor, 

such as requests to service peripheral devices. Software can also generate interrupts by 

executing the INT n instruction. 

           Exceptions occur when the processor detects an error condition while executing an 

instruction, such as division by zero. The processor detects a variety of error conditions 

including protection violations, page faults, and internal machine faults. The machine- checks 

architecture of the Pentium 4, Intel Xeon, P6 family, and Pentium processors also permits a 

machine- check exception to be generated when internal hardware errors and bus errors are 

detected. 

          When an interrupt is received or an exception is detected, the currently running 

procedure or task is suspended while the processor executes an interrupt or exception 

handler. When execution of the handler is complete, the processor resumes execution of the 

interrupted procedure or task. The resumption of the interrupted procedure or task happens 

without loss of program continuity, unless recovery from an exception was not possible or an 

interrupt caused the currently running program to be terminated. 

          This chapter describes the processor‘s interrupt and exception- handling mechanism, 

when operating in protected mode. A description of the exceptions and the conditions that 

cause them to be generated is given at the end of this chapter. 

 

EXCEPTION AND INTERRUPT VECTORS 

            To aid in handling exceptions and interrupts, each architecturally defined exception 

and each interrupt condition requiring special handling by the processor is assigned a unique 

identification number, called a vector number. The processor uses the vector number 

assigned to an exception or interrupt as an index into the interrupt descriptor table (I DT). 

The table provides the entry point to an exception or interrupt handler (―Interrupt Descriptor 

Table (IDT)‖). 

           The allowable range for vector numbers is 0 to 255. Vector numbers in the range 0 

through 31 are reserved by the Intel 64 and IA- 32 architectures for architecture- defined 

exceptions and interrupts. Not all of the vector numbers in this range have a currently defined 

function. The unassigned vector numbers in this range are reserved. Do not use the reserved 

vector numbers. 

            Vector numbers in the range 32 to 255 are designated as user- defined interrupts and are 

not reserved by the Intel 64 and IA- 32 architecture. These interrupts are generally assigned to 
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external I / O devices to enable those devices to send interrupts to the processor through one of 

the external hardware interrupt mechanisms (―Sources of I interrupts‖). 

 

        Table shows vector number assignments for architecturally defined exceptions and for 

the NMI interrupt. This table gives the exception type (―Exception Classifications‖) and 

indicates whether an error code is saved on the stack for the exception. The source of each 

predefined exception and the NMI interrupt is also given. 

 

SOURCES OF INTERRUPTS 

The processor receives interrupts from two sources: 

 External (hardware generated) interrupts. 

 Software- generated interrupts. 

External Interrupts 

                External interrupts are received through pins on the processor or through the local 

API C. The primary interrupt pins on Pentium 4, I ntel Xeon, P6 family, and Pentium 

processors are the LINT [1: 0] pins, which are connected to the local API C (see Chapter 10, 

―Advanced Programmable I nterrupt Controller (API C)‖). When the local API C is enabled, 

the LI NT[1: 0] pins can be programmed through the APIC‘s local vector table (LVT) to be 

associated with any of the processor‘s exception or interrupt vectors. 

             

 

Vector 
No. 

Mne- 
monic 

Description Type Error Code Source 

0 #DE Divide Error Fault No DIV and IDIV instructions. 

1 
#DB RESERVED Fault/ 

Trap 

No For Intel use only. 

2 — NMI Interrupt Interrupt No Nonmaskable external interrupt. 

3 #BP Breakpoint Trap No INT 3 instruction. 

4 #OF Overflow Trap No INTO instruction. 

5 #BR BOUND Range Exceeded Fault No BOUND instruction. 

6 
#UD Invalid Opcode (Undefined 

Opcode) 

Fault No UD2 instruction or reserved 

opcode.1 

7 #NM Device Not Available (No 
Math 

Fault No Floating-point or WAIT/FWAIT 
instruction. 

  Coprocessor)    

8 #DF Double Fault Abort Yes Any instruction that can generate an 
    (zero) exception, an NMI, or an INTR. 

9 
 Coprocessor Segment 

Overrun 
Fault No Floating-point instruction.2 

  (reserved)    

10 #TS Invalid TSS Fault Yes Task switch or TSS access. 

11 #NP Segment Not Present Fault Yes Loading segment registers or accessing 
     system segments. 

12 #SS Stack-Segment Fault Fault Yes Stack operations and SS register loads. 

13 #GP General Protection Fault Yes Any memory reference and other 
     protection checks. 

14 #PF Page Fault Fault Yes Any memory reference. 

15 — (Intel reserved. Do not use.)  No  
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Table -Protected-Mode Exceptions and Interrupts 

 

          

                 When the local APIC is global/ hardware disabled, these pins are configured as I 

NTR and NMI pins, respectively. Asserting the I NTR pin signals the processor that an 

external interrupt has occurred. The processor reads from the system bus the interrupt vector 

number provided by an external interrupt controller, such as an 8259A (―Exception and 

Interrupt Vectors‖). Asserting the NMI pin signals a non- maskable interrupt (NMI ), which is 

assigned to interrupt vector 2. 

The processor‘s local APIC is normally connected to a system- based I / O API C. Here, 

external interrupts received at the I / O APIC‘s pins can be directed to the local API C through 

the system bus (Pentium 4, I ntel Core Duo, I ntel Core 2, Intel® Atom™, and I ntel Xeon 

processors) or the API C serial bus (P6 family and Pentium processors). The I / O APIC 

determines the vector number of the interrupt and sends this number to the local APIC. When a 

system contains multiple processors, processors can also send interrupts to one another by 

means of the system bus (Pentium 4, Intel Core Duo, Intel Core 2, I ntel Atom, and Intel Xeon 

processors) or the APIC serial bus (P6 family and Pentium processors). 

 The LI NT[1: 0] pins are not available on the I ntel486 processor and earlier Pentium 

processors that do not contain an on- chip local API C. These processors have dedicated NMI 

and I NTR pins. With these processors, external inter- rupts are typically generated by a 

system- based interrupt controller (8259A), with the interrupts being signaled through the 

INTR pin. 

 Note that several other pins on the processor can cause a processor interrupt to occur. 

However, these interrupts are not handled by the interrupt and exception mechanism 

described in this chapter. These pins include the RESET#, FLUSH#, STPCLK#, SMI#, R/ 

S#, and INIT# pins. Whether they are included on a particular processor is implementation 

dependent. Pin functions are described in the data books for the individual processors. The 

SMI# pin is described in Chapter 34, ―System Management Mode.‖ 

 

16 #MF x87 FPU Floating-Point Error 
(Math 

Fault No x87 FPU floating-point or 
WAIT/FWAIT 

  Fault)   instruction. 

17 #AC Alignment Check Fault Yes Any data reference in memory.3 

    (Zero)  

18 #MC Machine Check Abort No Error codes (if any) and source are model 

dependent.4 

19 #XM SIMD Floating-Point Exception Fault No SSE/SSE2/SSE3 floating-point instructions5 

20 #VE Virtualization Exception Fault No EPT violations6 

21-31 — Intel reserved. Do not use.    

32-255 — User Defined (Non-reserved) Interrupt  External interrupt or INTn instruction. 

  Interrupts    
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Maskable Hardware Interrupts 

 Any external interrupt that is delivered to the processor by means of the I NTR pin or 

through the local API C is called a maskable hardware interrupt. Maskable hardware interrupts 

that can be delivered through the INTR pin include  all IA- 32 architecture defined interrupt 

vectors from 0 through 255; those that can be delivered through the local API C include 

interrupt vectors 16 through 255.The IF flag in the EFLAGS register permits all maskable 

hardware interrupts to be masked as a group (―Masking Maskable Hardware Interrupts‖). Note 

that when interrupts 0 through 15 are delivered through the local API C, the API C indicates 

the receipt of an illegal vector. 

Software-Generated Interrupts 

 The INT n instruction a permit interrupts to be generated from within software by 

supplying an interrupt vector number as an operand.  

For example, the INT 35 instruction forces an implicit call to the interrupt handler for 

interrupt 35. 

 Any of the interrupt vectors from 0 to 255 can be used as a parameter in this instruction. 

I f the processor‘s predefined NMI vector is used, however, the response of the processor will 

not be the same as it would be from an NMI interrupt generated in the normal manner. I f 

vector number 2 (the NMI vector) is used in this instruction, the NMI interrupt handler is 

called, but the processor‘s NMI- handling hardware is not activated. 

 Interrupts generated in software with the I NT n instruction cannot be masked by the IF flag 

in the EFLAGS register. 

 

SOURCES OF EXCEPTIONS 

The processor receives exceptions from three sources: 

• Processor- detected program- error exceptions. 

• Software- generated exceptions. 

• Machine- check exceptions. 

 

Program-Error Exceptions 

 The processor generates one or more exceptions when it detects program errors during 

the execution in an application program or the operating system or executive. Intel 64 and IA- 

32 architectures define a vector number for each processor- detectable exception. Exceptions 

are classified as faults, traps, and aborts (see Section 6.5, ―Exception Classifications‖). 

 

Software-Generated Exceptions 

 The INTO, INT 3, and BOUND instructions permit exceptions to be generated in 

software. These instructions allow checks for exception conditions to be performed at points 

in the instruction stream. For example, INT 3 causes a breakpoint exception to be generated. 

 The INT n instruction can be used to emulate exceptions in software; but there is a 

limitation. If INT n provides a vector for one of the architecturally- defined exceptions, the 

processor generates an interrupt to the correct vector (to access the exception handler) but does 

not push an error code on the stack. This is true even if the associated hardware- generated 

exception normally produces an error code. The exception handler will still attempt to pop an 
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error code from the stack while handling the exception. Because no error code was pushed, the 

handler will pop off and discard the EI P instead (in place of the missing error code). This 

sends the return to the wrong location. 
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Machine-Check Exceptions 

 The P6 family and Pentium processors provide both internal and external machine- 

check mechanisms for checking the operation of the internal chip hardware and bus 

transactions. These mechanisms are implementation depen- dent. When a machine- check 

error is detected, the processor signals a machine- check exception (vector 18) and returns an 

error code.(―Interrupt 18—Machine- Check Exception (#MC)‖ and Chapter 15, ―Machine- 

Check Architecture,‖ for more information about the machine- check mechanism. 

 

 

 

EXCEPTION CLASSIFICATIONS 

 E

xceptions are classified as faults, traps, or aborts depending on the way they are reported 

and whether the instruction that caused the exception can be restarted without loss of 

program or task continuity. 

 Faults— A fault is an exception that can generally be corrected and that, once 
corrected, allows the program to be restarted with no loss of continuity. When a fault 
is reported, the processor restores the machine state to the state prior to the beginning 
of execution of the faulting instruction. The return address (saved contents of the CS 
and EI P registers) for the fault handler points to the faulting instruction, rather than to 
the instruction following the faulting instruction. 

 Traps — A trap is an exception that is reported immediately following the execution 
of the trapping instruction. Traps allow execution of a program or task to be 
continued without loss of program continuity. The return address for the trap handler 
points to the instruction to be executed after the trapping instruction. 

 Aborts— An abort is an exception that does not always report the precise location of 
the instruction causing the exception and does not allow a restart of the program or 
task that caused the exception. Aborts are used to report severe errors, such as 
hardware errors and inconsistent or illegal values in system tables. 

NOTE: 

         One exception subset normally reported as a fault is not restartable. Such exceptions result 

in loss of some processor state. For example, executing a POPAD instruction where the stack 

frame crosses over the end of the stack segment causes a fault to be reported. I n this situation, 

the exception handler sees that the instruction pointer (CS: EI P) has been restored as if the 

POPAD instruction had not been executed. However, internal processor state (the general- 

purpose registers) will have been modified. Such cases are considered programming errors. An 

application causing this class of exceptions should be terminated by the operating system. 

         When a page- fault exception occurs, the exception handler can load the page into 

memory and resume execution of the program or task by restarting the faulting instruction. 

To insure that the restart is handled trans- parently to the currently executing program or task, 

the processor saves the necessary registers and stack pointers to allow a restart to the state 

prior to the execution of the faulting instruction.  

           For  trap- class exceptions, the return instruction pointer points to the instruction 

following the trapping instruction. I f a trap is detected during an instruction which transfers 

execution, the return instruction pointer reflects the transfer. For example, if a trap is 

detected while executing a J MP instruction, the return instruction pointer points to the 

destination of the J MP instruction, not to the next address past the J MP instruction. All trap 

exceptions allow program or task restart with no loss of continuity. For example, the 

overflow exception is a trap exception. Here, the return instruction pointer points to the 

instruction following the INTO instruction that tested EFLAGS OF (over- flow) flag. The 

trap handler for this exception resolves the overflow condition. Upon return from the trap 

handler, program or task execution continues at the instruction following the I NTO 

instruction. 
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         The abort- class exceptions do not support reliable restarting of the program or task. 

Abort handlers are designed to collect diagnostic information about the state of the processor 

when the abort exception occurred and then shut down the application and system as 

gracefully as possible. 

          Interrupts rigorously support restarting of interrupted programs and tasks without loss of 

continuity. The return instruction pointer saved for an interrupt points to the next instruction to 

be executed at the instruction boundary where the processor took the interrupt. I f the 

instruction just executed has a repeat prefix,  the interrupt is taken at the end of the current 

iteration with the registers set to execute the next iteration. 

       The ability of a P6 family processor to speculatively execute instructions does not affect 

the taking of interrupts by the processor.  interrupts are taken at instruction boundaries 

located during the retirement phase of instruction execution; so they are always taken in the 

―in- order‖ instruction stream. See Chapter 2, ―Intel® 64 and IA- 32 Architectures,‖ in the 

Intel® 64 and IA- 32 Architectures Software Developer‘s Manual, Volume 1, for more 

information about the P6 family processors‘ micro architecture and its support for out- of- 

order instruction execution. 

        Note that the Pentium processor and earlier I A- 32 processors also perform varying 

amounts of perfecting and preliminary decoding. With these processors as well, exceptions and 

interrupts are not signaled until actual ―in- order‖ execution of the instructions. For a given code 

sample, the signaling of exceptions occurs uniformly when the code is executed on any family 

of IA- 32 processors (except where new exceptions or new opcodes have been defined). 

 

NONMASKABLE INTERRUPT (NMI) 

The nonmaskable interrupt (NMI) can be generated in either of two ways: 

 External hardware asserts the NMI pin. 

 The processor receives a message on the system bus (Pentium 4, Intel Core Duo, Intel 
Core 2, Intel Atom, and Intel Xeon processors) or the API C serial bus (P6 family and 
Pentium processors) with a delivery mode NMI 

          When the processor receives a NMI from either of these sources, the processor handles 

it immediately by calling the NMI handler pointed to by interrupt vector number 2. The 

processor also invokes certain hardware conditions to insure that no other interrupts, 

including NMI interrupts, are received until the NMI handler has completed executing (see 

Section 6.7.1, ―Handling Multiple NMIs‖). 

        Also, when an NMI is received from either of the above sources, it cannot be masked by 

the IF flag in the EFLAGS register. 

          It is possible to issue a maskable hardware interrupt (through the INTR pin) to vector 2 

to invoke the NMI interrupt handler; however, this interrupt will not truly be an NMI  interrupt. 

A true NMI interrupt that activates the processor‘s NMI - handling hardware can only be 

delivered through one of the mechanisms listed above. 

 

Handling Multiple NMIs 

    While an NMI interrupt handler is executing, the processor blocks delivery of subsequent 

NMI s until the next execution of the I RET instruction. This blocking of NMI s prevents nested 

execution of the NMI handler. I t is recommended that the NMI interrupt handler be accessed 

through an interrupt gate to disable maskable hardware interrupts (―Masking Maskable 

Hardware Interrupts‖) 

     An execution of the I RET instruction unblocks NMIs even if the instruction causes a fault. 

For example, if the I RET instruction executes with EFLAGS.VM = 1 and IOPL of less than 3, 

a general- protection exception is generated (―Sensitive Instructions‖). In such a case, NMIs are 

unmasked before the exception handler is invoked. 
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ENABLING AND DISABLING INTERRUPTS 

           The processor inhibits the generation of some interrupts, depending on the state of the 

processor and of the I F and RF flags in the EFLAGS register, as described in the following 

sections. 

Masking Maskable Hardware Interrupts 

         The IF flag can disable the servicing of maskable hardware interrupts received on the 

processor‘s INTR pin or through the local APIC (see Section 6.3.2, ―Maskable Hardware 

Interrupts‖). When the IF flag is clear,  the processor inhibits interrupts delivered to the I NTR 

pin or through the local API C from generating an internal inter- rupt request; when the IF flag 

is set, interrupts delivered to the I NTR or through the local API C pin are processed as normal 

external interrupts. 

         The I F flag does not affect non- maskable interrupts (NMI s) delivered to the NMI pin or 

delivery mode NMI messages delivered through the local API C, nor does it affect processor 

generated exceptions. As with the other flags in the EFLAGS register, the processor clears the I 

F flag in response to hardware reset. 

         The fact that the group of maskable hardware interrupts includes the reserved interrupt and 

exception vectors 0 through 32 can potentially cause confusion. Architecturally, when the IF flag is set, 

an interrupt for any of the vectors from 0 through 32 can be delivered to the processor through the I NTR 

pin and any of the vectors from 16 through 32 can be delivered through the local API C. The processor 

will then generate an interrupt and call the interrupt or exception handler pointed to by the vector 

number. So for example, it is possible to invoke the page- fault handler through the I NTR pin (by means 

of vector 14); however, this is not a true page- fault exception. I t is an interrupt. As with the I NT n 

instruction (see Section 6.4.2, ―Software- Generated Exceptions‖), when an inter- rupt is generated 

through the I NTR pin to an exception vector, the processor does not push an error code on the stack, so 

the exception handler may not operate correctly. 

 The IF flag can be set or cleared with the STI (set interrupt- enable flag) and CLI (clear 

interrupt- enable flag) instructions, respectively. These instructions may be executed only if the CPL is 

equal to or less than the I OPL. A general- protection exception (#GP) is generated if they are executed 

when the CPL is greater than the IOPL. (The effect of the IOPL on these instructions is modified slightly 

when the virtual mode extension is enabled by setting the VME flag in control register CR4: The IF flag 

is also affected by the following operations: 

 The PUSHF instruction stores all flags on the stack, where they can be examined and modified. 

The POPF instruction can be used to load the modified flags back into the EFLAGS register. 

 Task switches and the POPF and IRET instructions load the EFLAGS register; therefore, they 

can be used to modify the setting of the IF flag. 

 When an interrupt is handled through an interrupt gate, the I F flag is automatically cleared, 

which disables maskable hardware interrupts. (I f an interrupt is handled through a trap gate, the 

IF flag is not cleared.) 

 

 Masking Instruction Breakpoints 

 

 The RF (resume) flag in the EFLAGS register controls the response of the processor to 

instruction- breakpoint conditions (see the description of the RF flag in Section 2.3, ―System Flags and 

Fields in the EFLAGS Register‖). 

 

 When set, it prevents an instruction breakpoint from generating a debug exception (#DB); when 

clear, instruction breakpoints will generate debug exceptions. The primary function of the RF flag is to 

prevent the processor from going into a debug exception loop on an instruction- breakpoint. See Section 

17.3.1.1, ―Instruction-Breakpoint Exception Condition,‖ for more information on the use of this flag. 
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Masking Exceptions and Interrupts When Switching Stacks 

   To switch to a different stack segment, software often uses a pair of instructions, for example: 

 MOV SS, AX 

 MOV ESP, Stack Top 

      If can interrupt or exception occurs after the segment selector has been loaded into the SS register 

but before the ESP register has been loaded, these two parts of the logical address into the stack space 

are inconsistent for the duration of the interrupt or exception handler. 

 To prevent this situation, the processor inhibits interrupts, debug exceptions, and single- step 

trap exceptions after either a MOV to SS instruction or a POP to SS instruction, until the instruction 

boundary following the next instruction is reached. All other faults may still be generated. I f the LSS 

instruction is used to modify the contents of the SS register (which is the recommended method of 

modifying this register), this problem does not occur. 

 

PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND INTERRUPTS 
 

 I f more than one exception or interrupt is pending at an instruction boundary; the processor 

services them in a predictable order. Table shows the priority among classes of exception and interrupt 

sources. 

 

 

Table-Priority among Simultaneous Exceptions and Interrupts 

Priority Description 

1 (Highest) Hardware Reset and Machine Checks 

- RESET 

- Machine Check 

2 Trap on Task Switch 

- T flag in TSS is set 

3 External Hardware Interventions 

- FLUSH 

- STOPCLK 

- SMI 

- INIT 

4 Traps on the Previous Instruction 

- Breakpoints 

- Debug Trap Exceptions (TF flag set or data/I-O breakpoint) 

5 Nonmaskable Interrupts (NMI) 1 

6 Maskable Hardware Interrupts 1 

7 Code Breakpoint Fault 

8 Faults from Fetching Next Instruction 

- Code-Segment Limit Violation 

- Code Page Fault 

9 Faults from Decoding the Next Instruction 

- Instruction length > 15 bytes 

- Invalid Opcode 

- Coprocessor Not Available 
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10 (Lowest) Faults on Executing an Instruction 

- Overflow 

- Bound error 

- Invalid TSS 

- Segment Not Present 

- Stack fault 

- General Protection 

- Data Page Fault 

- Alignment Check 

- x87 FPU Floating-point exception 

- SIMD floating-point exception 

- Virtualization exception 

 

NOTE 

1. The Intel® 486 processor and earlier processors group nonmaskable and maskable interrupts in the 

same priority class. 

 While priority among these classes listed in Table 6- 2 is consistent throughout the architecture, 

exceptions within each class are implementation- dependent and may vary from processor to processor. 

The processor first services pending exception or interrupt from the class which has the highest priority, 

transferring execution to the first instruction of the handler. Lower priority exceptions are discarded; 

lower priority interrupts are held pending. 

 Discarded exceptions are re- generated when the interrupt handler returns execution to the point 

in the program or task where the exceptions and/ or interrupts occurred. 

 

INTERRUPT DESCRIPTOR TABLE (IDT) 

 The interrupt descriptor table (IDT) associates each exception or interrupt vector with a gate 

descriptor for the procedure or task used to service the associated exception or interrupt. Like the GDT 

and LDTs, the IDT is an array of 8- byte descriptors (in protected mode). Unlike the GDT, the first entry 

of the I DT may contain a descriptor. To form an index into the I DT, the processor scales the exception 

or interrupt vector by eight (the number of bytes in a gate descriptor). Because there are only 256 

interrupt or exception vectors, the IDT need not contain more than 256 descriptors. I t can contain fewer 

than 256 descriptors, because descriptors are required only for the interrupt and exception vectors that 

may occur. All empty descriptor slots in the I DT should have the present flag for the descriptor set to 0. 

