
MICROPROCESSORS AND MICROCONTROLLERS
Course code:AEC013

III. B.Tech VI semester
Regulation: IARE R-16

BY
Mr. V R Seshagiri Rao

Assistant Professors
Mr. D Khalandar Basha, Mr. B Naresh

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)
DUNDIGAL, HYDERABAD - 500 043

1

CO’s Course outcomes

CO 1 Acquire knowledge about architecture and functional features
of microprocessors particularly 8086.

CO 2 Obtain an insight in to the instruction set of 8086 and write
programs in assembly level language.

CO 3 Interface different types of external peripherals like 8255, 8259,
8279, 8251 &8257 with 8086.

CO 4 Imbibe knowledge about hardware details of 8051
microcontrollers and develop assembly language programs for
data transfer, arithmetic, logical and branch instructions.

CO 5 Design simple systems using timers, interrupts, memories ADC
and DACs etc. using 8051.

2

UNIT– I
8086 MICROPROCESSORS

3

CLOs Course Learning Outcome

CLO1 Understand the internal Architecture and different
modes of operation of popular 8086 microprocessors.

CLO2 Basic understanding of 8085 and 8086
microprocessors architectures and its functionalities.

CLO3 An ability to distinguish between RISC and CISC based
microprocessors.

CLO4 Understand the importance of addressing modes and
the instruction set of the processor which is used for
programming.

4

Introduction to processor:

5

• A processor is the logic circuitry that responds to and processes the
basic