 The base addresses of the IDT should be aligned on an 8- byte boundary to maximize 

performance of cache line fills. The limit value is expressed in bytes and is added to the base address to 

get the address of the last valid byte. A limit value of 0 results in exactly 1 valid byte. Because IDT 

entries are always eight bytes long, the limit should always be one less than an integral multiple of eight 

(that is, 8N – 1). 

 The IDT may reside anywhere in the linear address space. As shown in Figure 6- 1, the 

processor locates the IDT using the IDTR register. This register holds both a 32- bit base address and 16- 

bit limit for the IDT. 

 The LIDT (load IDT register) and SI DT (store I DT register) instructions load and store the 

contents of the IDTR register, respectively.  The LIDT instruction loads the IDTR register with the base 

address and limit held in a memory operand. This instruction can be executed only when the CPL is 0. I t 

normally is used by the initialization code of an operating system when creating an IDT. An operating 

system also may use it to change from one I DT to another. The SI DT instruction copies the base and 

limit value stored in I DTR to memory. This instruction can be executed at any privilege level. 

 If a vector references a descriptor beyond the limit of the IDT, a general- protection exception 

(#GP) is generated. 
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IDTR Register 

47 16 15 0 

+ 
Interrupt 

Descriptor Table (IDT) 

(n−1)∗8 

16 

 
8 
 

0 

31 0 

IDT Limit IDT Base Address 

Gate for 
Interrupt #n 

 

NOTE 

 

 Because interrupts are delivered to the processor core only once, an incorrectly configured IDT 

could result in incomplete interrupt handling and/ or the blocking of interrupt delivery. 

 IA- 32 architecture rules need to be followed for setting up IDTR base/ limit/ access fields and 

each field in the gate descriptors. The same apply for the Intel 64 architecture. This includes implicit 

referencing of the destination code segment through the GDT or LDT and accessing the stack. 

Relationship of the IDTR and IDT 
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31 

Task Gate 

16 15 14 13 12 8 7 0 

4 

31 16 15 0 

0 

31 

Interrupt Gate 

16 15 14 13 12 8   7 5 4 0 

4 

31 16 15 0 

0 

31 

Trap Gate 

16 15 14 13 12 8   7 5 4 0 

4 

31 16 15 0 

0 

DPL Descriptor Privilege Level 
Offset Offset to procedure entry point 
P Segment Present flag 
Selector Segment Selector for destination code segment 
D  
 
 
Size of gate: 1 = 32 bits; 0 = 16 bits 

Reserved 

 
Offset 15..0 

 
Segment Selector 

 
Offset 15..0 

 
Segment Selector 

 
TSS Segment Selector 

IDT DESCRIPTORS 

 

The IDT may contain any of three kinds of gate descriptors: 

 Task- gate descriptor 

 Interrupt- gate descriptor 

 Trap- gate descripto 

 Figure shows the formats for the task- gate, interrupt- gate, and trap- gate descriptors. The 

format of a task gate used in an I DT is the same as that of a task gate used in the GDT or an LDT 

(―Task- Gate Descriptor‖). The task gate contains the segment selector for a TSS for an exception and/ 

or interrupt handler task. 

 

 Interrupt and trap gates are very similar to call gates. They contain a far pointer (segment 

selector and offset) that the processor uses to transfer program execution to a handler procedure in an 

exception- or interrupt- handler code segment. These gates differ in the way the processor handles the I F 

flag in the EFLAGS register. 

IDT Gate Descriptors 
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EXCEPTION AND INTERRUPT HANDLING 

 The processor handles calls to exception- and interrupt- handlers similar to the way it handles 

calls with a CALL instruction to a procedure or a task. When responding to an exception or interrupt, the 

processor uses the exception or interrupt vector as an index to a descriptor in the I DT. I f the index 

points to an interrupt gate or trap gate, the processor calls the exception or interrupt handler in a manner 

similar to a CALL to a call gate. If index points to a task gate, the processor executes a task switch to the 

exception- or interrupt- handler task in a manner similar to a CALL to a task gate. 

 

Exception- or Interrupt-Handler Procedures 

 An interrupt gate or trap gate references an exception- or interrupt- handler procedure that runs 

in the context of the currently executing task (see Figure 6- 3). The segment selector for the gate points 

to a segment descriptor for an executable code segment in either the GDT or the current LDT. The offset 

field of the gate descriptor points to the beginning of the exception- or interrupt- handling procedure. 

When the processor performs a call to the exception- or interrupt- handler procedure: 

• I f the handler procedure is going to be executed at a numerically lower privilege level, a stack 

switch occurs. When the stack switch occurs: 

• The segment selector and stack pointer for the stack to be used by the handler are obtained from the 

TSS for the currently executing task. On this new stack, the processor pushes the stack segment 

selector and stack pointer of the interrupted procedure. 

• The processor then saves the current state of the EFLAGS, CS, and EI P registers on the new stack 

(see Figures 6- 4). 

• I f an exception causes an error code to be saved; it is pushed on the new stack after the EI P value. 

• I f the handler procedure is going to be executed at the same privilege level as the interrupted 

procedure: 

• The processor saves the current state of the EFLAGS, CS, and EIP registers on the current stack 

(see Figures 6- 4). 

• I f an exception causes an error code to be saved, it is pushed on the current stack after the EIP 

value.
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Interrupt Procedure Call 
 

 To return from an exception- or interrupt- handler procedure, the handler must use the I RET (or 

I RETD) instruction. The IRET instruction is similar to the RET instruction except that it restores the 

saved flags into the EFLAGS   register. The IOPL field of the EFLAGS register is restored only if the 

CPL is 0. The I F flag is changed only if the CPL is less than or equal to the I OPL. If a stack switch 

occurred when calling the handler procedure, the I RET instruction switches back to the interrupted 

procedure‘s stack on the return. 

Protection of Exception- and Interrupt-Handler Procedures 

 The privilege- level protection for exception- and interrupt- handler procedures is similar to that 

used for ordinary procedure calls when called through a call gate. The processor does not permit transfer 

of execution to an exception- or interrupt- handler procedure in a less privileged code segment 

(numerically greater privilege level) than the CPL. 

 An attempt to violate this rule results in a general- protection exception (#GP). The protection 

mechanism for exception- and interrupt- handler procedures is different in the following ways: 

 Because interrupt and exception vectors have no RPL, the RPL is not checked on implicit calls 

to exception and interrupt handlers. 

 The processor checks the DPL of the interrupt or trap gate only if an exception or interrupt is 

generated with an INT n, I NT 3, or INTO instruction. Here, the CPL must be less than or equal 

to the DPL of the gate. This restriction prevents application programs or procedures running at 

privilege level 3 from using software interrupt to access critical exception handlers, such as the 

page- fault handler, providing that those handlers are placed in more privileged code segments 

(numerically lower privilege level).  For hardware- generated interrupts and processor- detected 

exceptions, the processor ignores the DPL of interrupt and trap gates. 
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Interrupt Task Switch 

 

 

 

ERROR CODE 
 When an exception condition is related to a specific segment selector or IDT vector, the 

processor pushes an error code onto the stack of the exception handler (whether it is a procedure or task).  

The error code has the format shown in Figure. The error code resembles a segment selector; however, 

instead of a TI flag and RPL field, the error code contains 3 flags: 

EXT External event (bit 0) — When set, indicates that the exception occurred during delivery of an 

event external to the program, such as an interrupt or an earlier exception. 

I DT Descriptor location (bit 1) — When set, indicates that the index portion of the error code refers 

to a gate descriptor in the I DT; when clear, indicates that the index refers to a descriptor in the GDT or 

the current LDT. 

TI GDT/ LDT (bit 2) — only used when the IDT flag is clear. When set, the TI flag indicates that 

the index portion of the error code refers to a segment or gate descriptor in the LDT; when clear, it 

indicates that the index refers to a descriptor in the current GDT 

 

 

 

 

 

Reserved Segment Selector Index T 

I 

I 

D 

T 

E 

X 

T 
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31 3 2 1 0 

Error Code 

 The segment selector index field provides an index into the IDT, GDT, or current LDT to the 

segment or gate selector being referenced by the error code. In some cases the error code is null (all bits 

are clear except possibly EXT). A null error code indicates that the error was not caused by a reference 

to a specific segment or that a null segment descriptor was referenced in an operation. 

 The format of the error code is different for page- fault exceptions (#PF). See the ―Interrupt 14—

Page- Fault Exception (#PF)‖ section in this chapter. 

 The error code is pushed on the stack as a double word or word (depending on the default 

interrupt, trap, or task gate size). To keep the stack aligned for double word pushes, the upper half of the 

error code is reserved. Note that the error code is not popped when the IRET instruction is executed to 

return from an exception handler, so the handler must remove the error code before executing a return. 

Error codes are not pushed on the stack for exceptions that are generated externally (with the INTR or 

LINT [1: 0] pins) or the I NT n instruction, even if an error code is normally produced for those 

exceptions. 

 

EXCEPTION AND INTERRUPT HANDLING IN 64-BIT MODE 
 

 In 64- bit mode, interrupt and exception handling is similar to what has been described for non- 

64- bit modes. The following are the exceptions: 

• All interrupt handlers pointed by the IDT are in 64- bit code (this does not apply to the SMI 

handler). 

• The size of interrupt- stack pushes is fixed at 64 bits; and the processor uses 8- byte, zero extended 

stores. 

• The stack pointer (SS: RSP) is pushed unconditionally on interrupts. I n legacy modes, this push is 

conditional and based on a change in current privilege level (CPL). 

• The new SS is set to NULL if there is a change in CPL. 

• IRET behavior changes. 

• There is a new interrupt stack- switch mechanism. 

• The alignment of interrupt stack frame is different. 

 

 

64-Bit Mode IDT 
 

 Interrupt and trap gates are 16 bytes in length to provide a 64- bit offset for the instruction 

pointer (RIP). The 64- bit RIP referenced by interrupt- gate descriptors allows an interrupt service 

routine to be located anywhere in the linear-address space. See Figure. 
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64-Bit IDT Gate Descriptors 
 

 In 64- bit mode, the IDT index is formed by scaling the interrupt vector by 16. The first eight 

bytes (bytes 7: 0) of a 64- bit mode interrupt gate are similar but not identical to legacy 32- bit interrupt 

gates. The type field (bits 11: 8 in bytes 7: 4) is described in Table 3- 2. The Interrupt Stack Table (IST) 

field (bits 4: 0 in bytes 7: 4) is used by the stack switching mechanisms described in Section 6.14.5, 

―Interrupt Stack Table.‖ Bytes 11: 8 hold the upper 32 bits of the target RIP (interrupt segment offset) in 

canonical form. A general- protection exception (#GP) is generated if software attempts to reference an 

interrupt gate with a target RI P that is not in canonical form. 

 The target code segment referenced by the interrupt gate must be a 64- bit code segment (CS.L = 

1, CS.D = 0). I f the target is not a 64-bit code segment; a general- protection exception (#GP) is 

generated with the I DT vector number reported as the error code. 

 Only 64- bit interrupt and trap gates can be referenced in IA- 32e mode (64- bit mode and 

compatibility mode). Legacy 32- bit interrupt or trap gate types (0EH or 0FH) are redefined in IA- 32e 

mode as 64- bit interrupt and trap gate types. No 32- bit interrupt or trap gate type exists in IA- 32e 

mode. I f a reference is made to a 16-bit interrupt or trap gate (06H or 07H), a general- protection 

exception (#GP (0)) is generated. 

 

64-Bit Mode Stack Frame 
 

 In legacy mode, the size of an IDT entry (16 bits or 32 bits) determines the size of interrupt- 

stack- frame pushes. SS: ESP is pushed only on a CPL change. I n 64- bit mode, the size of interrupt 

stack- frame pushes is fixed at eight bytes. This is because only 64- bit mode gates can be referenced. 

64- Bit mode also pushes SS: RSP unconditionally, rather than only on a CPL change. 

 Aside from error codes pushing SS: RSP unconditionally presents operating systems with a 

consistent interrupt- stack frame size across all interrupts. Interrupt service- routine entry points that 

handle interrupts generated by the INTn instruction or external I NTR# signal can push an additional 

error code place- holder to maintain consistency. 
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 In legacy mode, the stack pointer may be at any alignment when an interrupt or exception causes 

a stack frame to be pushed. This causes the stack frame and succeeding pushes done by an interrupt 

handler to be at arbitrary alignments. In IA- 32e mode, the RSP is aligned to a 16- byte boundary before 

pushing the stack frame. The stack frame itself is aligned on a 16- byte boundary when the interrupt 

handler is called. The processor can arbitrarily realign the new RSP on interrupts because the previous 

(possibly unaligned) RSP is unconditionally saved on the newly aligned stack. The previous RSP will be 

automatically restored by a subsequent I RET. 

 Aligning the stack permits exception and interrupt frames to be aligned on a 16- byte boundary 

before interrupts are re- enabled. This allows the stack to be formatted for optimal storage of 16- byte 

XMM registers, which enables the interrupt handler to use faster 16- byte aligned loads and stores 

(MOVAPS rather than MOVUPS) to save and restore XMM registers. 

 Although the RSP alignment is always performed when LMA = 1, it is only of consequence for 

the kernel- mode case where there is no stack switch or I ST used. For a stack switch or I ST, the OS 

would have presumably put suitably aligned RSP values in the TSS. 

 

IRET in IA-32e Mode 
 

 In IA- 32e mode, IRET executes with an 8- byte operand size. There is nothing that forces this 

requirement. The stack is formatted in such a way that for actions where IRET is required, the 8- byte 

IRET operand size works correctly. 

 Because interrupt stack- frame pushes are always eight bytes in IA- 32e mode, an IRET must 

pop eight byte items off the stack. This is accomplished by preceding the IRET with a 64- bit operand- 

size prefix. The size of the pop is determined by the address size of the instruction. The SS/ ESP/ RSP 

size adjustment is determined by the stack size. 

 I RET pops SS: RSP unconditionally off the interrupt stack frame only when it is executed in 64- 

bit mode. In compat- ibility mode, I RET pops SS: RSP off the stack only if there is a CPL change.  This 

allows legacy applications to execute properly in compatibility mode when using the IRET instruction. 

64- bit interrupt service routines that exit with an I RET unconditionally pop SS: RSP off of the interrupt 

stack frame, even if the target code segment is running in 64- bit mode or at CPL = 0. This is because the 

original interrupt always pushes SS: RSP. 

 In IA- 32e mode, IRET is allowed to load a NULL SS under certain conditions. I f the target 

mode is 64- bit mode and the target CPL <> 3, I RET allows SS to be loaded with a NULL selector. As 

part of the stack switch mechanism, an interrupt or exception sets the new SS to NULL, instead of 

fetching a new SS selector from the TSS and loading the corresponding descriptor from the GDT or 

LDT. The new SS selector is set to NULL in order to properly handle returns from subsequent nested far 

transfers. I f the called procedure itself is interrupted, the NULL SS is pushed on the stack frame. On the 

subsequent IRET, the NULL SS on the stack acts as a flag to tell the processor not to load  a new SS 

descriptor. 

 The I A- 32 architecture provides a mechanism to automatically switch stack frames in response 

to an interrupt. The 64- bit extensions of I ntel 64 architecture implement a modified version of the 

legacy stack- switching mechanism and an alternative stack- switching mechanism called the interrupt 

stack table (IST). 

 In I A- 32 modes, the legacy I A- 32 stack- switch mechanism is unchanged. In I A- 32e mode, 

the legacy stack- switch mechanism is modified. When stacks are switched as part of a 64- bit mode 

privilege- level change (resulting from an interrupt), a new SS descriptor is not loaded. IA- 32e mode 

loads only an inner- level RSP from the TSS. The new SS selector is forced to NULL and the SS 

selector‘s RPL field is set to the new CPL. The new SS is set to NULL in order to handle nested far 

transfers (far CALL, I NT, interrupts and exceptions). The old SS and RSP are saved on the new stack 

(Figure 6- 8). On the subsequent I RET, the old SS is popped from the stack and loaded into the SS 

register. In summary, a stack switch in IA- 32e mode works like the legacy stack switch, except that a 

new SS selector is not loaded from the TSS. Instead, the new SS is forced to NULL. 
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IA-32e Mode Stack Usage after Privilege Level Change 

 

Interrupt Stack Table 
 

 In IA- 32e mode, a new interrupt stack table (IST) mechanism is available as an alternative to 

the modified legacy stack- switching mechanism described above.  This mechanism unconditionally  

switches stacks when it  is enabled. I t can be enabled on an individual interrupt-vector basis using a 

field in the I DT entry. This means that some inter- rupt vectors can use the modified legacy mechanism 

and others can use the IST mechanism. 

 The IST mechanism is only available in IA- 32e mode. I t is part of the 64- bit mode TSS. The 

motivation for the IST mechanism is to provide a method for specific interrupts (such as NMI , double- 

fault, and machine- check) to always execute on a known good stack. I n legacy mode, interrupts can use 

the task- switch mechanism to set up a known- good stack by accessing the interrupt service routine 

through a task gate located in the IDT. However, the legacy task- switch mechanism is not supported in I 

A- 32e mode. 

 The IST mechanism provides up to seven IST pointers in the TSS. The pointers are referenced 

by an interrupt- gate descriptor in the interrupt- descriptor table (IDT); see Figure 6- 7. The gate 

descriptor contains a 3- bit I ST index field that provides an offset into the IST section of the TSS. Using 

the IST mechanism, the processor loads the value pointed by an IST pointer into the RSP. 

When an interrupt occurs, the new SS selector is forced to NULL and the SS selector‘s RPL field is set 

to the new CPL. The old SS, RSP, RFLAGS, CS, and RIP are pushed onto the new stack. Interrupt 

processing then proceeds as normal. I f the IST index is zero, the modified legacy stack- switching 

mechanism described above is used. 

 

EXCEPTION AND INTERRUPT REFERENCE 

 The following sections describe conditions which generate exceptions and interrupts. They are 

arranged in the order of vector numbers. The information contained in these sections are as follows: 

• Exception Class — indicates whether the exception class is a fault, trap, or abort type. Some 

exceptions can be either a fault or trap type, depending on when the error condition is detected. 

(This section is not applicable to interrupts.) 

• Description — Gives a general description of the purpose of the exception or interrupts type. I t 

also describes how the processor handles the exception or interrupt. 

• Exception Error Code — indicates whether an error code is saved for the exception. I f one is 

saved, the contents of the error code are described. (This section is not applicable to interrupts.) 

• Saved I nstruction Pointer — Describes which instruction the saved (or return)  instruction 

pointer  points to. It also indicates whether the pointer can be used to restart a faulting instruction. 

Program State Change — describes the effects of the exception or interrupt on the state of the currently 

running program or task and the possibilities of restarting the program or task without loss of continuity. 
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Because exceptions and interrupts generally do not occur at predictable times, these privilege rules 

effectively impose restrictions on the privilege levels at which exception and interrupt- handling 

procedures can run. Either of the following techniques can be used to avoid privilege- level violations. 

• The exception or interrupt handler can be placed in a conforming code segment. This 

technique can be used for handlers that only need to access data available on the stack (for 

example, divide error exceptions). I f the handler needs data from a data segment, the data 

segment needs to be accessible from privilege level 3, which would make it unprotected. 

• The handler can be placed in a nonconforming code segment with privilege level 0. This 

handler would always run, regardless of the CPL that the interrupted program or task is 

running at. 

 

Flag Usage By Exception- or Interrupt-Handler Procedure 
 

 When accessing an exception or interrupt handler through either an interrupt gate or a trap gate, 

the processor clears the TF flag in the EFLAGS register after it saves the contents of the EFLAGS  

register on the stack.  (On calls to exception and interrupt handlers, the processor also clears the VM, 

RF, and NT flags in the EFLAGS register, after they are saved on the stack.) Clearing the TF flag 

prevents instruction tracing from affecting interrupt response. A subsequent I RET instruction restores 

the TF (and VM, RF, and NT) flags to the values in the saved contents of the EFLAGS register on the 

stack. 

 The only difference between an interrupt gate and a trap gate is the way the processor handles 

the I F  flag in  the EFLAGS register. When accessing an exception- or interrupt- handling procedure 

through  an  interrupt  gate,  the processor clears the IF flag to prevent other  interrupts from interfering 

with the current interrupt handler.  A subse-  quent I RET instruction restores the IF flag to its value in 

the saved contents of the EFLAGS register on the stack. Accessing a handler procedure through a trap 

gate does not affect the IF flag. 

Interrupt Tasks 

 When an exception or interrupt handler is accessed through a task gate in the IDT, a task switch 

results. Handling an exception or interrupt with a separate task offers several advantages: 

• The entire context of the interrupted program or task is saved automatically. 

• A new TSS permits the handler to use a new privilege level 0 stack when handling the exception or 

interrupt. I f an exception or interrupt occurs when the current privilege level 0 stack is corrupted, 

accessing the handler through a task gate can prevent a system crash by providing the handler with 

a new privilege level 0 stack. 

• The handler can be further isolated from other tasks by giving it a separate address space. This is 

done by giving it a separate LDT. 

 The disadvantage of handling an interrupt with a separate task is that the amount of machine 

state that must be saved on a task switch makes it slower than using an interrupt gate, resulting in 

increased interrupt latency. 

 A task gate in the IDT references a TSS descriptor in the GDT (see Figure 6-5). A switch to the 

handler task is handled in the same manner as an ordinary task switch (see Section 7.3, ―Task 

Switching‖). The link back to the interrupted task is stored in the previous task link field of the handler 

task‘s TSS. I f an exception caused an error code to be generated, this error code is copied to the stack of 

the new task. 

 When exception- or interrupt- handler tasks are used in an operating system, there are actually 

two mechanisms that can be used to dispatch tasks: the software scheduler (part of the operating system) 

and the hardware sched- uler (part of the processor's interrupt mechanism). The software scheduler needs 

to accommodate interrupt tasks that may be dispatched when interrupts are enabled. 

NOTE 

Because IA- 32 architecture tasks are not re- entrant, an interrupt- handler task must disable interrupts 

between the time it completes handling the interrupt and the time it executes the IRET instruction. This 

action prevents another interrupt from occurring while the interrupt task‘s TSS is still marked busy, 

which would cause a general- protection (#GP) exception. 
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TSS Descriptor 

TSS 
Base 
Address 

TSS Selector 

 
GDT 

Task Gate 
Interrupt    

Vector 

TSS for Interrupt- 
Handling Task IDT 

 

Protected-Mode Exceptions and Interrupts (Contd.) 

 

Exception Handling 

 The trouble with programmed I/O is that it both wastes CPU resources and it has potential for 

incorrect operation. 

What we really want: 

1. (Since most I/O devices are slow), have I/O devices signal the CPU when they have a change in 

status. This would be more efficient than polling the devices at the devices' maximum operating 

speed. 

2. The I/O devices tell the processor that they become "ready." 

In order to do this we need: 

1. Hardware (wires) from devices to the CPU. 

2. A way for special software to be invoked when the a device signals on the wire. 

The modern solution bundles the software to deal with these signals (interrupts) and other situations into 

an exception handler. (Effectively part of the OS.) 

Exceptions 

 There are 2 categories of exceptions: interrupts and traps. All processors use the same 

mechanism (a combination of hardware and software) to deal with exceptions. 

Note: The Java and C++ languages have overloaded the term exception. Processors have used this term 

since the 1950s. OO languages developed many years later. For this class, the 

term exception does not refer to Java or C++ exceptions. 

The 2 categories: 

1. interrupts 
 initiated outside the instruction stream 

 arrive asynchronously (at no specific time), with respect to the timing of the fetch and execute 

cycle 
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examples: 

 I/O device status change 

 I/O device error condition 

 thermal override shutdown 

 internal error detection 
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When should the interrupt be dealt with? Answer: as soon as conveniently possible, and before the 

condition that caused the interrupt might cause yet-another interrupt (losing the first!) 

2. traps 
 occur due to something in instruction stream 

 arrive synchronously (while instruction is executing). A good test: if program was re-run (with 

the same input), the trap would occur in precisely the same place in the code. 

Examples: 

 unaligned address error 

 arithmetic overflow 

 syscall 

When should the trap be dealt with? Answer: right now! The user program cannot continue until 

whatever caused the trap is dealt with. 

Exception Handling 

The mechanism for dealing with exceptions is simple; its implementation can get complex. The 

implementation varies among architectures. 

Situation: a user program (also called an application) is running (executing), and a device generates an 

interrupt request. 

Mechanism to respond: the hardware temporarily suspends the user program, and instead runs code 

called an exception handler. After the handler is finished doing whatever it needs to, the hardware 

returns control to the user program. The user program continues from where it left off. 

Limitations of exception handler: 

Since it is being invoked (potentially) in the middle of a user program, the handler must take extra care 

not to change the state of the user program. 

 it cannot change register values 

 it cannot change the stack 

 So, how can it do anything at all? 

-- The key to this answer is that any portion of the processor state that the handler wishes to change must 

be saved before the change and restored before returning to the user program. 

-- The handler often uses the system stack to temporarily save register values. 

 

When to handle an interrupt -- 2 possibilities: 

1. Right now! Note that this could be in the middle of an instruction. In order to do this, the 

hardware must be able to know where the instruction is in its execution and be able to "take up 

where it left off". This is very difficult to do, because the hardware is complex. But, it has been 

done in simpler forms on a few machines. Example: arbitrary memory to memory copy on IBM 

360. 

2. Wait until the currently executing instruction finishes, then handle. THIS IS THE METHOD OF 

CHOICE. It handles interrupts in between 2 instructions. 

The instruction fetch/execute cycle must be expanded to 

1. If an interrupt is pending, handle it. 

2. instruction fetch 

3. PC update 

4. decode 

5. operand load 

6. operation 

7. store results 

The MIPS R2000 exception handling mechanism 

When an exception occurs, the hardware does the following things. Note that there is no inherent 

ordering of #1-4. They all happen "between" instructions, and before #5. 

 processor sets state giving cause of exception 

within the Cause register -- coprocessor C0, register $13, a 32-bit register 

bits 6..2 (5 bits) specify the type of the exception, called the ExcCode. 

Here are some mappings of encodings to causes. 
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Examples: 

  00000  (0)  Interrupt 

  00100  (4)  load from an illegal address 

  01000  (8)  syscall instruction 

  01100  (12) arithmetic overflow 

       

 changes to kernel mode, saving the previous mode in a hardware stack (3 levels deep) 

The mode is in the Status register -- coprocessor C0, register 12, bit 1. 

user mode = 1 

kernel mode = 0 

defined in the processor's architecture are 2 modes, 

 user -- the mode that user programs run under. 

Certain instructions are not available, like those that can write to the control registers (Status 

register and Cause register). 

 kernel -- the operating system mode. 

Allows the OS to retain control over "vital" system aspects. All instructions are available. 

1. disable further interrupts bit 0 of the Status register the field is called IEc (Interrupt Enable, 

Current) determines whether interrupts are currently enabled = 1 

disabled = 0 

If interrupts are disabled, then the hardware is not checking to see if there are further interrupts to 

handle. Disabling makes sure that the handling of an interrupt is not interrupted. 

2. save current PC coprocessor C0, register 14, called the Exception Program Counter. 

Gives return address within user program. Where to return to when done handling the exception. 

3. jumps to hardwired address 0x8000 0080. 

This is where the exception handler code is. 

Then, the instruction fetch and execute cycle starts up again, only now the code within the exception 

handler is being executed.  

 

This handler code does the following: 

1. Save some registers (on system stack). 

2. The handler needs to use registers too! It may not change (clobber, overwrite) the register 

contents of the user program. So, it saves them (on stack or in memory). 

3. Figure out exception type. (in ExcCode) 

4.   mfc0  $k0, $13        # get Cause register 

5.   andi  $k0, $k0, 0x3c  # Mask out all but ExcCode 

6. Use ExcCode in combination with a jump table to jump to the correct location within the 

exception handler. 

7. Handle the exception (whatever it is!) 

8. Restore registers saved in step 1. 

9. atomically: (as if done in 1 step, not 3) 
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See Useful diagrams for the MIPS R2000, as distributed in class! 

The EPC (Exception Program Counter) 

The Status Register 

The Cause Register 

some terms 

 Interrupt request -- the activation of hardware somewhere that signals the initial request for an 

interrupt. 

 pending interrupt -- an interrupt that has not been handled yet, but needs to be 

 Kernel -- the exception handler. In most minds, when people think of a kernel, they think of 

critical portions of an operating system. The exception handler is a critical portion of an operating 

system! 

 Handler -- the code of the exception handler. 

 nonreentrant -- what we talk about (mostly) in 354. While running an exception handler (the 

kernel), further pending interrupts are ignored. 

 reentrant -- An exception handler that is carefully crafted such that the handling of one exception 

can be interrupted to handle a second exception. 

about Jump Tables 

A clever mechanism for implementing a switch statement. A jump to one of many locations 

Keep a table of addresses (case1, case2, and case3): 

 

   JumpTable:  .word case0   # different syntax! 

        .word case1   # the address assigned to these labels 

        .word case2   #   becomes the contents of an array element 

  

     

    sll  $8, $8, 2          # case number shifted left 2 bits 

  

     # (need a word offset into table, not byte) 

    lw   $9, JumpTable($8)  # load address into $9 

    jr   $9                 # jump to address contained in $9 

 

    . 

    . 

    . 

 

 case0:   #code for case0 here 

    . 

    . 

    . 

 case1:   #code for case1 here 

    . 

    . 

    . 

 case2:   #code for case2 here 

 

Note that the cases do not have to go in any specific order. 

not-yet-seen Addressing mode: label($rb) 

Effective address is gotten by: label + ($rb) 

label does not fit into 16 bit displacement field of load/store instruction. So, the MAL->TAL synthesis of 

this must be something like: 

 

  la  $1, label 

  add $1, $1, $rb 
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Then use 0 ($1) as addressing mode in load/store instructions 
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some advanced topics 

Priorities 

 A problem: Multiple interrupt requests can arrive simultaneously. 

Which one should get handled first? 

Possible solutions: 

 FCFS -- the first one to arrive gets handled first. 

Difficulty 1) This might allow a malicious/recalcitrant device or program to gain control of the 

processor. 

Difficulty 2) There must be hardware that maintains an ordering of pending exceptions. (a queue) 

 Prioritize all exceptions -- the one with the highest priority gets handled first. This is a common 

method for solving the problem. 

Priorities for various exceptions are assigned either by the manufacturer, or by a system administrator 

through software. The priorities are normally defined (and fixed) when a machine is booted (the OS is 

started up). 

Difficulty 1) Exceptions with the same priority must still be handled in some order. Example of same 

priority exceptions might be all keyboard interrupts. Consider a machine with many terminals hooked 

up. 

The instructions fetch/execute cycle becomes: 

1. If any interrupts with a higher priority than whatever is currently running pending, handle them 

now 

2. instruction fetch 

3. PC update 

4. decode 

5. get operands 

6. do the instruction's operation 

7. put result away 

NOTE: This implies that there is some hardware notion of the priority for whatever code is currently 

running (application, keyboard interrupt handler, clock interrupt handler, etc.). 

Priorities are a matter of which is most urgent, and therefore cannot wait, and how long it takes to 

process the interrupt. 

 clock is urgent, clock interrupts occur frequently, and handling takes little processing, maybe 

only a variable increment. 

 power failure is very urgent, but takes a lot or processing, because the machine will be stopped. 

 overflow is urgent to the program which caused it, because the program cannot continue. 

 keyboard is urgent because we do not want to lose a second key press before the first is handled. 

So, what ordering ought to be imposed? 

Reentrant Exception Handlers 

The best solution combines priorities with an exception handler that can itself be interrupted. There are 

many details to get right to make this possible. 

 The instruction fetch/execute cycle remains the same. At the beginning of every instruction   (even 

those within the exception handler), a check is made to see 

 if there are pending interrupts 

 if listening for interrupts is enabled 

   

Only those with higher priorities than whatever is currently running will be processed. 

 The exception handler must be modified so that it can be interrupted. Its own state must be saved 

(safely). 

 

 

Within the handler: 

1. While interrupts are disabled, save important state that cannot get clobbered. (EPC, current 

priority level, maybe registers $26 and $27). 

Question: Where do these things get saved? 

2. Re-enable interrupts for devices with higher priorities than current level. If the priority level 
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checking is done in hardware, then all interrupts can be re-enabled. 

3. This invocation of the exception handler eventually finishes. 
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INTERRUPT INPUTS AND PENDING BEHAVIOUR 
 

 This section describes the behaviour of IRQ inputs and pending behaviour. It also applies to 

NMI input, except that an NMI will be executed immediately in most cases, unless the core is already 

executing an NMI handler, halted by a debugger, or locked up because of some serious system error. 

When an interrupt input is asserted, it will be pended, which means it is put into a state of waiting for the 

processor to process the request. Even if the interrupt source deasserts the interrupt, the pended interrupt 

status will still cause the interrupt handler to be executed when the priority is allowed.  

 Once the interrupt handler is started, the pending status is cleared automatically. This is shown 

in Figure. However, if the pending status is cleared before the processor starts responding to the pended 

interrupt (for example, the interrupt was not taken immediately because PRIMASK/FAULTMASK is set 

to 1, and the pending status was cleared by software writing to NVIC interrupt control registers), the 

interrupt can be cancelled (Figure 7.10). The pending status of the interrupt can be accessed in the NVIC 

and is writable, so you can clear a pending interrupt or use software to pend a new interrupt by setting 

the pending register. 

 

 
 When the processor starts to execute an interrupt, the interrupt becomes active and the pending 

bit will be cleared automatically (Figure 7.11). When an interrupt is active, you cannot start processing 

the same interrupt again, until the interrupt service routine is terminated with an interrupt return (also 

called an exception exit, as discussed in Chapter 9). Then the active status is cleared, and the interrupt 

can be processed again if the pending status is 1. It is possible to repend an interrupt before the end of 

the interrupt service routine. If an interrupt source continues to hold the interrupt request signal active, 

the interrupt will be pended again at the end of the interrupt service routine as shown in Figure. This is 

just like the traditional ARM7TDMI. If an interrupt is pulsed several times before the processor starts 

processing it, it will be treated as one single interrupt request as illustrated in Figure. If an interrupt is 

disserted and then pulsed again during the interrupt service routine, it will be pended again as shown in 

Figure. 
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Pending of an interrupt can happen even if the interrupt is disabled; the pended interrupt can then trigger 

the interrupt sequence when the enable is set later. As a result, before enabling an interrupt, it could be 

useful to check whether the pending register has been set. The interruptsource might have been activated 

previously and have set the pending status. If necessary, you can clear the pending status before you 

enable an interrupt. 

 

FAULT EXCEPTIONS: 
 

 Bus faults are produced when an error response is received during a transfer on the AHB 

interfaces. It can happen at these stages: • Instruction fetch, commonly called prefetch abort • Data 

read/write, commonly called data abort In the Cortex-M3, bus faults can also occur during the following: 

• Stack PUSH in the beginning of interrupt processing, called a stacking error • Stack POP at the end of 

interrupt processing, called an unstacking error • Reading of an interrupt vector address (vector fetch) 

when the processor starts the interrupthandling sequence (a special case classified as a hard fault) When 

these types of bus faults (except vector fetches) take place and if the bus fault handler is enabled and no 

other exceptions with the same or higher priority are running, the bus fault handler will be executed. If 

the bus fault handler is enabled but at the same time the core receives another exception handler with 

higher priority, the bus fault exception will be pending. Finally, if the bus fault handler is not enabled or 

when the bus fault happens in an exception handler that has the same or higher priority than the bus fault 

handler, the hard fault handler will be executed instead. If another bus fault takes place when running the 

hard fault handler, the core will enter a lockup state. 

 To enable the bus fault handler, you need to set the BUSFAULTENA bit in the System Handler 

Control and State register in the NVIC. Before doing that, make sure that the bus fault handler starting 

address is set up in the vector table if the vector table has been relocated to RAM. Hence, how do you 
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find out what went wrong when the processor entered the bus fault handler? The NVIC has a number of 

Fault Status registers (FSRs). One of them is the Bus Fault Status register (BFSR). From this register, the 

bus fault handler can find out if the fault was caused by data/instruction access or an interrupt stacking or 

unstacking operation.  
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For precise bus faults, the offending instruction can be located by the stacked program counter, 

and if the BFARVALID bit in BFSR is set, it is also possible to determine the memory location that 

caused the bus fault. This is done by reading another NVIC register called the Bus Fault Address 

register (BFAR). However, the same information is not available for imprecise bus faults because by the 

time the processor receives the error, the processor could have already executed a number of other 

instructions. 

 
 

Supervisor Call and Pendable Service Call: 
 

 Supervisor Call (SVC) and Pendable Service Call (PendSV) are two exceptions targeted at 

software and operating systems. SVC is for generating system function calls. For example, instead of 

allowing user programs to directly access hardware, an operating system may provide access to 

hardware through an SVC. So when a user program wants to use certain hardware, it generates the SVC 

exception using SVC instructions, and then the software exception handler in the operating system is 

executed and provides the service the user application requested. 

  In this way, access to hardware is under the control of the OS, which can provide a more robust 

system by preventing the user applications from directly accessing the hardware. SVC can also make 

software more portable because the user application does not need to know the programming details of 

the hardware. The user program will only need to know the application programming interface (API) 

function ID and parameters; the actual hardware-level programming is handled by device drivers. SVC 

exception is generated using the SVC instruction. An immediate value is required for this instruction, 

which works as a parameter-passing method. The SVC exception handler can then extract the parameter 

and determine what action it needs to perform.  

For example,  

 SVC #0x3; Call SVC function 3 

 The traditional syntax for SVC is also acceptable (without the ―#‖):  

 SVC 0x3; Call SVC function 3  

  

 For C language development, the SVC instruction can be generated using __svc function (for 

ARM Real View C Compiler or KEIL Microcontroller Development Kit for ARM), or using inline 

assembly in other C compilers. 
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 When the SVC handler is executed, you can determine the immediate data value in the SVC 

instruction by reading the stacked program counter value, then reading the instruction from that address 

and masking out the unneeded bits. If the system uses a Process Stack Pointer for user applications, you 

might need to determine which stack was used first. This can be determined from the link register value 

when the handler is entered. 

 Because of the interrupt priority model in the Cortex-M3, you cannot use SVC inside an SVC 

handler (because the priority is the same as the current priority). Doing so will result in a usage fault. For 

the same reason, you cannot use SVC in an NMI handler or a hard fault handler. 

  PendSV (Pendable Service Call) works with SVC in the OS. Although SVC (by SVC 

instruction) cannot be pended (an application calling SVC will expect the required task to be done 

immediately), PendSV can be pended and is useful for an OS to pend an exception so that an action can 

be performed after other important tasks are completed. PendSV is generated by writing 1 to the 

PENDSVSET bit in the NVIC Interrupt Control State register.  

 A typical use of PendSV is context switching (switching between tasks). For example, a system 

might have two active tasks, and context switching can be triggered by the following:  

• Calling an SVC function 

• The system timer (SYSTICK) Let‘s look at a simple example of having only two tasks in a system, 

and a context switch is triggered by SYSTICK exceptions (see Figure). If an interrupt request takes 

place before the SYSTICK exception, the SYSTICK exception will preempt the IRQ handler. In 

this case, the OS should not carry out the context switching. Otherwise the 
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NESTED VECTORED INTERRUPT CONTROLLER AND INTERRUPT CONTROL: 
 

 As we‘ve seen, the Nested Vectored Interrupt Controller (NVIC)is an integrated part of the 

Cortex™-M3 processor. It is closely linked to the Cortex-M3 CPU core logic. Its control registers are 

accessible as memory-mapped devices. Besides control registers and control logic for interrupt 

processing, the NVIC unit also contains control registers for the SYSTICK Timer, and debugging 

controls. In this chapter, we‘ll examine the control logic for interrupt processing. Memory Protection 

Unit and debugging control logic are discussed in later chapters. The NVIC supports 1–240 external 

interrupt inputs (commonly known as interrupt request [IRQs]). The exact number of supported 

interrupts is determined by the chip manufacturers when they develop their Cortex-M3 chips. In 

addition, the NVIC also has a Nonmaskable Interrupt (NMI) input. The actual function of the NMI is 

also decided by the chip manufacturer. In some cases, this NMI cannot be controlled from an external 

source. The NVIC can be accessed in the System Control Space (SCS) address range, which is memory 

location 0xE000E000. Most of the interrupt control/status registers are accessible only in privileged 

mode, except the Software Trigger Interrupt register (STIR), which can be set up to be accessible in user 

mode. The interrupt control/status register can be accessed in word, half word, or byte transfers. In 

addition, a few other interrupt-masking registers are also involved in the interrupts. They are the ―special 

registers‖ covered in Chapter 3 and are accessed through special registers access instructions: move 
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special register to general-purpose register (MRS) and move to special register from general-purpose 

register (MSR) instructions. 
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The Basic Interrupt Configuration  

    Each external interrupt has several registers associated with it.  

• Enable and Clear Enable registers 

• Set-Pending and Clear-Pending registers  

• Priority level  

• Active status In addition, a number of other registers can also affect the interrupt processing:  

• Exception-masking registers (PRIMASK, FAULTMASK, and BASEPRI)  

• Vector Table Offset register  

• STIR 

• Priority group 

 

Interrupt Enable and Clear Enable: 

 The Interrupt Enable register is programmed through two addresses. To set the enable bit, you 

need to write to the SETENA register address; to clear the enable bit, you need to write to the CLRENA 

register address. In this way, enabling or disabling an interrupt will not affect other interrupt enable 

states. The SETENA/CLRENA registers are 32 bits wide; each bit represents one interrupt input. As 

there could be more than 32 external interrupts in the Cortex-M3 processor, you might find more than 

one SETENA and CLRENA register—for example, SETENA0, SETENA1, and so on. Only the enable 

bits for interrupts that exist are implemented. So, if you have only 32 interrupt inputs, you will only have 

SETENA0 and CLRENA0. The SETENA and CLRENA registers can be accessed as word, half word, 

or byte. As the first 16 exception types are system exceptions, external Interrupt #0 has a start exception 

number of 16. 

Interrupt Set Pending and Clear Pending: 

 If an interrupt takes place but cannot be executed immediately (for instance, if another higher-

priority interrupt handler is running), it will be pended. The interrupt-pending status can be accessed 

through the Interrupt Set Pending (SETPEND) and Interrupt Clear Pending (CLRPEND) registers. 

Similarly to the enable registers, the pending status controls might contain more than one register if there 

are more than 32 external interrupt inputs.  

 The values of pending status registers can be changed by software, so you can cancel a current 

pended exception through the CLRPEND register, or generate software interrupts through the 

SETPEND register. 

 

Priority Levels: 

 Each external interrupt has an associated priority-level register, which has a maximum width of 

8 bits and a minimum width of 3 bits. As described in the previous chapter, each register can be further 

divided into preempt priority level and subpriority level based on priority group settings. The 

prioritylevel registers can be accessed as byte, half word, or word. The number of priority-level registers 

depends on how many external interrupts the chip contains. 
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CONFIGURATION REGISTERS FOR OTHER EXCEPTIONS: 

 Usage faults, memory management faults, and bus fault exceptions are enabled by the System 

Handler Control and State register (0xE000ED24). The pending status of faults and active status of most 

system exceptions are also available from this register. 
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SYSTICK TIMER: 

 

          The SYSTICK Timer is integrated with the NVIC and can be used to generate a SYSTICK 

exception (exception type #15). In many operating systems, a hardware timer is used to generate 

interrupts so that the OS can carry out task management—for example, to allow multiple tasks to run at 

different time slots and to make sure that no single task can lock up the whole system. To do that, the 

timer needs to be able to generate interrupts, and if possible, it should be protected from user tasks so 

that user applications cannot change the timer behaviour. 

          The Cortex-M3 processor includes a simple timer. Because all Cortex-M3 chips have the same 

time, porting software between different Cortex-M3 products is simplified. The timer is a 24-bit down 

counter. It can use the internal free running processor clock signal on the Cortex-M3 processor or an 

external reference clock (documented as the STCLK signal on the Cortex-M3 TRM). However, the 

source of the STCLK will be decided by chip designers, so the clock frequency might vary between 

products. You should check the chip‘s datasheet carefully when selecting a clock source.  

              The SYSTICK Timer can be used to generate interrupts. It has a dedicated exception type and 

exception vector. It makes porting operating systems and software easier because the process will be the 

same across different Cortex-M3 products. The SYSTICK Timer is controlled by four registers, shown 

in Tables 8.9–8.12. 

              The Calibration Value register provides a solution for applications to generate the same 

SYSTICK interrupt interval when running on various Cortex-M3 products. To use it, just write the value 

in TENMS to the reload value register. This will give an interrupt interval of about 10 ms. For other 

interrupt timing intervals, the software code will need to calculate a new suitable value from the 

calibration value. However, the TENMS field might not be available in all Cortex-M3 products (the 

calibration input signals to the Cortex-M3 might have been tied low), so check with your manufacturer‘s 

datasheets before using this feature.  

               Aside from being a system tick timer for operating systems, the SYSTICK Timer can be used 

in a number of ways: as an alarm timer, for timing measurement, and more. Note that the SYSTICK
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Timer stops counting when the processor is halted during debugging. Depending on the design of the 

microcontroller, the SysTick Timer could also be stopped when the processor enters certain type of sleep 

modes. 

 To set up the SysTick Timer, the recommended programming sequence is as follows:  

• Disable SysTick by writing 0 to the SYSTICK Control and Status register. 

• Write new reload value to the SYSTICK Reload Value register. 

• Write to the SYSTICK Current Value register to clear the current value to 0. 

• Write to the SYSTICK Control and Status register to start the SysTick timer.  
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This programming sequence can be used on all Cortex-M3 processors. 

 

Interrupt Sequences: 

When an exception takes place, a number of things happen, such as  

• Stacking (pushing eight registers‘ contents to stack)  

• Vector fetch (reading the exception handler starting address from the vector table)  

• Update of the stack pointer, link register (LR), and program counter (PC) 

 

Stacking: 

  When an exception takes place, the registers R0–R3, R12, LR, PC, and Program Status (PSR) 

are pushed to the stack. If the code that is running uses the Process Stack Pointer (PSP), the process 

stack will be used; if the code that is running uses the Main Stack Pointer (MSP), the main stack will be 

used. Afterward, the main stack will always be used during the handler, so all nested interrupts will use 

the main stack.  

 The block of eight words of data being pushed to the stack is commonly called a stack frame. 

Prior to Cortex™-M3 revision 2, the stack frame was started in any word address by default. In Cortex-

M3 revision 2, the stack frame is aligned to double word address by default, although the alignment 

feature can be turned off by programming the STKALIGN bit in Nested Vectored Interrupt Controller 

(NVIC) Configuration Control register to zero. The stack frame feature is also available in Cortex-M3 

revision 1, but it needs to be enabled by writing 1 to the STKALIGN bit. More details on this register 

can be found in Chapter 12. The data arrangement inside an exception stack frame is shown in Figure 

9.1.  

 The order of stacking is shown in Figure 9.2 (assuming that the stack pointer [SP] value is N 

after the exception). Due to the pipeline nature of the Advanced High-Performance Bus (AHB) interface, 

the address and data are offset by one pipeline state. The values of PC and PSR are stacked first so that 

instruction fetch can be started early (which requires modification of PC) and the Interrupt Program 

Status register (IPSR) can be updated early. After stacking, SP will be updated, and the stacked data 

arrangement in the stack memory will look like Figure 9.1. The reason the registers R0–R3, R12, LR, 

PC, and PSR are stacked is that these are caller-saved registers, according to C standards(C/C++ 

standard Procedure Call Standard for the ARM Architecture. 
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Exception Exits: 

         At the end of the exception handler, an exception exit (known as an interrupt return in some 

processors) is required to restore the system status so that the interrupted program can resume normal 

execution. There are three ways to trigger the interrupt return sequence; all of them use the special value 

stored in the LR in the beginning of the handler (see Table 9.1). 

          Some microprocessor architectures use special instructions for interrupt returns (for example, reti 

in 8051). In the Cortex-M3, a normal return instruction is used so that the whole interrupt handler can be 

implemented as a C subroutine.  

           When the interrupt return instruction is executed, the unstacking and the NVIC registers update 

processes that are listed in Table are carried out. 
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TAIL-CHAINING INTERRUPTS: 

         The Cortex-M3 uses a number of methods to improve interrupt latency. The first one we‘ll look at 

is tail chaining. When an exception takes place but the processor is handling another exception of the 

same or higher priority, the exception will enter pending state. When the processor has finished 

executing the current exception handler, it can then process the pended interrupt. Instead of restoring the 

registers back from the stack (unstacking) and then pushing them onto the stack again (stacking), the 

processor skips the unstacking and stacking steps and enters the exception handler of the pended 

exception as soon as possible. In this way, the timing gap between the two exception handlers is 

considerably reduced. 

 
 

INTERRUPT LATENCY: 

            The term interrupt latency refers to the delay from the start of the interrupt request to the start of 

interrupt handler execution. In the Cortex-M3 processor, if the memory system has zero latency, and 

provided that the bus system design allows vector fetch and stacking to happen at the same time, the 

interrupt latency can be as low as 12 cycles. This includes stacking the registers, vector fetch, and 

fetching instructions for the interrupt handler. However, this depends on memory access wait states and 

a few other factors.  

              For tail-chaining interrupts, since there is no need to carry out stacking operations, the latency 

of switching from one exception handler to another exception handler can be as low as six cycles. When 

the processor is executing a multicycle instruction, such as divide, the instruction could be abandoned 

and restarted after the interrupt handler completes. This also applies to load double (LDRD) and store 

double (STRD) instructions.  

             To reduce exception latency, the Cortex-M3 processor allows exceptions in the middle of 

Multiple Load and Store instructions (LDM/STM). If the LDM/STM instruction is executing, the current 

memory accesses will be completed, and the next register number will be saved in the stacked xPSR 

(Interrupt-Continuable Instruction [ICI] bits). After the exception handler completes, the multiple load/ 

store will resume from the point at which the transfer stopped. There is a corner case: If the multiple 

load/store instruction being interrupted is part of an IF-THEN (IT) instruction block, the load/store 

instruction will be cancelled and restarted when the interrupt is completed. This is because the ICI bits 

and IT execution status bits share the same space in the Execution  

Program Status Register (EPSR).  

            In addition, if there is an outstanding transfer on the bus interface, such as a buffered write, the 

processor will wait until the transfer is completed. This is necessary to ensure that a bus fault handler 

preempts the correct process.  

             Of course, the interrupt could be blocked if the processor is already executing another exception 

handler of the same or higher priority or if the Interrupt Mask register was masking the interrupt request. 

In these cases, the interrupt will be pended and will not be processed until the blocking is removed. 
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UNIT-III 

LPC 17XX MICROCONTROLLER 

 
General description 

  The LPC1769/68/67/66/65/64/63 are ARM Cortex-M3 based microcontrollers for embedded 

applications featuring a high level of integration and low power consumption. The Arm Cortex-M3 is a 

next generation core that offers system enhancements such as enhanced debug features and a higher level 

of support block integration. 

  The LPC1768/67/66/65/64/63 operate at CPU frequencies of up to 100 MHz. The LPC1769 

operates at CPU frequencies of up to 120 MHz. The Arm Cortex-M3 CPU incorporates a 3-stage pipeline 

and uses Harvard architecture with separate local instruction and data buses as well as a third bus for 

peripherals. The Arm Cortex-M3 CPU also includes an internal prefetch unit that supports speculative 

branching. 

  The peripheral complement of the LPC1769/68/67/66/65/64/63 includes up to 512 kB of flash 

memory, up to 64 kB of data memory, Ethernet MAC, USB Device/Host/OTG interface, 8-channel 

general purpose DMA controller, 4 UARTs, 2 CAN channels, 2 SSP controllers, SPI interface, 3 I2C-bus 

interfaces, 2-input plus 2-output I2S-bus interface, 

8-channel 12-bit ADC, 10-bit DAC, motor control PWM, Quadrature Encoder interface, four general 

purpose timers, 6-output general purpose PWM, ultra-low power Real-Time Clock (RTC) with separate 

battery supply, and up to 70 general purpose I/O pins. 

  The LPC1769/68/67/66/65/64/63 is pin-compatible to the 100-pin LPC236x Arm7-based 

microcontroller series. 

 

Features and benefits 

 Arm Cortex-M3 processor, running at frequencies of up to 100 MHz (LPC1768/67/66/65/64/63) 

or of up to 120 MHz (LPC1769). A Memory Protection Unit (MPU) supporting eight regions is 

included. 

 Arm Cortex-M3 built-in Nested Vectored Interrupt Controller (NVIC). 

 Up to 512 kB on-chip flash programming memory. Enhanced flash memory accelerator enables 

high-speed 120 MHz operation with zero wait states. 

 In-System Programming (ISP) and In-Application Programming (IAP) via on-chip bootloader 

software. 

On-chip SRAM includes: 

1. 2/16 kB of SRAM on the CPU with local code/data bus for high-performance CPU access. 

2. These SRAM blocks may be used for Ethernet, USB, and DMA memory, as well as for general 

purpose CPU instruction and data storage. 
3. Eight channel General Purpose DMA controller (GPDMA) on the AHB multilayer matrix that 

can be used with SSP, I2S-bus, UART, Analog-to-Digital and 

4. Digital-to-Analog converter peripherals, timer match signals, and for memory-to-memory 

transfers. 

5. Multilayer AHB matrix interconnect provides a separate bus for each AHB master. AHB 

masters include the CPU, General Purpose DMA controller, Ethernet MAC, and the USB 

interface. This interconnect provides communication with no arbitration delays. 

6. Split APB bus allows high throughput with few stalls between the CPU and DMA. 
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Serial interfaces: 

a. Ethernet MAC with RMII interface and dedicated DMA controller. (Not available on all parts, 

see Table 2.) 

b. USB 2.0 full-speed device/Host/OTG controller with dedicated DMA controller and on-chip 

PHY for device, Host, and OTG functions. (Not available on all parts, see Table 2.) 

c. Four UARTs with fractional baud rate generation, internal FIFO, and DMA support. One UART 

has modem control I/O and RS-485/EIA-485 support, and one UART has IrDA support. 

d. CAN 2.0B controller with two channels. (Not available on all parts, see Table 2.) 

e. SPI controller with synchronous, serial, full duplex communication and programmable data 

length. 

f. Two SSP controllers with FIFO and multi-protocol capabilities. The SSP interfaces can be used 

with the GPDMA controller. 

g. Three enhanced I2C bus interfaces, one with an open-drain output supporting full I2C 

specification and Fast mode plus with data rates of 1 Mbit/s, two with standard port pins. 

Enhancements include multiple address recognition and monitor mode. 

h. I2S (Inter-IC Sound) interface for digital audio input or output, with fractional rate control. The 

I2S-bus interface can be used with the GPDMA. The I2S-bus interface supports 3-wire and 4-

wire data transmit and receive as well as master clock input/output. (Not available on all parts, 

see Table 2.) 

Other peripherals: 

 70 (100 pin package) General Purpose I/O (GPIO) pins with configurable 

 pull-up/down resistors. All GPIOs support a new, configurable open-drain operating mode. The 

GPIO block is accessed through the AHB multilayer bus for fast access and located in memory 

such that it supports Cortex-M3 bit banding and use by the General Purpose DMA Controller. 

 12-bit Analog-to-Digital Converter (ADC) with input multiplexing among eight pins, conversion 

rates up to 200 kHz, and multiple result registers. The 12-bit ADC can be used with the 

GPDMA controller. 

 10-bit Digital-to-Analog Converter (DAC) with dedicated conversion timer and DMA support. 

(Not available on all parts, see Table 2) 

 Four general purpose timers/counters, with a total of eight capture inputs and ten compare 

outputs. Each timer block has an external count input. Specific timer events can be selected to 

generate DMA requests. 

 One motor control PWM with support for three-phase motor control. 

 Zuadrature encoder interface that can monitor one external quadrature encoder. 

 One standard PWM/timer block with external count input. 

 RTC with a separate power domain and dedicated RTC oscillator. The RTC block includes 20 

bytes of battery-powered backup registers. 

 WatchDog Timer (WDT). The WDT can be clocked from the internal RC oscillator, the RTC 

oscillator, or the APB clock. 

 Arm Cortex-M3 system tick timer, including an external clock input option. 

 Repetitive interrupt timer provides programmable and repeating timed interrupts. 

 Each peripheral has its own clock divider for further power savings. 

 Standard JTAG debug interface for compatibility with existing tools. Serial Wire Debug and 

Serial Wire Trace Port options. Boundary Scan Description Language (BSDL) is not available 

for this device. 

 Emulation trace module enables non-intrusive, high-speed real-time tracing of instruction 

execution. 

 Integrated PMU (Power Management Unit) automatically adjusts internal regulators to minimize 

power consumption during Sleep, Deep sleep, Power-down, and Deep power-down modes. 

 Four reduced power modes: Sleep, Deep-sleep, Power-down, and Deep power-down. 
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 Single 3.3 V power supply (2.4 V to 3.6 V). 

 Four external interrupt inputs configurable as edge/level sensitive. All pins on Port 0 and Port 2 

can be used as edge sensitive interrupt sources. 

 Non-maskable Interrupt (NMI) input. 

 Clock output function that can reflect the main oscillator clock, IRC clock, RTC clock, CPU 

clock, and the USB clock. 

 The Wake-up Interrupt Controller (WIC) allows the CPU to automatically wake up from any 

priority interrupt that can occur while the clocks are stopped in deep sleep, Power-down, and 

Deep power-down modes. 

 Processor wake-up from Power-down mode via any interrupt able to operate during Power-

down mode (includes external interrupts, RTC interrupt, USB activity, Ethernet wake-up 

interrupt, CAN bus activity, Port 0/2 pin interrupt, and NMI). 

 Brownout detect with separate threshold for interrupt and forced reset. 

 Power-On Reset (POR). 

 Crystal oscillator with an operating range of 1 MHz to 25 MHz. 

 4 MHz internal RC oscillator trimmed to 1 % accuracy that can optionally be used as a system 

clock. 

 PLL allows CPU operation up to the maximum CPU rate without the need for a 

 high-frequency crystal. May be run from the main oscillator, the internal RC oscillator, or the 

RTC oscillator. 

 USB PLL for added flexibility. 

 Code Read Protection (CRP) with different security levels. 

 Unique device serial number for identification purposes. 

 Available as LQFP100 (14 mm  14 mm  1.4 mm), TFBGA1001 (9 mm  9 mm  0.7 mm), 

and WLCSP100 (5.07  5.07  0.53 mm) package. 

 

Applications 
 eMetering  

 Lighting 

 Industrial networking 

 Alarm systems 

 White goods 

 Motor control 
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BLOCK DIAGRAM OF LPC176XX 

 

 

 

PINNING INFORMATION 
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Pin description 
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• 5 V tolerant pad providing digital I/O functions with TTL levels and hysteresis. This pin is pulled 

up to a voltage level of 2.3 V to 2.6 V. 

• 5 V tolerant pad providing digital I/O functions (with TTL levels and hysteresis) and analog input. 

When configured as a ADC input, digital section of the pad is disabled and the pin is not 5 V 

tolerant. This pin is pulled up to a voltage level of 2.3 V to 2.6 V. 

• 5 V tolerant pad providing digital I/O with TTL levels and hysteresis and analog output function. 

When configured as the DAC output, digital section of the pad is disabled. This pin is pulled up to a 

voltage level of 2.3 V to 2.6 V. 

• Open-drain 5 V tolerant digital I/O pad, compatible with I2C-bus 400 kHz specification. This pad 

requires an external pull-up to provide output functionality. When power is switched off, this pin 

connected to the I2C-bus is floating and does not disturb the I2C lines. Open-drain configuration 

applies to all functions on this pin. 

• Pad provides digital I/O and USB functions. It is designed in accordance with the USB 

specification, revision 2.0 (Full-speed and Low-speed mode only). This pad is not 5 V tolerant. 

• 5 V tolerant pad with 10 ns glitch filter providing digital I/O functions with TTL levels and 

hysteresis. This pin is pulled up to a voltage level of 2.3 V to 2.6 V. 

• 5 V tolerant pad with TTL levels and hysteresis. Internal pull-up and pull-down resistors disabled. 

• 5 V tolerant pad with TTL levels and hysteresis and internal pull-up resistor. 

• 5 V tolerant pad with 20 ns glitch filter providing digital I/O function with TTL levels and 

hysteresis. 

• Pad provides special analog functionality. A 32 kHz crystal oscillator must be used with the RTC. 

• When the system oscillator is not used, connect XTAL1 and XTAL2 as follows: XTAL1 can be left 

floating or can be grounded (grounding is preferred to reduce susceptibility to noise). XTAL2 

should be left floating. 

• When the RTC is not used, connect VBAT to VDD(REG)(3V3) and leave RTCX1 floating. 

 

 

Functional description 
 

Architectural overview 
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Remark: In the following, the notation LPC17xx refers to all parts: LPC1769/68/67/66/65/64/63. 

 The Arm Cortex-M3 includes three AHB-Lite buses: the system bus, the I-code bus, and the D-

code bus. The I-code and D-code core buses are faster than the system bus and are used similarly to 

TCM interfaces: one bus dedicated for instruction fetch (I-code) and one bus for data access (D-code). 

The use of two core buses allows for simultaneous operations if concurrent operations target different 

devices. 

 The LPC17xx use a multi-layer AHB matrix to connect the Arm Cortex-M3 buses and other bus 

masters to peripherals in a flexible manner that optimizes performance by allowing peripherals that 

are on different slaves ports of the matrix to be accessed simultaneously by different bus masters. 

 
• Arm Cortex-M3 processor 

 The Arm Cortex-M3 is a general purpose, 32-bit microprocessor, which offers high performance 

and very low power consumption. The Arm Cortex-M3 offers many new features, including a 

Thumb-2 instruction set, low interrupt latency, hardware divide, interruptible/continuable multiple 

load and store instructions, automatic state save and restore for interrupts, tightly integrated interrupt 

controller with wake-up interrupt controller, and multiple core buses capable of simultaneous 

accesses. 

 Pipeline techniques are employed so that all parts of the processing and memory systems can 

operate continuously. Typically, while one instruction is being executed, its successor is being 

decoded, and a third instruction is being fetched from memory. 

 

On-chip flash program memory 

 The LPC17xx contain up to 512 kB of on-chip flash memory. A new two-port flash accelerator 

maximizes performance for use with the two fast AHB-Lite buses. 

 

On-chip SRAM 

 The LPC17xx contain a total of 64 kB on-chip static RAM memory. This includes the main 32 

kB SRAM, accessible by the CPU and DMA controller on a higher-speed bus, and two additional 16 

kB each SRAM blocks situated on a separate slave port on the AHB multilayer matrix. 

 This architecture allows CPU and DMA accesses to be spread over three separate RAMs that can 

be accessed simultaneously. 

 

Memory Protection Unit (MPU) 

 The LPC17xx have a Memory Protection Unit (MPU) which can be used to improve the 

reliability of an embedded system by protecting critical data within the user application. 

 

 The MPU allows separating processing tasks by disallowing access to each other's data, 

disabling access to memory regions, allowing memory regions to be defined as read-only and 

detecting unexpected memory accesses that could potentially break the system. 

 The MPU separates the memory into distinct regions and implements protection by preventing 

disallowed accesses. The MPU supports up to 8 regions each of which can be divided into 8 

subregions. Accesses to memory locations that are not defined in the MPU regions, or not permitted 

by the region setting, will cause the Memory Management Fault exception to take place. 
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• Memory map 

 The LPC17xx incorporates several distinct memory regions, shows the overall map of the entire 

address space from the user program viewpoint following reset. The interrupt vector area supports 

address remapping. 

 The AHB peripheral area is 2 MB in size and is divided to allow for up to 128 peripherals. The 

APB peripheral area is 1 MB in size and is divided to allow for up to 64 peripherals. Each peripheral 

of either type is allocated 16 kB of space. This allows simplifying the address decoding for each 

peripheral. 
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LPC17xx memory map

 
 

Nested Vectored Interrupt Controller (NVIC) 

The NVIC is an integral part of the Cortex-M3. The tight coupling to the CPU allows for low 

interrupt latency and efficient processing of late arriving interrupts. 

 

Features 

 Controls system exceptions and peripheral interrupts 

 In the LPC17xx, the NVIC supports 33 vectored interrupts 

 32 programmable interrupt priority levels, with hardware priority level masking 

 Relocatable vector table 

 Non-Maskable Interrupt (NMI) 

 Software interrupt generation 

 

 

 

Interrupt sources 

 Each peripheral device has one interrupt line connected to the NVIC but may have several 

interrupt flags. Individual interrupt flags may also represent more than one interrupt source. 
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 Any pin on Port 0 and Port 2 (total of 42 pins) regardless of the selected function, can be 

programmed to generate an interrupt on a rising edge, a falling edge, or both. 

 

 

Pin connect block 

 The pin connect block allows selected pins of the microcontroller to have more than one 

function. Configuration registers control the multiplexers to allow connection between the pin 

and the on-chip peripherals. 

 Peripherals should be connected to the appropriate pins prior to being activated and prior to any 

related interrupt(s) being enabled. Activity of any enabled peripheral function that is not mapped to 

a related pin should be considered undefined. 

 Most pins can also be configured as open-drain outputs or to have a pull-up, pull-down, or no 

resistor enabled. 

 

General purpose DMA controller 

 The GPDMA is an AMBA AHB compliant peripheral allowing selected peripherals to have 

DMA support. 

 The GPDMA enables peripheral-to-memory, memory-to-peripheral, 

peripheral-to-peripheral, and memory-to-memory transactions. The source and destination areas 

can each be either a memory region or a peripheral, and can be accessed through the AHB master. 

The GPDMA controller allows data transfers between the USB and Ethernet controllers and the 

various on-chip SRAM areas. The supported APB peripherals are SSP0/1, all UARTs, the I2S-bus 

interface, the ADC, and the DAC. Two match signals for each timer can be used to trigger DMA 

transfers. 

Remark: The Ethernet controller is available on parts LPC1769/68/67/66/64. The USB controller 

is available on parts LPC1769/68/66/65/64. The I2S-bus interface is available on parts 

LPC1769/68/67/66/65. The DAC is available on parts LPC1769/68/67/66/65/63. 

 

     Features 

 Eight DMA channels. Each channel can support an unidirectional transfer. 

 16 DMA request lines. 

 Single DMA and burst DMA request signals. Each peripheral connected to the DMA 

Controller can assert either a burst DMA request or a single DMA request. The DMA 

burst size is set by programming the DMA Controller. 

 Memory-to-memory, memory-to-peripheral, peripheral-to-memory, and peripheral-to-

peripheral transfers are supported. 

 Scatter or gather DMA is supported through the use of linked lists. This means that the 

source and destination areas do not have to occupy contiguous areas of memory. 

 Hardware DMA channel priority. 

 AHB slave DMA programming interface. The DMA Controller is programmed by writing 

to the DMA control registers over the AHB slave interface. 

 One AHB bus master for transferring data. The interface transfers data when a DMA 

request goes active. 

 32-bit AHB master bus width. 
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 Incrementing or non-incrementing addressing for source and destination. 

 Programmable DMA burst size. The DMA burst size can be programmed to more 

efficiently transfer data. 

 Internal four-word FIFO per channel. 

 Supports 8, 16, and 32-bit wide transactions. 

 Big-endian and little-endian support. The DMA Controller defaults to little-endian mode 

on reset. 

 An interrupt to the processor can be generated on a DMA completion or when a DMA 

error has occurred. 

 Raw interrupt status. The DMA error and DMA count raw interrupt status can be read 

prior to masking. 

 

Fast general purpose parallel I/O 

 Device pins that are not connected to a specific peripheral function are controlled by the GPIO 

registers. Pins may be dynamically configured as inputs or outputs. Separate registers allow setting 

or clearing any number of outputs simultaneously. The value of the output register may be read 

back as well as the current state of the port pins. 

LPC17xx use accelerated GPIO functions: 

• GPIO registers are accessed through the AHB multilayer bus so that the fastest possible I/O 

timing can be achieved. 

• Mask registers allow treating sets of port bits as a group, leaving other bits unchanged. 

• All GPIO registers are byte and half-word addressable. 

• Entire port value can be written in one instruction. 

• Support for Cortex-M3 bit banding. 

• Support for use with the GPDMA controller. 

 Additionally, any pin on Port 0 and Port 2 (total of 42 pins) providing a digital function can be 

programmed to generate an interrupt on a rising edge, a falling edge, or both. The edge detection 

is asynchronous, so it may operate when clocks are not present such as during Power-down mode. 

Each enabled interrupt can be used to wake up the chip from Power-down mode. 

 

Features 

 Bit level set and clear registers allow a single instruction to set or clear any number of bits 

in one port. 

 Direction control of individual bits. 

 All I/O default to inputs after reset. 

Pull-up/pull-down resistor configuration and open-drain configuration can be programmed 

through the pin connect block for each GPIO pin 

 

Ethernet 

Remark: The Ethernet controller is available on parts LPC1769/68/67/66/64. The Ethernet block 

supports bus clock rates of up to 100 MHz (LPC1768/67/66/64) or 120 MHz (LPC1769). 

 The Ethernet block contains a full featured 10 Mbit/s or 100 Mbit/s Ethernet MAC designed to 
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provide optimized performance through the use of DMA hardware acceleration. Features include a 

generous suite of control registers, half or full duplex operation, flow control, control frames, 

hardware acceleration for transmit retry, receive packet filtering and wake-up on LAN activity. 

Automatic frame transmission and reception with scatter-gather DMA off-loads many operations 

from the CPU. 

 The Ethernet block and the CPU share the Arm Cortex-M3 D-code and system bus through the 

AHB-multilayer matrix to access the various on-chip SRAM blocks for Ethernet data, control, and 

status information. 

 The Ethernet block interfaces between an off-chip Ethernet PHY using the Reduced MII (RMII) 

protocol and the on-chip Media Independent Interface Management (MIIM) serial bus. 

Features 

• Ethernet standards support: 

• Supports 10 Mbit/s or 100 Mbit/s PHY devices including 10 Base-T, 100 Base-TX, 100 Base-FX, 

and 100 Base-T4. 

• Fully compliant with IEEE standard 802.3. 

• Fully compliant with 802.3x full duplex flow control and half duplex back pressure. 

• Flexible transmit and receive frame options. 

• Virtual Local Area Network (VLAN) frame support. 

• Memory management: 

• Independent transmit and receive buffers memory mapped to shared SRAM. 

• DMA managers with scatter/gather DMA and arrays of frame descriptors. 

• Memory traffic optimized by buffering and pre-fetching. 

• Enhanced Ethernet features: 

• Receive filtering. 

• Multicast and broadcast frame support for both transmit and receive. 

• Optional automatic Frame Check Sequence (FCS) insertion with Cyclic Redundancy Check (CRC) 

for transmit. 

• Selectable automatic transmit frame padding. 

• Over-length frame support for both transmit and receive allows any length frames. 

• Promiscuous receive mode. 

• Automatic collision back-off and frame retransmission. 

• Includes power management by clock switching. 

• Wake-on-LAN power management support allows system wake-up: using the receive filters or a 

magic frame detection filter. 

• Physical interface: 

• Attachment of external PHY chip through standard RMII interface. 

• PHY register access is available via the MIIM interface. 

 

       USB host controller 

 The host controller enables full- and low-speed data exchange with USB devices attached to the 
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bus. It consists of a register interface, a serial interface engine, and a DMA controller. The 

register interface complies with the OHCI specification. 

 

       Features 

• OHCI compliant. 

• One downstream port. 

• Supports port power switching. 

      USB OTG controller 

 USB OTG is a supplement to the USB 2.0 specification that augments the capability of 

existing mobile devices and USB peripherals by adding host functionality for connection to USB 

peripherals. 

 The OTG Controller integrates the host controller, device controller, and a master-only I2C-

bus interface to implement OTG dual-role device functionality. The dedicated I2C-bus interface 

controls an external OTG transceiver. 

 

      Features 

 Fully compliant with On-The-Go supplement to the USB 2.0 Specification, Revision 

1.0a. 

 Hardware support for Host Negotiation Protocol (HNP). 

 Includes a programmable timer required for HNP and Session Request Protocol (SRP). 

 Supports any OTG transceiver compliant with the OTG Transceiver Specification 

(CEA-2011), Rev. 1.0. 

 

      CAN controller and acceptance filters 

Remark: The CAN controllers are available on parts LPC1769/68/66/65/64.  

 

The Controller Area Network (CAN) is a serial communications protocol which efficiently 

supports distributed real-time control with a very high level of security. Its domain of application 

ranges from high-speed networks to low cost multiplex wiring. 

The CAN block is intended to support multiple CAN buses simultaneously, allowing the device to 

be used as a gateway, switch, or router among a number of CAN buses in industrial or automotive 

applications. 

        Features 

 Two CAN controllers and buses. 

 Data rates to 1 Mbit/s on each bus. 

 32-bit register and RAM access. 

 Compatible with CAN specification 2.0B, ISO 11898-1. 

 Global Acceptance Filter recognizes standard (11-bit) and extended-frame (29-bit) receive 

identifiers for all CAN buses. 

 Acceptance Filter can provide FullCAN-style automatic reception for selected Standard 

Identifiers. 

 FullCAN messages can generate interrupts. 
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 GPIOs 
     GPIO in Cortex-M3 LPC1768 Microcontroller is the most basic peripheral. GPIO, General 

Purpose Input Output is what let‘s your microcontroller be something more than a weak auxiliary 

processor. With it you can interact with physical world, connecting up other devices and turning 

your microcontroller into something useful. GPIO has two fundamental operating modes, input and 

output. Input let‘s you read the voltage on a pin, to see whether it‘s held low(0V) or high(3V) and 

deal with that information programmatically. Output let‘s you set the voltage on a pin, again either 

high or low. 

 Every pin on LPC1768 can be used as GPIO pin and can be independently set to act as input or 

output. In next tutorial we‘ll get you into how to achieve this goal. I mean reading the status of 

switch and making LED blink. But for now we only have to look at basics, which is very important 

to understand before we go and build application. Depending on LPC17xx version the pin out 

maybe different. Here we‘ll focus on 100 pin LPC1768 as an example. Please keep LPC1768 User 

Manual with you [Chapter: 9, Page No:129]. pins on LPC1768 are divided into 5 groups (PORTs) 

starting from 0 to 4. Pin naming convention: P0.0 (group 0, pin 0) or (port 0, pin 0). Each pin has 4 

operating modes: GPIO(default), 1st alternate function, 2nd alternate function, 3rd alternate 

function. Almost all GPIO pins are powered automatically so we don‘t need to turn them on 

always. Let‘s have a look at details about configuration of these GPIO port pins. 

  

Pin Function Setting 

 
The LPC_PINCON register controls operating mode of these pin. 

LPC_PINCON –> PINSEL0 [1:0] control PIN 0.0 operating mode. 

[Page No: 102, Table: 74]. 

……. 

LPC_PINCON –> PINSEL0 [31:30] control PIN 0.15 operating mode. 

LPC_PINCON –> PINSEL1 [1:0] control PIN 0.16 operating mode. 

…….. 

LPC_PINCON –> PINSEL1 [29:28] control PIN 0.30 operating mode. 

LPC_PINCON –> PINSEL2 [1:0] control PIN 1.0 operating mode. 

…….. 

LPC_PINCON –> PINSEL2 [31:30] control PIN 1.15 operating mode 

LPC_PINCON –> PINSEL3 [1:0] control PIN 1.16 operating mode 

……… 

LPC_PINCON –> PINSEL3 [31:30] control PIN 1.31 operating mode 

…….. 

LPC_PINCON –> PINSEL9 [25:24] control PIN 4.28 operating mode 

LPC_PINCON –> PINSEL9 [27:26] control PIN 4.29 operating mode 

 

NOTE: some register bits are reserved and are not used to control a pin for example, 

LPC_PINCON –> PINSEL9 [23:0] are reserved. 

LPC_PINCON –> PINSEL9 [31:28] are reserved. 
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Example: 

To set pin 0.3 as GPIO (set corresponding bit to 00) 

LPC_PINCON –> PINSEL0 &= ~ ((1<<7) | (1<<6)); 

 

To set pin 0.3 as ADC channel 0.6 (2nd alternate function, set corresponding bit to 10) 

LPC_PINCON –> PINSEL0 &= ((1<<7) | (0<<6)); // you may omit (0<<6) 

 

 Pin Direction Setting 
 Register LPC_GPIOn –> FIODIR [31:0] control the pin input/output, where ‗n‘ stands for pin 

group (0-4). To set a pin as output, set the corresponding bit to ‗1‘. To set a pin as input, set the 

corresponding bit to ‗0‘, by default, all pins are set as input (all bits are 0). 

Example: 

To set 0.3 as output 

LPC_GPIO –> FIODIR |= (1<<3); 

 

Pin is Set as Output 
A pin digital high/low setting 

LPC_GPIOn –> FIOSET is used to turn a pin to HIGH. Register LPC_GPIOn –> FIOCLR is used to 

turn a pin to low. To turn a pin to digital ‗1‘ (high), set the corresponding bit of LPC_GPIOn –> 

FIOSET to 1. To turn a pin to digital ‗0‘ (low), set the corresponding bit of LPC_GPIOn –> FIOCLR to 

1. 

Example 

Turn Pin 0.3 to high 

LPC_GPIO0 –> FIOSET |= (1<<3); 

If we set LPC_GPIOn –> FIOSET bit to ‗0‘ there is no effect. 

Turn Pin 0.3 to low 

LPC_GPIO0 –> FIOCLR |= (1<<3); 

If we set LPC_GPIOn –> FIOCLR bit to ‗0‘ there is no effect. 

 

Pin is Set to Input 

Read a Pin Value 

Register LPC_GPIOn –> FIOPIN stores the current pin state. The corresponding bit is ‗1‘ indicates that 

the pin is driven high. 

Example 

To read current state of Pin 0.3 

Value = ((LPC_GPIO0 –> FIOPIN & (1<<3)) >> 3); 

Note: write 1/0 to corresponding bit in LPC_GPIOn –> FIOPIN can change the output of the pin to 1/0 

but it is not recommended. We should use LPC_GPIOn –> FIOSET and GPIOn –> FIOCLR instead. 

Pin Internal Pull up Setting 
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Register LPC_PINCON –> PINMODEn is used to set up a pin internal pull-up. 

LPC_PINCON –> PINMODE0 [1:0] control P0.0 internal pull-up 

….. 

LPC_PINCON –> PINMODE0 [31:30] control P0.15 internal pull-up, 

 

Timers 

 Using delays in a software code is usual to embedded programmers. A normal delay function 

might be used to create a period of no operation through a for loop iterating for a few 1000 cycles. But 

these types of delays need not be accurate and fundamentally, it is not a good programming practice. So, 

TIMER/COUNTER is software designed to count the time interval between events. It counts the cycle 

of the peripheral clock or an externally-supplied clock. 

Features 
The LPC 1768 has 4 general purpose timers. (TIMER 0, TIMER 1, TIMER 2, TIMER 3) 

32-bit Timer/Counter 

32-bit prescaler 

Four 32 bit match registers 

Four external outputs corresponding to match registers 

Configuration 
As usual, the first configuration setting is enabling the power supply of the peripheral, in this case, 

PCTIMx where x is 0,1,2, or 3. 

Next, the peripheral clock must be set in the PCLKSEL0 register to set the appropriate bits of the 

respective timer. 

Timer pins have to be selected through the PINSEL register… 

Finally, the necessary match registers, values, and the eventual event must be configured based on the 

necessary results. 

POWER 
 We will be using Timer 0 in our tutorial. Since Timer 0/1 have reset value as 1, the peripheral is 

already enabled. But if you are using Timer 2/3, this step is important as they have 0 as the reset value. 

 
PERIPHERAL CLOCK & PRESCALER 

 The PCLKSEL0 register contains the peripheral clock selection for timers 0 and 1 and 

PCLKSEL1 register contains the peripheral clock selection for timers 2 and 3. As in most case, the reset 

value is 00.The PCLK is necessary as it gives the number of clock cycles required to increment the 

timer counter by 1. 

And the required value is entered in the prescaler register. 
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MATCH CONTROL REGISTER: 

 The match register will be configured in such a way that it resets on every match with the timer 

counter as well as an interrupt occurs on the match. We are going to generate a 1-second delay, hence 

the required value has been entered in the MR0 register. 

 Timer is internal peripheral in LPC1768. They use CPU clock to keep track of time and count. 

Timer enhances use of microcontroller in number of ways. Timers send periodic events and make 

precise measurements. It makes time available for your microcontroller project. This means you can 

start using temporal information in your program, without having to use unwieldy spin loops. In this 

tutorial our goal is to set up a timer and then with the help of interrupts we‘ll blink the LED. 

 In LPC1768 Microcontroller there are four timers Timer 0, Timer1, Timer2 and Timer3. These 

are 32-bit timer/counter with programmable 32-bit prescaler. All are identical but can have options to 

set them independently. And can be used without interfering with each other. 

 
 All timer‘s are built around an internal Timer Counter (TC), which is a 32-bit register and 

incremented periodically. The rate of change is derived from the current speed of the CPU clock you‘ve 

connected up and what the Prescale Counter is set to. There is nothing more to it than that. The Prescale 

Counter is clock divider. As mentioned earlier, Timer Counter is a 32-bit register and it counts in range 

from 0x00000000 to 0xFFFFFFFF. 

 Before we get into programming fundamentals, it‘s important to understand powering procedure 

for LPC1768 microcontroller. Powering device is necessary before choosing the peripheral clock and 
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setting the prescale register. We need to turn on timer. Upon RESET most of the LPC‘s peripherals are 

OFF and aren‘t being supplied power by microcontroller. 

 This can save a lot of power, but few core peripherals are turned on when the LPC starts, among 

these GPIO, TIMER0 and TIMER1. This means that TIMER2 and TIMER3 start off and if you need 

them in your application then you‘ll have to turn them on. Additionally, if you don‘t need TIMER0 or 

TIMER1, you can even turn them OFF to save some power. 

Usually, power control is considered a system feature and is controlled by register LPC_SC–>PCONP.  

 
 

 

ADC IN LPC 17XX MICROCONTROLLER 

Introduction 
 The data that we use for programming a microcontroller normally deals with digital signals. But 

there are situations where a microcontroller has to deal with inputs from external devices that gives an 

analog output. In such cases, we can interface the microcontroller with an external device such as an 

ADC0808 to convert the analog signal to a digital signal.  

 But in more advanced and powerful microcontrollers such as LPC1768, these processes are 

handled internally rather than externally, using an internal ADC module. In this tutorial, we will learn 

the basic functionality of the built-in ADC module of the LPC1768 ARM controller. A potentiometer 

will be used to take the input and the measured value will be processed by the built-in ADC module and 

the output will be displayed in the serial terminal via UART. More info on UART, refer UART 

Communication. 

Features 

 The ADC module in the LPC1768 uses the technique of successive approximation to convert 

signals from analog to digital values. The internal SAR (Successive Approximation Register) is 

designed to take the input from a voltage comparator of the internal module to give a 12-bit output 

resulting in a high precision result. 

 The 12-bit conversion rate is clocked at 200 kHz. 

 This speed is achieved with 8 multiplexed channels. 

 The measurement range is set between Vrefn and Vrefp which is usually 3v and should not 

exceed the Vdd voltage level. 

 The module supports burst conversion mode as well. 

The clock required for analog to digital converter is provided by the APB clock and is scaled to the 

clock required for the successive approximation process using a programmable divider that is included 

in each converter. 

Configuration 

 The power to the ADC module must be given initially. The reset value for PCADC or the power 

control for ADC bit in the PCONP register is 0. Therefore, it is mandatory that this step must not be 

skipped in the software. The clock to the ADC module must be set. The corresponding pins in the 
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PINSEL register must be selected to function as ADC pins. 

 Control the ADC operation using the ADC control register, ADCR. The basic operational flow 

is to start the conversion process, read the result and stop after conversion and reading is completed. 

LPC1768 ADC Block 
 LPC1768 has an inbuilt 12 bit Successive Approximation ADC which is multiplexed among 8 

input pins.The ADC reference voltages is measured across VREFN to VREFP, meaning it can do the 

conversion within this range. Usually the VREFP is connected to VDD and VREFN is connected to 

GND. 

 As LPC1768 works on 3.3 volts, this will be the ADC reference voltage. 

 Now the $$resolution of ADC = 3.3/(2^{12}) = 3.3/4096 =0.000805 = 0.8mV$$ 

 The below block diagram shows the ADC input pins multiplexed with other GPIO pins. 

 The ADC pin can be enabled by configuring the corresponding PINSEL register to select ADC 

function. 

 When the ADC function is selected for that pin in the Pin Select register, other Digital signals 

are disconnected from the ADC input pins. 

 

 

ADC Registers 
The below table shows the registers associated with LPC1768 ADC. 

 We are going to focus only on ADCR and ADGDR as these are sufficient for simple A/D 

conversion. However once you are familiar with LPC1768 ADC, you can explore the other features and 

the associated registers. 

 

Steps for Configuring ADC 

Below are the steps for configuring the LPC1768 ADC. 

Configure the GPIO pin for ADC function using PINSEL register. 

Enable the CLock to ADC module. 
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Deselect all the channels and Power on the internal ADC module by setting ADCR.PDN bit. 

Select the Particular channel for A/D conversion by setting the corresponding bits in ADCR.SEL 

Set the ADCR.START bit for starting the A/D conversion for selected channel. 

Wait for the conversion to complete, ADGR.DONE bit will be set once conversion is over. 

Read the 12-bit A/D value from ADGR.RESULT. 

Use it for further processing or just display on LCD. 

12-bit ADC 

The LPC17xx contain a single 12-bit successive approximation ADC with eight channels and DMA 

support. 

 

Features 

• 12-bit successive approximation ADC. 

• Input multiplexing among 8 pins. 

• Power-down mode. 

• Measurement range VREFN to VREFP. 

• 12-bit conversion rate: 200 kHz. 

• Individual channels can be selected for conversion. 

• Burst conversion mode for single or multiple inputs. 

• Optional conversion on transition of input pin or Timer Match signal. 

• Individual result registers for each ADC channel to reduce interrupt overhead. 

• DMA support. 

 

10-bit DAC 

The DAC allows generating a variable analog output. The maximum output value of the DAC is 

VREFP. 

 

Features 

• 10-bit DAC 

• Resistor string architecture 

• Buffered output 

• Power-down mode 

• Selectable output drive 

• Dedicated conversion timer 

• DMA support 

 
 

UARTs 

 The LPC17xx each contain four UARTs. In addition to standard transmit and receive data 

lines, UART1 also provides a full modem control handshake interface and support for RS-485/9-bit 

mode allowing both software address detection and automatic address detection using 9-bit mode. 

 The UARTs include a fractional baud rate generator. Standard baud rates such as 115200 Bd 

can be achieved with any crystal frequency above 2 MHz. 

 

Features 
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• Maximum UART data bit rate of 6.25 Mbit/s. 

• 16 B Receive and Transmit FIFOs. 

• Register locations conform to 16C550 industry standard. 

• Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B. 

• Built-in fractional baud rate generator covering wide range of baud rates without a need for external 

crystals of particular values. 

• Auto baud capabilities and FIFO control mechanism that enables software flow control 

implementation. 

• UART1 equipped with standard modem interface signals. This module also provides full support for 

hardware flow control (auto-CTS/RTS). 

• Support for RS-485/9-bit/EIA-485 mode (UART1). 

• UART3 includes an IrDA mode to support infrared communication. 

• All UARTs have DMA support. 

 

SPI serial I/O controller 

 The LPC17xx contain one SPI controller. SPI is a full duplex serial interface designed to 

handle multiple masters and slaves connected to a given bus. Only a single master and a single slave 

can communicate on the interface during a given data transfer. During a data transfer the master always 

sends 8 bits to 16 bits of data to the slave, and the slave always sends 8 bits to 16 bits of data to the 

master. 

 

Features 

• Maximum SPI data bit rate of 12.5 Mbit/s 

• Compliant with SPI specification 

• Synchronous, serial, full duplex communication 

• Combined SPI master and slave 

• Maximum data bit rate of one eighth of the input clock rate 

• 8 bits to 16 bits per transfer 

 

SSP serial I/O controller 

 The LPC17xx contain two SSP controllers. The SSP controller is capable of operation on a SPI, 

4-wire SSI, or Microwire bus. It can interact with multiple masters and slaves on the bus. Only a single 

master and a single slave can communicate on the bus during a given data transfer. The SSP supports full 

duplex transfers, with frames of 4 bits to 16 bits of data flowing from the master to the slave and from 

the slave to the master. In practice, often only one of these data flows carries meaningful data. 

 

Features 

• Maximum SSP speed of 33 Mbit/s (master) or 8 Mbit/s (slave) 

• Compatible with Motorola SPI, 4-wire Texas Instruments SSI, and National Semiconductor 

Microwire buses 

• Synchronous serial communication 

• Master or slave operation 

• 8-frame FIFOs for both transmit and receive 

• 4-bit to 16-bit frame 

• DMA transfers supported by GPDMA 
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I2C-bus serial I/O controllers 

The LPC17xx each contain three I2C-bus controllers. 

 The I2C-bus is bidirectional for inter-IC control using only two wires: a Serial Clock line (SCL) 

and a Serial DAta line (SDA). Each device is recognized by a unique address and can operate as either a 

receiver-only device (e.g., an LCD driver) or a transmitter with the capability to both receive and send 

information (such as memory). Transmitters and/or receivers can operate in either master or slave mode, 

depending on whether the chip has to initiate a data transfer or is only addressed. The I2C is a multi-

master bus and can be controlled by more than one bus master connected to it. 

 

Features 

• I2C0 is a standard I2C compliant bus interface with open-drain pins. I2C0 also supports 

Fast mode plus with bit rates up to 1 Mbit/s. 

• I2C1 and I2C2 use standard I/O pins with bit rates of up to 400 kbit/s (Fast I2C-bus). 

• Easy to configure as master, slave, or master/slave. 

• Programmable clocks allow versatile rate control. 

• Bidirectional data transfer between masters and slaves. 

• Multi-master bus (no central master). 

• Arbitration between simultaneously transmitting masters without corruption of serial data 

on the bus. 

• Serial clock synchronization allows devices with different bit rates to communicate via one 

serial bus. 

• Serial clock synchronization can be used as a handshake mechanism to suspend and resume 

serial transfer. 

• The I2C-bus can be used for test and diagnostic purposes. 

• All I2C-bus controllers support multiple address recognition and a bus monitor mode. 

 

 

I2S-bus serial I/O controllers 

Remark: The I2S-bus interface is available on parts LPC1769/68/67/66/65/63. 

The I2S-bus provides a standard communication interface for digital audio applications. 

 The I2S-bus specification defines a 3-wire serial bus using one data line, one clock line, 

and one word select signal. The basic I2S-bus connection has one master, which is always the 

master, and one slave. The I2S-bus interface provides a separate transmit and receive channel, 

each of which can operate as either a master or a slave. 

 

Features 

• The interface has separate input/output channels each of which can operate in master or slave mode. 

• Capable of handling 8-bit, 16-bit, and 32-bit word sizes. 

• Mono and stereo audio data supported. 

• The sampling frequency can range from 16 kHz to 96 kHz (16, 22.05, 32, 44.1, 48, 96) kHz. 
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• Support for an audio master clock. 

• Configurable word select period in master mode (separately for I2S-bus input and output). 

• Two 8-word FIFO data buffers are provided, one for transmit and one for receive. 

• Generates interrupt requests when buffer levels cross a programmable boundary. 

• Two DMA requests, controlled by programmable buffer levels. These are connected to the GPDMA 

block. 

• Controls include reset, stop and mute options separately for I2S-bus input and I2S-bus output. 

 

General purpose 32-bit timers/external event counters 

 The LPC17xx include four 32-bit timer/counters. The timer/counter is designed to count cycles 

of the system derived clock or an externally-supplied clock. It can optionally generate interrupts, 

generate timed DMA requests, or perform other actions at specified timer values, based on four match 

registers. Each timer/counter also includes two capture inputs to trap the timer value when an input 

signal transitions, optionally generating an interrupt. 

 

Features 

• A 32-bit timer/counter with a programmable 32-bit prescaler. 

• Counter or timer operation. 

• Two 32-bit capture channels per timer, that can take a snapshot of the timer value when an input signal 

transitions. A capture event may also generate an interrupt. 

• Four 32-bit match registers that allow: 

• Continuous operation with optional interrupt generation on match. 

• Stop timer on match with optional interrupt generation. 

• Reset timer on match with optional interrupt generation. 

• Up to four external outputs corresponding to match registers, with the following capabilities: 

• Set LOW on match. 

• Set HIGH on match. 

• Toggle on match. 

• Do nothing on match. 

• Up to two match registers can be used to generate timed DMA requests. 

 

Pulse width modulator 

 The PWM is based on the standard Timer block and inherits all of its features, although only 

the PWM function is pinned out on the LPC17xx. The Timer is designed to count cycles of the system 

derived clock and optionally switch pins, generate interrupts or perform other actions when specified 

timer values occur, based on seven match registers. The PWM function is in addition to these features, 

and is based on match register events. 

 The ability to separately control rising and falling edge locations allows the PWM to be used 

for more applications. For instance, multi-phase motor control typically requires three non-overlapping 

PWM outputs with individual control of all three pulse widths and positions. 

 Two match registers can be used to provide a single edge controlled PWM output. One match 

register (PWMMR0) controls the PWM cycle rate, by resetting the count upon match. The other match 

register controls the PWM edge position. Additional single edge controlled PWM outputs require only 
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one match register each, since the repetition rate is the same for all PWM outputs. Multiple single edge 

controlled PWM outputs will all have a rising edge at the beginning of each PWM cycle, when an 

PWMMR0 match occurs. 

 Three match registers can be used to provide a PWM output with both edges controlled. Again, 

the PWMMR0 match register controls the PWM cycle rate. The other match registers control the two 

PWM edge positions. Additional double edge controlled PWM outputs require only two match registers 

each, since the repetition rate is the same for all PWM outputs. 

 With double edge controlled PWM outputs, specific match registers control the rising and 

falling edge of the output. This allows both positive going PWM pulses (when the rising edge occurs 

prior to the falling edge), and negative going PWM pulses (when the falling edge occurs prior to the 

rising edge). 

 

Features 

• One PWM block with Counter or Timer operation (may use the peripheral clock or one of the 

capture inputs as the clock source). 

• Seven match registers allow up to 6 single edge controlled or 3 double edge controlled PWM 

outputs, or a mix of both types. The match registers also allow: 

• Continuous operation with optional interrupt generation on match. 

• Stop timer on match with optional interrupt generation. 

• Reset timer on match with optional interrupt generation 

• Supports single edge controlled and/or double edge controlled PWM outputs. Single edge 

controlled PWM outputs all go high at the beginning of each cycle unless the output is a constant 

low. Double edge controlled PWM outputs can have either edge occur at any position within a 

cycle. This allows for both positive going and negative going pulses. 

• Pulse period and width can be any number of timer counts. This allows complete flexibility in the 

trade-off between resolution and repetition rate. All PWM outputs will occur at the same 

repetition rate. 

• Double edge controlled PWM outputs can be programmed to be either positive going or negative 

going pulses. 

• Match register updates are synchronized with pulse outputs to prevent generation of erroneous 

pulses. Software must ‗release‘ new match values before they can become effective. 

• May be used as a standard 32-bit timer/counter with a programmable 32-bit prescaler if the PWM 

mode is not enabled. 

 

Motor control PWM 

 The motor control PWM is a specialized PWM supporting 3-phase motors and other 

combinations. Feedback inputs are provided to automatically sense rotor position and use that 

information to ramp speed up or down. An abort input is also provided that causes the PWM to 

immediately release all motor drive outputs. At the same time, the motor control PWM is highly 

configurable for other generalized timing, counting, capture, and compare applications. 
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Quadrature Encoder Interface (QEI) 

 A quadrature encoder, also known as a 2-channel incremental encoder, converts angular 

displacement into two pulse signals. By monitoring both the number of pulses and the relative phase of 

the two signals, the user can track the position, direction of rotation, and velocity. In addition, a third 

channel, or index signal, can be used to reset the position counter. The quadrature encoder interface 

decodes the digital pulses from a quadrature encoder wheel to integrate position over time and 

determine direction of rotation. In addition, the QEI can capture the velocity of the encoder wheel. 

 

Features 

• Tracks encoder position. 

• Increments/decrements depending on direction. 

• Programmable for 2 or 4 position counting. 

• Velocity capture using built-in timer. 

• Velocity compare function with ―less than‖ interrupt. 

• Uses 32-bit registers for position and velocity. 

• Three position compare registers with interrupts. 

• Index counter for revolution counting. 

• Index compare register with interrupts. 

• Can combine index and position interrupts to produce an interrupt for whole and partial revolution 

displacement. 

• Digital filter with programmable delays for encoder input signals. 

• Can accept decoded signal inputs (clk and direction). 

• Connected to APB. 

 

Repetitive Interrupt (RI) timer 

 The repetitive interrupt timer provides a free-running 32-bit counter which is compared to a 

selectable value, generating an interrupt when a match occurs. Any bits of the timer/compare can be 

masked such that they do not contribute to the match detection. The repetitive interrupt timer can be 

used to create an interrupt that repeats at predetermined intervals. 

 

Features 

• 32-bit counter running from PCLK. Counter can be free-running or be reset by a generated 

interrupt. 

• 32-bit compare value. 

• 32-bit compare mask. An interrupt is generated when the counter value equals the compare 

value, after masking. This allows for combinations not possible with a simple compare. 

 

Arm Cortex-M3 system tick timer 

The Arm Cortex-M3 includes a system tick timer (SYSTICK) that is intended to generate a dedicated 

SYSTICK exception at a 10 ms interval. In the LPC17xx, this timer can be clocked from the internal 

AHB clock or from a device pin. 

 

Watchdog timer 

The purpose of the watchdog is to reset the microcontroller within a reasonable amount of time if it 
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enters an erroneous state. When enabled, the watchdog will generate a system reset if the user program 

fails to ‗feed‘ (or reload) the watchdog within a predetermined amount of time. 

 

Features 

• Internally resets chip if not periodically reloaded. 

• Debug mode. 

• Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be disabled. 

• Incorrect/Incomplete feed sequence causes reset/interrupt if enabled. 

• Flag to indicate watchdog reset. 

• Programmable 32-bit timer with internal prescaler. 

• Selectable time period from (Tcy(WDCLK)  256  4) to (Tcy(WDCLK)  232  4) in multiples of Tcy(WDCLK)  

4. 

• The Watchdog Clock (WDCLK) source can be selected from the Internal RC (IRC) oscillator, the 

RTC oscillator, or the APB peripheral clock. This gives a wide range of potential timing choices of 

Watchdog operation under different power reduction conditions.  

• It also provides the ability to run the WDT from an entirely internal source that is not dependent on 

an external crystal and its associated components and wiring for increased reliability. 

• Includes lock/safe feature. 

 

 

RTC and backup registers 

 The RTC is a set of counters for measuring time when system power is on, and optionally 

when it is off. The RTC on the LPC17xx is designed to have extremely low power consumption, i.e. 

less than 1 mA. The RTC will typically run from the main chip power supply, conserving battery 

power while the rest of the device is powered up. When operating from a battery, the RTC will 

continue working down to 2.1 V. Battery power can be provided from a standard 3 V Lithium button 

cell. 

 An ultra-low power 32 kHz oscillator will provide a 1 Hz clock to the time counting portion of 

the RTC, moving most of the power consumption out of the time counting function. 

 The RTC includes a calibration mechanism to allow fine-tuning the count rate in a way that 

will provide less than 1 second per day error when operated at a constant voltage and temperature. A 

clock output function makes measuring the oscillator rate easy and accurate. 

 The RTC contains a small set of backup registers (20 bytes) for holding data while the main 

part of the LPC17xx is powered off. 

The RTC includes an alarm function that can wake up the LPC17xx from all reduced power modes 

with a time resolution of 1 s. 
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Features 

• Measures the passage of time to maintain a calendar and clock. 

• Ultra low power design to support battery powered systems. 

• Provides Seconds, Minutes, Hours, Day of Month, Month, Year, Day of Week, and Day of Year. 

• Dedicated power supply pin can be connected to a battery or to the main 3.3 V. 

• Periodic interrupts can be generated from increments of any field of the time registers. 

• Backup registers (20 bytes) powered by VBAT. 

• RTC power supply is isolated from the rest of the chip. 

 

Clocking and power control 

Crystal oscillators 

 The LPC17xx include three independent oscillators. These are the main oscillator, the IRC 

oscillator, and the RTC oscillator. Each oscillator can be used for more than one purpose as required in 

a particular application. Any of the three clock sources can be chosen by software to drive the main 

PLL and ultimately the CPU. 

 Following reset, the LPC17xx will operate from the Internal RC oscillator until switched by 

software. This allows systems to operate without any external crystal and the bootloader code to 

operate at a known frequency. 

 

Internal RC oscillator 

 The IRC may be used as the clock source for the WDT, and/or as the clock that drives the PLL 

and subsequently the CPU. The nominal IRC frequency is 4 MHz. The IRC is trimmed to 1 % accuracy 

over the entire voltage and temperature range. 

 Upon power-up or any chip reset, the LPC17xx use the IRC as the clock source. Software may 

later switch to one of the other available clock sources. 

 

Main oscillator 

 The main oscillator can be used as the clock source for the CPU, with or without using the PLL. 

The main oscillator also provides the clock source for the dedicated USB PLL. 

 The main oscillator operates at frequencies of 1 MHz to 25 MHz; this frequency can be 

boosted to a higher frequency, up to the maximum CPU operating frequency, by the main PLL. The 

clock selected as the PLL input is PLLCLKIN. The Arm processor clock frequency is referred to as 

CCLK elsewhere in this document. The frequencies of PLLCLKIN and CCLK are the same value 

unless the PLL is active and connected. The clock frequency for each peripheral can be selected 

individually and is referred to as CLK.  

RTC oscillator 

The RTC oscillator can be used as the clock source for the RTC block, the main PLL, and/or the CPU. 

 

Main PLL (PLL0) 

 The PLL0 accepts an input clock frequency in the range of 32 kHz to 25 MHz. The input 

frequency is multiplied up to a high frequency, then divided down to provide the actual clock used by 

the CPU and/or the USB block. 
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 The PLL0 input, in the range of 32 kHz to 25 MHz, may initially be divided down by a value 

‗N‘, which may be in the range of 1 to 256. This input division provides a wide range of output 

frequencies from the same input frequency. 

 Following the PLL0 input divider is the PLL0 multiplier. This can multiply the input divider 

output through the use of a Current Controlled Oscillator (CCO) by a value ‗M‘, in the range of 1 

through 32768. The resulting frequency must be in the range of 275 MHz to 550 MHz. The multiplier 

works by dividing the CCO output by the value of M, then using a phase-frequency detector to 

compare the divided CCO output to the multiplier input. The error value is used to adjust the CCO 

frequency. 

 The PLL0 is turned off and bypassed following a chip Reset and by entering Power-down 

mode. PLL0 is enabled by software only. The program must configure and activate the PLL0, wait for 

the PLL0 to lock, and then connect to the PLL0 as a clock source. 

 

USB PLL (PLL1) 

The LPC17xx contain a second, dedicated USB PLL1 to provide clocking for the USB interface. 

 The PLL1 receives its clock input from the main oscillator only and provides a fixed 

48 MHz clock to the USB block only. The PLL1 is disabled and powered off on reset. If the PLL1 is left 

disabled, the USB clock will be supplied by the 48 MHz clock from the main PLL0. 

 The PLL1 accepts an input clock frequency in the range of 10 MHz to 25 MHz only. The 

input frequency is multiplied up the range of 48 MHz for the USB clock using a Current Controlled 

Oscillators (CCO). It is insured that the PLL1 output has a 50 % duty cycle. 

 

RTC clock output 

 The LPC17xx feature a clock output function intended for synchronizing with external devices 

and for use during system development to allow checking the internal clocks CCLK, IRC clock, main 

crystal, RTC clock, and USB clock in the outside world. The RTC clock output allows tuning the RTC 

frequency without probing the pin, which would distort the results. 

 

Wake-up timer 

 The LPC17xx begin operation at power-up and when awakened from Power-down mode by 

using the 4 MHz IRC oscillator as the clock source. This allows chip operation to resume quickly. If 

the main oscillator or the PLL is needed by the application, software will need to enable these features 

and wait for them to stabilize before they are used as a clock source. When the main oscillator is 

initially activated, the wake-up timer allows software to ensure that the main oscillator is fully 

functional before the processor uses it as a clock source and starts to execute instructions. This is 

important at power on, all types of Reset, and whenever any of the aforementioned functions are 

turned off for any reason. Since the oscillator and other functions are turned off during Power-down 

mode, any wake-up of the processor from Power-down mode makes use of the wake-up timer. 

 The Wake-up Timer monitors the crystal oscillator to check whether it is safe to begin code 

execution. When power is applied to the chip, or when some event caused the chip to exit Power-

down mode, some time is required for the oscillator to produce a signal of sufficient amplitude to 

drive the clock logic. The amount of time depends on many factors, including the rate of VDD(3V3) 

ramp (in the case of power on), the type of crystal and its electrical characteristics (if a quartz crystal 

is used), as well as any other external circuitry (e.g., capacitors), and the characteristics of the 

oscillator itself under the existing ambient conditions. 

 

Power control 
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 The LPC17xx support a variety of power control features. There are four special modes of 

processor power reduction: Sleep mode, Deep-sleep mode, Power-down mode, and Deep power-down 

mode. The CPU clock rate may also be controlled as needed by changing clock sources, reconfiguring 

PLL values, and/or altering the CPU clock divider value. This allows a trade-off of power versus 

processing speed based on application requirements. 

  In addition, Peripheral Power Control allows shutting down the clocks to individual on-chip 

peripherals, allowing fine tuning of power consumption by eliminating all dynamic power use in any 

peripherals that are not required for the application. Each of the peripherals has its own clock divider 

which provides even better power control. 

 Integrated PMU (Power Management Unit) automatically adjust internal regulators to 

minimize power consumption during Sleep, Deep sleep, Power-down, and Deep power-down modes. 

 The LPC17xx also implement a separate power domain to allow turning off power to the bulk 

of the device while maintaining operation of the RTC and a small set of registers for storing data 

during any of the power-down modes. 

 

Sleep mode 

 When Sleep mode is entered, the clock to the core is stopped. Resumption from the Sleep mode 

does not need any special sequence but re-enabling the clock to the Arm core. In Sleep mode, 

execution of instructions is suspended until either a Reset or interrupt occurs. Peripheral functions 

continue operation during Sleep mode and may generate interrupts to cause the processor to resume 

execution. Sleep mode eliminates dynamic power used by the processor itself, memory systems and 

related controllers, and internal buses. 

Deep-sleep mode 

 In Deep-sleep mode, the oscillator is shut down and the chip receives no internal clocks. The 

processor state and registers, peripheral registers, and internal SRAM values are preserved throughout 

Deep-sleep mode and the logic levels of chip pins remain static. The output of the IRC is disabled but 

the IRC is not powered down for a fast wake-up later. The RTC oscillator is not stopped because the 

RTC interrupts may be used as the wake-up source. The PLL is automatically turned off and 

disconnected. The CCLK and USB clock dividers automatically get reset to zero. 

 The Deep-sleep mode can be terminated and normal operation resumed by either a Reset or 

certain specific interrupts that are able to function without clocks. Since all dynamic operation of the 

chip is suspended, Deep-sleep mode reduces chip power consumption to a very low value. Power to 

the flash memory is left on in Deep-sleep mode, allowing a very quick wake-up. 

 On wake-up from Deep-sleep mode, the code execution and peripherals activities will resume 

after 4 cycles expire if the IRC was used before entering Deep-sleep mode. If the main external 

oscillator was used, the code execution will resume when 4096 cycles expire. PLL and clock dividers 

need to be reconfigured accordingly. 

Power-down mode 

 Power-down mode does everything that Deep-sleep mode does, but also turns off the power to 

the IRC oscillator and the flash memory. This saves more power but requires waiting for resumption 

of flash operation before execution of code or data access in the flash memory can be accomplished. 

 On the wake-up of Power-down mode, if the IRC was used before entering Power-down 

mode, it will take IRC 60 ms to start-up. After this 4 IRC cycles will expire before the code execution 

can then be resumed if the code was running from SRAM. In the meantime, the flash wake-up timer 

then counts 4 MHz IRC clock cycles to make the 100 ms flash start-up time. When it times out, access 

to the flash will be allowed. Users need to reconfigure the PLL and clock dividers accordingly. 
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Deep power-down mode 

 The Deep power-down mode can only be entered from the RTC block. In Deep power-

down mode, power is shut off to the entire chip with the exception of the RTC module and the 

RESET pin. The LPC17xx can wake up from Deep power-down mode via the RESET pin or an 

alarm match event of the RTC. 
Wake-up interrupt controller 

 The Wake-up Interrupt Controller (WIC) allows the CPU to automatically wake up from any 

enabled priority interrupt that can occur while the clocks are stopped in Deep sleep, Power-down, and 

Deep power-down modes. 

 The WIC works in connection with the Nested Vectored Interrupt Controller (NVIC). When 

the CPU enters Deep sleep, Power-down, or Deep power-down mode, the NVIC sends a mask of the 

current interrupt situation to the WIC.This mask includes all of the interrupts that are both enabled 

and of sufficient priority to be serviced immediately. With this information, the WIC simply notices 

when one of the interrupts has occurred and then it wakes up the CPU.The WIC eliminates the need 

to periodically wake up the CPU and poll the interrupts resulting in additional power savings. 
 

Peripheral power control 
            A Power Control for Peripherals feature allows individual peripherals to be turned off if they are 

not needed in the application, resulting in additional power savings. 
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UNIT-V 

VLIW ARCHITECTURE 
 

 

The Necessity of Digital Signal Processors 

 

In the 1960s it was predicted that artificial intelligence would revolutionize the way 

humans interact with computers and other machines. It was believed that by the end of the 

century we would have robots cleaning our houses, computers driving our cars, and voice 

interfaces controlling the storage and retrieval of information. This hasn't happened; these 

abstract tasks are far more complicated than expected, and very difficult to carry out with the 

step-by-step logic provided by digital computers. 

 

However, the last forty years have shown that computers are extremely capable in 

two broad areas, (1) data manipulation, such as word processing and database 

management, and (2) mathematical calculation, used in science, engineering, and Digital 

Signal Processing. All microprocessors can perform both tasks; however, it is difficult 

(expensive) to make a device that is optimized for both. There are technical tradeoffs in the 

hardware design, such as the size of the instruction set and how interrupts are handled. 

Even more important, there are marketing issues involved: development and manufacturing 

cost, competitive position, product lifetime, and so on. As a broad generalization, these 

factors have made traditional microprocessors, such as the Pentium® which is primarily 

directed at data manipulation. Similarly, DSPs are designed to perform the mathematical 

calculations needed in Digital Signal Processing. 

 

Figure 1 lists the most important differences between these two categories. Data 

manipulation involves storing and sorting information. For instance, consider a word 

processing program. The basic task is to store the information (typed in by the operator), 

organize the information (cut and paste, spell checking, page layout, etc.), and then 

retrieving the information (for example, printing a document with a laser printer). These 

tasks are accomplished by moving data from one location to another, and testing for 

inequalities (A=B, A<B, etc.). 
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 Data Manipulation Math Calculation 

Typical 

Applications 

Word processing, 

database management, 

spread sheets, 

operating systems, etc. 

Digital Signal Processing, 

motion control, scientific 

and 

engineering simulations, 

etc. 

Main Operations data movement 

( A --> B) value testing (If 

A== B then ...) 

addition (A+B=C ) 

multiplication (A×B=C) 

Figure 1: Data Manipulation and Math Calculation 

 

 

In comparison, most DSPs are used in applications where the processing is 

continuous, not having a defined start or end. For instance, consider an engineer designing 

a DSP system for an audio signal, such as a hearing aid. If the digital signal is being 

received at 20,000 samples per second, the DSP must be able to maintain a sustained 

throughput of 20,000 samples per second. However, there are important reasons not to make 

it any faster than necessary. As the speed increases, so does the cost, the power 

consumption, the design difficulty, and so on. This makes an accurate knowledge of the 

execution time critical for selecting the proper device, as well as the algorithms that can be 

applied. 
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History of Digital Signal Processors 

 

 

 

In 1978, Intel released the 2920 as an "analog signal processor". It had an on- chip 

ADC/DAC with an internal signal processor, but it didn't have a hardware multiplier and 

was not successful in the market. In 1979, AMI released the S2811. It was designed as a 

microprocessor peripheral, and it had to be initialized by the host. The S2811 was likewise 

not successful in the market. 

The First Generation (1979 to 1987) 

 

 

In 1979, Bell Labs introduced the first single chip DSP, the Mac 4 Microprocessor. 

Then, in 1980 the first stand-alone, complete DSPs -- the NEC 

µPD7720 and AT&T DSP1 -- were presented at the IEEE International Solid-State Circuits 

Conference '80. Both processors were inspired by the research in PSTN 

telecommunications. 

 

The first DSP produced by Texas Instruments (TI), the TMS32010 presented in 

1983, proved to be an even bigger success. It was based on the Harvard architecture, and so 

had separate instruction and data memory. It already had a special instruction set, with 

instructions like load-and-accumulate or multiply-and- accumulate. It could work on 16-bit 

numbers and needed 390ns for a multiply-add operation. TI is now the market leader in 

general purpose DSPs. Another successful design was the Motorola 56000. 

 

The Second Generation (1988 to 1995) 

 

 

About five years later, the second generation of DSPs began to spread. They had 3 

memories for storing two operands simultaneously and included hardware to accelerate 

tight loops; they also had an addressing unit capable of loop-addressing. Some of them 

operated on 24-bit variables and a typical model only required about 
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21ns for a MAC (multiply-accumulate). Members of this generation were for example the 

AT&T DSP16A or the Motorola DSP56001. 

The Third Generation (1996 to 2002) 

 

 

The main improvement in the third generation was the appearance of application-

specific units and instructions in the data path, or sometimes as coprocessors. These units 

allowed direct hardware acceleration of very specific but complex mathematical problems, 

like the Fourier-transform or matrix operations. Some chips, like the Motorola MC68356, 

even included more than one processor cores to work in parallel. Other DSPs from 1995 are 

the TI TMS320C541 or the TMS 320C80. 

 

The Fourth Generation (2002 onwards) 

 

 

The fourth generation is best characterized by the changes in the instruction set and 

the instruction encoding/decoding. SIMD and MMX extensions were added; VLIW and the 

superscalar architecture appeared. As always, the clock-speeds have increased, a 3ns MAC 

became now possible. 

 

DSPs in 2007 

Today‘s signal processors yield much greater performance. This is due in part to both 

technological and architectural advancements like lower design rules, fast- access two-level 

cache, (E) DMA circuit and a wider bus system. Of course, not all DSPs provide the same 

speed and many-many kind of signal processors exist, each one of them being better suited 

for a specific task, ranging in price from about 1.50 to 300 dollars. A Texas Instruments 

C6000 series DSP clocks at 1Ghz and implements separate instruction and data caches as 

well as a 8Mbyte 2nd level cache, and its I/O speed is rapid thanks to its 64 EDMA 

channels. The top models are capable of even 8000 MIPS (million instructions per second), 

use VLIW encoding, perform eight operations per clock-cycle and are compatible with a 

broad range of external  peripherals and various buses (PCI/serial/etc). 
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Another big signal processor manufacturer today is Analog Devices. The company 

provides a broad range of DSPs, but its main portfolio is multimedia  processors, such as 

codecs, filters and digital-analog converters. Its SHARC-based processors range in 

performance from 66Mhz/198MFLOPS (million floating-point operations per second) to 

400Mhz/2400MFLOPS. Some models even support multiple multipliers and ALUs, SIMD 

instructions and audio processing-specific components and peripherals. Another product of 

the company is the Blackfin family of embedded digital signal processors, with models like 

the ADSP-BF531 to ADSP- BF536. These processors combine the features of a DSP with 

those of a general use processor. As a result, these processors can run simple operating 

systems like μCLinux, velOSity and Nucleus while operating relatively efficiently on real-

time data. 

 

Most DSPs use fixed-point arithmetic, because in real world signal processing, the 

additional range provided by floating point is not needed, and there is a large speed benefit; 

however, floating point DSPs are common for scientific and other applications where 

additional range or precision may be required. General purpose CPU's have ideas and 

influences from digital signal processors with extensions such as the MMX extensions in 

the Intel IA-32 architecture instruction set. 

 

Generally, DSPs are dedicated integrated circuits; however DSP functionality can 

also be realized using Field Programmable Gate Array chips. 
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1. The Chip-Makers 

 

 

The DSP market is very large and growing rapidly. As shown in Figure 2, it will be 

about 8-10 billion dollars/year at the turn of the century, and growing at a rate of 30-40% 

each year. This is being fueled by the incessant demand for better and cheaper consumer 

products, such as: cellular telephones, multimedia computers, and high-fidelity music 

reproduction. These high-revenue applications are shaping the field, while less profitable 

areas, such as scientific instrumentation, are just riding the wave of technology. 
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Figure 2: Revenue from the DSP Industry 

 

 

DSPs can be purchased in three forms, as a core, as a processor, and as a board 

level product. In DSP, the term "core" refers to the section of the processor where the key 

tasks are carried out, including the data registers, multiplier, ALU, address generator, and 

program sequencer. A complete processor requires combining the core with memory and 

interfaces to the outside world. While the core and these peripheral sections are designed 

separately, they will be fabricated on the 

Billions of 

dollars 
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same piece of silicon, making the processor a single integrated circuit. Lastly, there are 

several dozen companies that will sell you DSPs already mounted on a printed circuit 

board. These have such features as extra memory, A/D and D/A converters, EPROM 

sockets, multiple processors on the same board, and so on. 

 

The present day Digital Signal Processor market (2007) is dominated by four 

companies. Here is a list, and the general scheme they use for numbering their products: 

 

 Analog Devices (www.analog.com/dsp) ADSP-

21xx 16 bit, fixed point 

ADSP-21xxx 32 bit, floating and fixed point 

 

 Lucent Technologies ( www.lucent.com ) 

DSP16xxx 16 bit fixed point 

DSP32xx 32 bit floating point 

 

 

 Motorola (www.mot.com) 

DSP561xx 16 bit fixed point 

DSP560xx 24 bit, fixed point 

DSP96002 32 bit, floating point 

 

 

 Texas Instruments (www.ti.com) 

TMS320Cxx 16 bit fixed point 

TMS320Cxx 32 bit floating point 

http://www.analog.com/dsp)
http://www.lucent.com/
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2. The TMS320C6000 Family 

 

In 1982, Texas Instruments (TI) introduced the TMS32010 — the first fixed- point 

DSP in the TMS320 family. Before the end of the year, Electronic Products magazine 

awarded the TMS32010 the title ―Product of the Year‖. Today, the TMS320 family consists 

of many generations: 

 

 C1x, C2x, C2xx, C5x, and C54x fixed-point DSPs 

 C3x and C4x floating-point DSPs, and 

 C8x multiprocessor DSPs. 

 

The TMS320C6000™ digital signal processor (DSP) platform is part of the 

TMS320™ DSP family. Refer Figure 3. The TMS320C62x™ DSP generation and the 

TMS320C64x™ DSP generation comprise fixed-point devices in the C6000™ DSP 

platform, and the TMS320C67x™ DSP generation comprises floating-point devices in the 

C6000 DSP platform. The TMS320C62x and TMS320C64x™ DSPs are code- compatible. 

The TMS320C62x and TMS320C67x DSPs are code-compatible. All three DSPs use the 

VelociTI™ architecture, a high-performance, advanced VLIW (very long instruction word) 

architecture, making these DSPs excellent choices for multi-channel and multifunction 

applications. 

 

Now there is a new generation of DSPs, the TMS320C6x™ generation, with 

performance and features that are reflective of Texas Instruments commitment to lead the 

world in DSP solutions. 

 

 4.1 General Features of the C6000 

 

 

With a performance of up to 6000 million instructions per second (MIPS) and an 

efficient C compiler, the TMS320C6x DSPs give system architects unlimited possibilities 

to differentiate their products. High performance, ease of use and 
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affordable pricing make the TMS320C6x generation the ideal solution for multi- channel, 

multifunction applications, such as: 

 

 

TMS320C6000 FAMILY 

 

 

 

 

 

 

 

 

C6200 series 

• 32-bit 

• 32 registers 

• Fixed-point Ex: 
6201, 6211 

C6400 series 

• 32-bit 

• 64 registers 

• Fixed-point Ex: 
6412, 6416 

C6700 series 

• 32-bit 

• 32 registers 

• Floating-point 
Ex: 6701, 6713 

 

 

Figure 3: The TMS320C6000 Family 

 

 

o Pooled modems 

o Wireless local loop base stations 

o Remote access servers (RAS) 

o Digital subscriber loop (DSL) systems 

o Cable modems 

o Multi-channel telephony systems 

 

The C6000 devices execute up to eight 32-bit instructions per cycle. The 

C62x/C67x device‘s core CPU consists of 32 general-purpose registers of 32-bit word 

length and eight functional units. The C64x core CPU consists of 64 general- purpose 32-

bit registers and eight functional units. These eight functional units contain: 

 Two multipliers 

 Six ALUs 
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Features of the C6000 devices include: 

 

 

o Advanced VLIW CPU with eight functional units, including two multipliers 

and six arithmetic units 

o Executes up to eight instructions per cycle for up to ten times the 

performance of typical DSPs 

o Allows designers to develop highly effective RISC-like code for fast 

development time 

o Instruction packing 

o Gives code size equivalence for eight instructions executed serially or in 

parallel 

o Reduces code size, program fetches, and power consumption 

o Conditional execution of all instructions 

o Reduces costly branching 

o Increases parallelism for higher sustained performance 

o Efficient code execution on independent functional units 

o Industry‘s most efficient C compiler on DSP benchmark suite 

o Industry‘s first assembly optimizer for fast development and improved 

parallelization 

o 8/16/32-bit data support, providing efficient memory support for a variety of 

applications 

o 40-bit arithmetic options add extra precision for vocoders and other 

computationally intensive applications 

o Saturation and normalization provide support for key arithmetic operations 

o Field manipulation and instruction extract, set, clear, and bit counting 

support common operation found in control and data manipulation 

applications. 

 

 4.2 Features Unique to the C6700 

The C67x has these additional features: 

o Hardware support for single-precision (32-bit) and double-precision (64-bit) 

IEEE floating-point operations 

o 32 x 32-bit integers multiply with 32- or 64-bit result. 
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o The TMS320C67x™ floating-point DSP uses all of the instructions available 

to the TMS320C62x™, but it also uses other instructions that are specific to 

theC67x™. 

o These specific instructions are for 32-bit integer multiply, doubleword load, 

and floating-point operations, including addition, subtraction, and 

multiplication. 

 

 4.3 Features Unique to the C6400 

 

 

The C64x has these additional features: 

 

 

o Each multiplier can perform two 16 x 16-bit or four 8 x 8 bit multiplies 

every clock cycle. 

o Quad 8-bit and dual 16-bit instruction set extensions with data flow support 

o Support for non-aligned 32-bit (word) and 64-bit (double word) memory 

accesses 

o Special communication-specific instructions have been added to address 

common operations in error-correcting codes. 

o Bit count and rotate hardware extends support for bit-level algorithms. 
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CPU 

MEMORY 
Data & 

Instructions 

Address bus 

Data bus 

 
 

3. Processor Architectures 

 

 

 

One of the biggest bottlenecks in executing DSP algorithms is transferring 

information to and from memory. This includes data, such as samples from the input signal 

and the filter coefficients, as well as program instructions, the binary codes that go into the 

program sequencer. For example, suppose we need to multiply two numbers that reside 

somewhere in memory. To do this, we must fetch three binary values from memory, the 

numbers to be multiplied, plus the program instruction describing what to do. 

 

 5.1 Von Neumann Architecture 

 

 

The Figure 4 shows how this seemingly simple task is done in a traditional 

microprocessor. This is often called Von Neumann architecture, after the brilliant 

American mathematician John Von Neumann (1903-1957). Von Neumann guided the 

mathematics of many important discoveries of the early twentieth century. His many 

achievements include: developing the concept of a stored program computer, formalizing 

the mathematics of quantum mechanics, and work on the atomic bomb. If it was new and 

exciting, Von Neumann was there! 

 

 

 

 

 

 

 

 

 

Figure 4: Von Neumann Architecture 
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PROGRAM 

MEMORY 

Instructions 

Only 

PM Address bus 

 
CPU 

DATA 

MEMORY 
Data only 

DM Address bus 

 

As shown in Figure 4, Von Neumann architecture contains a single memory and a 

single bus for transferring data into and out of the central processing unit (CPU). 

Multiplying two numbers requires at least three clock cycles, one to transfer each of the 

three numbers over the bus from the memory to the CPU. We don't count the time to 

transfer the result back to memory, because we assume that it remains in the CPU for 

additional manipulation (such as the sum of products in an FIR filter). 

 

The Von Neumann design is quite satisfactory when you are content to execute all 

of the required tasks in serial. In fact, most computers today are of the Von Neumann 

design. We only need other architectures when very fast processing is required, and we are 

willing to pay the price of increased complexity. 

 

 5.2 Harvard Architecture 

 

 

This leads us to the Harvard architecture, shown in Figure 5. This is named for the 

work done at Harvard University in the 1940s under the leadership of Howard Aiken (1900-

1973). As shown in this illustration, Aiken insisted on separate memories for data and 

program instructions, with separate buses for each. Since the buses operate independently, 

program instructions and data can be fetched at the same time, improving the speed over the 

single bus design. Most present day DSPs use this quadruple bus architecture. 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 5: Harvard Architecture 

PM: Program Memory 

DM: Data Memory 

DM Data 

bus 

PM Data 

bus 
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MEMORY 

 

A handicap of the basic Harvard design is that the data memory bus is busier than the 

program memory bus. When two numbers are multiplied, two binary values (the numbers) 

must be passed over the data memory bus, while only one binary value (the program 

instruction) is passed over the program memory bus. 

 

 5.3 VLIW Architecture 

 

 

VLIW stands for Very Long Instruction Word. This architecture was introduced by 

Texas Instruments. As the name itself denotes, we fetch a ―long instruction‖. Meaning, in 

the C6000, eight instructions (this is definitely long!) are always fetched in every clock 

cycle. This constitutes a fetch packet. 

 

A traditional VLIW architecture consists of multiple execution units running in 

parallel, performing multiple instructions during a single clock cycle. Refer Figure 6. Here 

there are three ALUs (i.e. execution units) that share the same program and data memory. 

Each ALU has its own address and data bus which is independent of all other buses. 

 

 

 

 

 

 

 

Figure 6: VLIW Architecture 
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A major difference between VLIW and the previous architectures is the presence of 

sectioned data memory. The memory is divided into different sections such as stack, heap, 

const, text, var (variables), args (arguments), cio (I/O in C language), etc. The user can 

explicitly decide the beginning and end of each memory section, which is not possible in 

previous architectures. 

 

 5.4 The VelociTI™ Architecture 

 

 

The VelociTI architecture of the C6000 platform of devices makes them the first 

off-the-shelf DSPs to use advanced VLIW to achieve high performance through increased 

instruction-level parallelism. 

 

VelociTI is a highly deterministic architecture, having few restrictions on how or 

when instructions are fetched, executed, or stored. VelociTI‘s advanced features include:  

o Instruction packing: reduced code size 

o All instructions can operate conditionally: flexibility of code 

o Variable-width instructions: flexibility of data types 

o Fully pipelined branches: zero-overhead branching. 

 

 

Figure 7: Block Diagram of the C6000 
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Other on-board peripherals include: 

(a) Enhanced Direct Memory Access (EDMA) controller 

(b) External Memory Interface (EMIF) 

(c) Interrupt selector 

(d) Power-down logic 

(e) Phase-Locked Loop (PLL) controller 
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4. The C6000 DSP Core 

 

 

 

The DSP core consists of registers and the functional units which can be 

programmed by the user. The functions of the various components which make-up the 

C6000 core (Figure 8) are explained next. 

 

 

Instruction Fetch Control 

Registers 

Instruction Dispatch 

Interrupt 

Registers Instruction Decode 
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Data path A 

Register File A 

 

 

S1 M1 

 

 

 

 

 

 

 

 

D1 

 

 

 

 

 

 

 

 

L2 

 

Data path B 

Register File B 

 

 

S2 M2 

 

 

 

 

 

 

 

 

D2 

 

 

 

 

 

Figure 8: The C6000 Core 

 

 

The C6000 CPU, shown in Figure 8, is common to all the C62x/C64x/C67x devices. The 

CPU contains: 

o Program fetch unit 

o Instruction dispatch unit, advanced instruction packing (C64 only) 

o Instruction decode unit 
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o Two data paths, each with four functional units 
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o 32 32-bit registers, 64 32-bit registers (C64 only) 

o Control registers 

o Control logic 

o Test, emulation, and interrupt logic 

 

The program fetch, instruction dispatch, and instruction decode units can deliver up 

to eight 32-bit instructions to the functional units every CPU clock cycle. The processing of 

instructions occurs in each of the two data paths (A and B), each of which contains four 

functional units (.L, .S, .M, and .D) and 16 32-bit general- purpose registers for the 

C62x/C67x and 32 32-bit general purpose registers for the C64x. The data paths are 

described in more detail in section 6.1.A control register file provides the means to 

configure and control various processor operations. To understand how instructions are 

fetched, dispatched, decoded, and executed in the data path, see Section 8, ―Pipelining and 

Parallelism‖. 

 

Internal Memory 

 

 

The C62x, C64x & C67x have a 32-bit, byte-addressable address space. Internal 

(on-chip) memory is organized in separate data and program spaces. When off-chip memory 

is used, these spaces are unified on most devices to a single memory space via the external 

memory interface (EMIF). The C62x and C67x have two 32-bit internal ports to access 

internal data memory. The C64x has two 64-bit internal ports to access internal data 

memory. The C62x, C64x & C67x have a single internal port to access internal program 

memory, with an instruction-fetch width of 256 bits. 

 

 6.1 Data path and Control 

 

 

Register Files 

 

 

There are two general-purpose register files (A and B) in the C6000™ data paths. 

For the C62x/C67x DSPs, each of these files contains 16 32-bit registers (A0– A15 for file A 

and B0–B15 for file B). The general-purpose registers can be used for data; data address 

pointers, or condition registers. The C64x DSP register file 
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doubles the number of general-purpose registers that are in the C62x/C67x cores, with 32 

32-bit registers (A0–A31 for file A and B0–B31 for file B). 

 

The C62x/C67x general-purpose register files support data ranging in size from 

packed 16-bit data through 40-bit fixed-point and 64-bit floating point data. Values larger 

than 32 bits, such as 40-bit long and 64-bit float quantities are stored in register pairs (Figure 

9). In these the 32 LSBs of data are placed in an even- numbered register and the remaining 

8 or 32 MSBs in the next upper register (which is always an odd-numbered register). The 

C64x register file extends this by additionally supporting packed 8-bit types and 64-bit 

fixed-point data types. (The C64x does not directly support floating-point data types.) 

Packed data types store either four 8-bit values or two 16-bit values in a single 32-bit 

register, or four 16-bit values in a 64-bit register pair. 

 

Figure 10 illustrates the register storage scheme for 40-bit long data. Operations 

requiring a long input ignore the 24 MSBs of the odd-numbered register. Operations 

producing a long result fill the 24 MSBs of the odd-numbered register with zeros. The 

even-numbered register is encoded in the opcode. 

 

 

 

 

 

Figure 10: 40-bit long integer 
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Register Files Applicable devices 

A B  

A1:A0 

A3:A2 

A5:A4 

A7:A6 

A9:A8 

A11:A10 

A13:A12 

A15:A14 

A17:A16 

A19:A18 

A21:A20 

A23:A22 

A25:A24 

A27:A26 

A29:A28 

A31:A30 

B1:B0 

B3:B2 

B5:B4 

B7:B6 

B9:B8 

B11:B10 

B13:B12 

B15:B14 

B17:B16 

B19:B18 

B21:B20 

B23:B22 

B25:B24 

B27:B26 

B29:B28 

B31:B30 

 

 

 

 

C62x, C64x and C67x 

 

 

 

 

 

 

 

 

 

 

C67x only 

 

Figure 9: Register Pair Structure 

 

 

Functional Units 

 

 

The eight functional units in the C6000 data paths can be divided into two 

groups of four; each functional unit in one data path is almost identical to the 

corresponding unit in the other data path. The functional units are described in Figure 

11. 

 

Besides being able to perform all the C62x instructions, the C64x also contains 

many 8-bit to 16-bit extensions to the instruction set. For example, the MPYU4 instruction 

performs four 8x8 unsigned multiplies with a single instruction on an .M unit. The ADD4 

instruction performs four 8-bit additions with a single 
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instruction on an .L unit. The additional C64x operations are shown in boldface in Figure 11. 

 

 

Functional 

Unit 

Fixed-point Operations Floating-point 

Operations 

.L unit ( .L1 and 

.L2) 

32/40-bit arithmetic and compare 

operations 

32-bit logical operations 

Leftmost 1 or 0 counting for 32 bits 

Normalization count for 32 and 40 bits 

Byte shifts 

Data packing/unpacking 5-

bit constant generation Dual 

16-bit arithmetic Quad 8-bit 

arithmetic Dual 16-bit 

min/max 

Quad 8-bit min/max 

Arithmetic operations 

DP→SP, INT→DP, 

INT→SP conversion 

operations 

.S unit ( .S1 and 

.S2) 

32-bit arithmetic operations 32/40-bit 

shifts and 32-bit bit-field operations 

32-bit logical operations 

Branches 

Constant generation 

Register transfers to/from control 

register 

file (.S2 only) 

Byte shifts 

Data packing/unpacking 

Dual 16-bit compare Quad 

8-bit compare Dual 16-bit 

shift 

Dual 16-bit saturated arithmetic 

Quad 8-bit saturated arithmetic 

Compare 

 

 

Reciprocal and 

reciprocal square-root 

Operations 

 

Absolute value 

operations 

 

SP→DP conversion 

operations 
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.M unit ( .M1 and 

.M2) 

16 x 16 multiply operations 

16 x 32 multiply operations 

Quad 8 x 8 multiply operations 

Dual 16 x 16 multiply operations 

Dual 16 x 16 multiply with 

add/subtract operations Quad 8 

x 8 multiply with add Bit 

expansion 

Bit interleaving/de-interleaving 

Variable shift operations Rotation 

Galois Field Multiply 

32 x 32-bit fixed-point 

multiply operations 

 

Floating-point multiply 

operations 

.D unit (.D1 and 

.D2) 

32-bit add, subtract, linear and circular 

address calculation 

Loads and stores with 5-bit offset Loads 

and stores with 15-bit offset Load and 

store double words with 5-bit constant 

Load and store non-aligned words and 

double words 

5-bit constant generation 

32-bit logical operations 

Load doubleword with 

5-bit constant offset 

 

Figure 11: Functional units and their operations 

 

 

Control Register File 

 

 

One unit (.S2) can read from and write to the control register file, as shown in this 

section. Figure 12 lists the control registers contained in the control register file and 

describes each. If more information is available on a control register, the table lists where to 

look for that information. Each control register is accessed by the MVC instruction. 
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Additionally, some of the control register bits are specially accessed in other ways. 

For example, arrival of a maskable interrupt on an external interrupt pin, INT m, triggers 

the setting of flag bit IFRm. Subsequently, when that interrupt is processed, this triggers the 

clearing of IFRm and the clearing of the global interrupt enable bit, GIE. Finally, when that 

interrupt processing is complete, the B IRP  instruction in the interrupt service routine 

restores the pre-interrupt value of the GIE. Similarly, saturating instructions like SADD set 

the SAT (saturation) bit in the CSR (Control Status Register). 

 

 

Abbr. Register Name Description 

AMR Addressing mode 

register 

Specifies whether to use linear or circular 

addressing for each of eight registers; also 

contains sizes for circular addressing 

CSR Control status register Contains the global interrupt enable bit, 

cache control bits, and other miscellaneous 

control and status bits 

IFR Interrupt flag register Displays status of interrupts 

ISR Interrupt set register Allows manually setting pending interrupts 

ICR Interrupt clear register Allows manually clearing pending interrupts 

IER Interrupt enable 

register 

Allows enabling/disabling of individual 

interrupts 

ISTP Interrupt service table 

pointer 

Points to the beginning of the interrupt 

service table 

IRP Interrupt return pointer Contains the address to be used to return 

from a maskable interrupt 

NRP Nonmaskable interrupt 

return 

pointer 

Contains the address to be used to return from 

a nonmaskable interrupt 

PCE1 Program counter, E1 

phase 

Contains the address of the fetch packet 

that is in the E1 pipeline stage 

 

Figure 12: Control Registers 
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 6.2 Instruction Set Mapping 

Figure 13 shows the mapping between instruction set and the functional units.  

 

 

.L Unit .M Unit .S Unit .D unit 

ABS MPY ADD SET ADD 

ADD MPYU ADDK SHL ADDAB 

ADDU MPYUS ADD2 SHR ADDAH 

AND MPYSU AND SHRU LDB 

CMPEQ MPYH B disp SSHL LDBU 

CMPGT MPYHU B IRP SUB LDH 

CMPGTU MPYHUS B NRP SUBU LDHU 

CMPLT MPYHSU B reg SUB2 LDW 

CMPLTU MPYHL CLR XOR MV 

LMBD MPYHLU EXT ZERO STB 

MV MPYHULS EXTU  STH 

NEG MPYHSLU MV  STW 

NORM MYPLH MVC  SUB 

NOT MPYLHU MVK  SUBAB 

OR MPYLUHS MVKH  SUBAH 

SADD MPYLSHU MVKLH  SUBAW 

SAT SMPY NEG  ZERO 

SSUB SMPYHL NOT   

SUB SMPYLH OR   

SUBU SMPYH    

SUBC     

XOR     

ZERO     

 

Figure 13: Instruction Set Mapping 

 

 

The fact that each functional unit can execute only a particular instruction is 

extremely important when writing assembly programs. This information must be entered in 

every assembly instruction. 
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 6.3 Register Usage 

 

 

All instructions are conditional instructions. If no condition is specified, it is always 

executed. Conditional instructions are represented in code by using square brackets, [ ], 

surrounding the condition register name. The following execute packet contains two ADD 

instructions in parallel. The first ADD is conditional on B0 being nonzero. The second 

ADD is conditional on B0 being zero. The character ―!‖ (exclamation mark) indicates the 

inverse of the condition. 

 

[  B0  ] ADD .L1 A1,A2,A3 ;executes if B0 is nonzero 

|| [ ! B0 ] ADD .L2 B1,B2,B3 ;executes if B0 = 00000000h 

 

 

The above instructions are mutually exclusive. This means that only one will 

execute. Only A1, A2, B0, B1 and B2 registers can be used as conditional registers. No two 

instructions within the same execute packet can use the same resources. Also, no two 

instructions can write to the same register during the same cycle. 

 

The registers A4, A5, A6, A7, B4, B5, B6 and B7 can be used for circular 

addressing. No other registers can be used for this purpose. Also some registers are assigned 

some special purpose: 

o B15 is the Stack pointer (SP) 

o A15 is the Frame Pointer (FP) 

o A14 is the Data Page Pointer (DPP) 

 

The programmer must avoid using A14, A15 and B15 as much as possible. 
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5. The Addressing Modes 

 

Addressing Modes are methods used to specify the address of an operand in 

assembly instructions. 

 

 7.1 Types of Addressing Modes 

 

The addressing modes on the C62x, C64x, and C67x are 

o Linear mode 

o Circular mode using BK0 

o Circular mode using BK1 

 

The mode is specified by the addressing mode register, or AMR (Figure 12 and 

section 7.3). All registers can perform linear addressing. Only eight registers can perform 

circular addressing: A4–A7 are used by the .D1 unit and B4–B7 are used by the .D2 unit. No 

other units can perform circular addressing. LDB(U)/LDH(U)/LDW, STB/STH/STW, 

ADDAB/ADDAH/ADDAW/ADDAD, and SUBAB/SUBAH/SUBAW 

instructions all use the AMR to determine what type of address calculations are performed for 

these registers. 

 

If no addressing mode is explicitly written into the AMR then linear addressing mode 

is used by default. The different ways of addressing modes are: 

 

Register Addressing Mode: The operand is the contents of a processor register; the name 

of the register is given in the instruction. 

Ex:  ADD .L1 A1, A2, A3 ; A1 + A2 = A3 

SUB  .L2 B1, B2, B6 ; B1 – B2 = B6 

Note that the functional unit is a must in writing assembly instructions. 
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Memory Memory 

 

Immediate Addressing Mode: The operand is a numeric constant which is directly 

specified in the instruction. 

Ex:  ADD .L1 A1, 20, A3 ; A1 + 20 = A3 

SUB  .L2 B1, 15, B6 ; B1 – 15 = B6 

 

Indirect Addressing Mode: The effective address of the operand is the contents of a 

register that appears in the instruction. An asterisk (*) is used as an indirection operator. 

Also increment (++) and decrement (- -) operators are supported. 

Ex: LDW .D2 *B0, B1 

STW .D1 A1,*A2++ 

 

 7.2 Circular Addressing Mode 

A circular buffer is a fixed number of memory locations which is circular i.e. cyclic 

in nature. If you increment the address of last memory location in the buffer it points to the 

first location. Note that in linear mode, incrementing the last memory location in the 

memory map causes an overflow error. 

 

 

A0 = 00000007 A0 = 00000000 

 

 

 

 

 

 

00000000 

00000001 

00000002 

00000003 

 00000004  

00000005 

00000006 

 00000007  

 00000008  

00000009 

 

00000000 

00000001 

00000002 

00000003 

 00000004  

00000005 

00000006 

 00000007  

 00000008  

00000009 

 

A0++ 
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Figure 14: Circular Addressing 
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Consider the example shown in Figure 14. Let the block size of the circular buffer 

be N = 8. Also let A0 = 00000007h initially. Assuming that A0 is set for circular mode in the 

AMR, we increment A0 by 1 (A0++). If it were linear addressing A0 would contain 

00000008h. But the block size is set to 8 itself (in circular mode) and since modulo (8, N) = 

0, the A0 now points to zeroth memory location. 

 

 7.3 Addressing Mode Register 

 

 

For each of the eight registers (A4–A7, B4–B7) that can perform linear or circular 

addressing, the AMR specifies the addressing mode. A 2-bit field for each register selects 

the address modification mode: linear (the default) or circular mode. With circular 

addressing, the field also specifies which BK (block size) field to use for a circular buffer. In 

addition, the buffer must be aligned on a byte boundary equal to the block size. The mode 

select fields and block size fields are shown in Figure 15 and the mode select field encoding 

is shown in Figure 16 (next page). 

 

 

Figure 15: Addressing Mode Register 

 

 

The reserved portion of AMR is always 0. The AMR is initialized to 0 at reset. The block 

size fields, BK0 and BK1, contain 5-bit values used in calculating block sizes for circular 

addressing. 

 

Block size (in bytes) = 2 
( N+ 1 )
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where N is the 5-bit value in BK0 or BK1 

 

 

Mode Description 

00 Linear mode (default at reset) 

01 Circular Addressing using BK0 field 

10 Circular Addressing using BK1 field 

11 Reserved 

 

Figure 16: Mode Select Field Encoding 

 
 
 

Pipelining and Parallelism 

 

 

Pipelining is a technique of executing several instructions concurrently. The highlights of 

the C6000 pipeline are: 

o The pipeline can dispatch eight parallel instructions every cycle. 

o Parallel instructions proceed simultaneously through each pipeline phase. 

o Serial instructions proceed through the pipeline with a fixed relative phase 

difference between instructions. 

All instructions require the same number of pipeline phases for fetch and decode, but 

require a varying number of execute phases. 

 

8.1 The C6000 Pipeline Phases 

 

 

The pipeline phases are divided into three stages: 

o Fetch 

o Decode 

o Execute 

All instructions in the C62x/C64x instruction set flow through the fetch, decode, and 

execute stages of the pipeline. The fetch stage of the pipeline has four phases for all 

instructions, and the decode stage has two phases for all instructions. The execute stage of 

the pipeline requires a varying number of phases, depending on the type of instruction. The 

stages of the C6000 fixed-point pipeline are shown in Figure 17. 
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Figure 17: Fixed-point Pipeline 

 

 

The different phases in each stage of the pipelining are shown in Figure 18. 
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Stage Phase Symbol 

 

Program Fetch 
Program Address Generation PG 

Program Address Send PS 

Program Access Wait PW 

Program Fetch Packet Receive PR 

Program 

Decode 

Instruction Dispatch DP 

Instruction Decode DC 

 

Program 

Execute 

 
Execute Packet 1 

 
E1 

: : 

Execute Packet 5 E5 

 

Figure 18: The Phases of Pipeline 

 

 

During the PG phase, the program address is generated in the CPU. In the PS phase, 

the program address is sent to memory. In the PW phase, a memory read occurs. Finally, in 

the PR phase, the fetch packet is received at the CPU. In the DP phase of the pipeline, the 

fetch packets are split into execute packets. In the DC phase, the source registers, 

destination registers, and associated paths are decoded for the execution of the instructions in 

the functional units. The execute portion of the fixed-point pipeline is subdivided into five 

phases (E1–E5). Different types of instructions require different numbers of these phases to 

complete their execution. 

 

Figure 19 shows an example of the pipeline flow of consecutive fetch packets that 

contain eight parallel instructions. In this case, where the pipeline is full, all instructions in 

a fetch packet are in parallel and split into one execute packet per fetch packet. The fetch 

packets flow in lockstep fashion through each phase of the pipeline. For example, examine 

cycle 7 in Figure 19. When the instructions from FP n reach E1, the instructions in the 

execute packet from FP (n +1) are being decoded. FP (n + 2) is in dispatch while FPs (n + 

3), (n + 4), (n + 5), and (n + 6) are each in one of four phases of program fetch. 
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Figure 19: Pipeline Operation: One Execute Packet per Fetch Packet 

 

 

 8.2 Vector Summation: An Example 

 

 

Consider a simple C function to add two N-element arrays a and b, element- by-

element. 

N 1 

c[n]   (a[n]  b[n] ) 

n0 

 

 

void sum (int *a, int *b, int *c, int N) 

{ 

int n; 

for(n=0;n<N;n++) c[n]=a[n]+b[n] ; 

} 

The inner loop can be implemented using the following assembly program: 

 

 

LOOP : 

mvk 

ldw 

.S1 10, A1 

.D1 *a++, A0 

; N = 10 

;A0 = a[n] 

 ldw .D2 *b++, B0 ; B0 = b[n] 

 add .L2 A0,B0,B1 ; 

 stw .D2 B1, *c++ ;c[n] = A0+B0 , n++ 

 sub .L1 A1, 1 , A1 ;N = N-1 

[ A1 ] b LOOP ;branch to LOOP if A1 != 0 
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We shall see next how the program operates with and without pipelining. 

 

 8.3 Vector Summation without Pipelining 

 

 

When pipelining is not applied, the resources (i.e. functional units) are utilized as 

shown below (Figure 20): 

 

Cycle .S1 .S2 
.D1 .D2 .L1 .L2 

 

1 mvk  

2 

3 

4 

 

 
  

l

d

w

  

 

 

 

 

  ldw  

 

  stw  

 

 
 

 
 

 

  sub  

 

 
 

 

 add 

 

 

Figure 20: Resource Utilization 

 

 

The first clock cycle simple loads the constant N=10. This is executed only once. 

The next three clock cycles keep repeating N times. In the second clock cycle only S1 and 

S2 are used. The remaining units are idle. Similarly in the third and fourth clock cycles, not 

all units are used. This leads to ineffective utilization of the functional units. Hence 

pipelining is needed. The entire program thus takes 32 clock cycles. 

 

 8.4 Vector Summation with Pipelining 

 

 

Software pipelining is a technique used to schedule instructions from a loop so that 

multiple iterations of the loop execute in parallel. Pipelining can be enabled in CCStudio™ 

using the option –o1, –o2 or –o3 (recommended) while running the compiler cl6x. Figure 

21 illustrates a software pipelined loop. The stages of the loop are represented by A, B, C, 

D, and E. In this figure, a maximum of five iterations of the loop can execute at one time. 

The shaded area represents the loop kernel. In the 
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loop kernel, all five stages execute in parallel. The area above the kernel is known as the 

pipelined loop prolog, and the area below the kernel is known as the pipelined loop epilog. 

 

Figure 21: Software-pipelined loop 

 

 

When pipelining is enabled, instead of performing one summation in one execution 

of the loop, the compiler unrolls the loop so that two summations are performed in one 

execution of the loop. The equivalent C function as seen by the compiler is: 

void sum (int *a, int *b, int *c, int N) 

{ 

int n; 

for(n=0;n<N;n+=2) 

{ c[n] = a[n] + b[n] ; 

c[n+1] = a[n+1] + b[n+1]; 

} 

} 

The pipelined loop kernel is shown below (as generated by the cl6x compiler). 

LOOP:   

; <PIPED LOOP KERNEL> ADD .L1X B7, 

A3, A3 

|| [ B0] B .S1 L2 

||  LDH .D1T1 *++A4(4),A3 

||  LDH .D2T2 *++B4(4),B7 

 [!A1] STH .D1T1 A3,*++A0(4) 

||  ADD .L2X B6,A5,B6 

||  LDH .D2T2 *+B4(2),B6 

 [ A1] SUB .L1 A1,1,A1 
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|| [!A1] STH .D2T2 B6,*++B5(4) 

|| [ B0] SUB  .L2 B0,1,B0 

||  LDH  .D1T1 *+A4(2),A5 

 

Instructions marked with double bars (||) execute simultaneously in a single clock 

cycle. As a result, the entire program takes only 14 clock cycles now. Previously it was 32 

cycles. 
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6. The Memory Map of C6000 

The memory of any C6000 device in general consists of the following divisions (Figure 22): 

 

Figure 22: Memory Map 

 

 

Its features can be summarized as follows: 

 

• Internal Memory of up to 2 MB with 1 MB being commonly found. 

• External Memory Interface (EMIF) can support up to 24 MB 

• External interface can be SDRAM, synchronous burst RAM 

• Two-level (L1 and L2) cache up to 512 KB 

• Separate cache for PMEM (program memory) and DMEM (data memory) The 

actual memory map depends from device to device and cannot be generalized. 
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7. The Peripherals of C6000 

 

The functions of various peripherals supported by the C6000 are: 

 

 

(a) DMA (Direct Memory Access) Controller transfers data between address ranges in the 

memory map without intervention by the CPU. The DMA controller has four 

programmable channels and a fifth auxiliary channel. 

 

(b) EDMA (Enhanced DMA) Controller performs the same functions as the DMA 

controller. The EDMA has 16 programmable channels, as well as a RAM space to hold 

multiple configurations for future transfers. 

 

(c) HPI (Host Port Interface) is a parallel port through which a host processor can directly 

access the CPU‘s memory space. The host device has ease of access because it is the master 

of the interface. The host and the CPU can exchange information via internal or external 

memory. In addition, the host has direct access to memory-mapped peripherals. 

 

(d) Expansion bus is a replacement for the HPI, as well as an expansion of the EMIF. The 

expansion provides two distinct areas of functionality (host port and I/O port) which can co-

exist in a system. The host port of the expansion bus can operate in either asynchronous 

slave mode, similar to the HPI, or in synchronous master/slave mode. This allows the 

device to interface to a variety of host bus protocols. Synchronous FIFOs and asynchronous 

peripheral I/O devices may interface to the expansion bus. 

 

(e) McBSP (Multi-channel Buffered Serial Port) is based on the standard serial port 

interface found on the TMS320C2000 and C5000 platform devices. In addition, the port 

can buffer serial samples in memory automatically with the aid of the 
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DMA/EDMA controller. It also has multi-channel capability compatible with the T1, E1, 

SCSA, and MVIP networking standards. 

(f) Timers in the C6000 devices are two 32-bit general-purpose timers used for these 

functions: 

o Time events 

o Count events 

o Generate pulses 

o Interrupt the CPU 

o Send synchronization events to the DMA/EDMA controller. 

 

(g) Power-down logic allows reduced clocking to reduce power consumption. Most of the 

operating power of CMOS logic dissipates during circuit switching from one logic state to 

another. By preventing some or all of the chip‘s logic from switching, you can realize 

significant power savings without losing any data or operational context. 
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8. The DaVinci™ Technology 

 

 

 

The Texas Instruments DaVinci™ Technology combines TI's offering of DSP and 

tools for developing a broad spectrum of optimized digital video end equipments. 

 

 11.1 The Origin of the DaVinci ™ Effect 

 

 

A typical multimedia system such as a digital video recorder or digital camera can be 

split roughly into two pieces: control and media. The control portion handles tasks such as 

memory card or hard disk access, user interface, and networking, while the media portion 

covers tasks such as encoding and decoding of audio and video. A general-purpose 

processor performs well in control tasks, but all but the fastest of these processors are not 

sufficiently powerful for intensive media-related tasks such as real-time, high-quality video 

encoding. A DSP, on the other hand, is superb at the repetitive, easily parallelizable media-

related tasks, but usually performs poorly in control-related jobs. 

 

 

 

Multimedia System 

 

 

 

 

 

Control tasks Ex: 

Networking & 

User interface 

Media tasks Ex: 

Encoding & Decoding 

 

 

Figure 23: Multimedia System 
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The idea behind DaVinci is that by using both a general-purpose processor and a 

DSP, the control and media portions can both be executed by processors that excel at their 

respective tasks. The integration of these two components into one chip simplifies the 

system design and allows for more efficient communication between the two components. 

 

 11.2 Existing Systems 

 

 

DaVinci Technology has grown to support DSP only processors including 

TMS320DM6431, TMS320DM6433, TMS320DM6435 and TMS320DM6437. 

 

Models 

DM6443 = ARM9 + Texas Instruments TMS320C64x+ DSP + DaVinci Video (Decode)  

Video Accelerator and Networking for display 

DM6446 = ARM9 + Texas Instruments TMS320C64x+ DSP + DaVinci Video (Encode and 

Decode)  Video Accelerator and Networking for capture and display 

 

 11.3 Peripherals and Operating System 

 

 

The DaVinci includes a number of on-chip peripherals. These include: 

 

 Support for memory cards such as CompactFlash, SD Card and MMC 

 ATA interface 

 CCD Controller for digital camera/camcorder applications 

 Connectivity, including USB 2.0 Host and Client modes, VLYNQ (interface for 

FPGA, Wireless LAN, PCI), EMAC (Ethernet MAC) with MDIO 

 Enhanced DMA 

 Interrupt controller 

 Digital LCD controller 

 Serial interfaces, including SPI, I²C, and I²S, UART 

 Histogram, autofocus, autoexposure, and auto-white-balance (H3A) 

acceleration 

 Image resize acceleration 

 A/D and D/A converters for analog video input and output 
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The DSP in the DaVinci generally runs TI's DSP/BIOS RTOS. DSP/BIOS Link 

drivers run on both the ARM processor and the DSP to provide communication between 

the two. A number of operating systems support DaVinci and the DSP/BIOS Link drivers: 

 

 Green Hills Software INTEGRITY RTOS 

 Montavista Linux 

 QNX Neutrino 

 Windows CE 

 DaVinci Linux OS is currently (2007) under development. 

 Blackhawk XDS560™ is a real-time debugger released on March 19, 2007. It 

captures even the toughest real-time hardware bugs. 

 

 11.4 Applications 

 

 

High-end applications include: 

• Stream live-video on to a portable, handheld device 

• An on-board intelligence system in your car can record obstructions in front of the 

windscreen. 

• Surveillance videos directly captured by a TV and transferred to a 

computer/controller 

 

Other everyday applications which have a potential to exploit DaVinci are: 

• 1200- to 56Kbps modems 

• Digital Subscriber Loop 

• X.25 packet switching 

• Image Compression 

• Homomorphic Processing 

• Robotic Vision 

• Pattern Recognition 
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9. Conclusions 

 

 ―Necessity is the mother of all inventions‖. Hence the origin and four generations of 

DSPs were first considered. 

 

 The failure of Von Neumann architecture led to the Harvard architecture, which was 

further developed into VLIW architecture. 

 

 The data path and control registers are a dominating feature of the C6000‘s architecture. 

Each instruction is mapped uniquely to  every  functional unit. 

 The addressing modes, especially circular addressing, is extremely  useful in 

implementing FIR filters and circular convolution. 

 

 Pipelining is the watchword when it comes to parallel execution. Loop unrolling nearly 

doubles the execution speed. 

 

 The DaVinci™ is a state-of-the-art technology that is designed with video and 

multimedia applications in mind. 
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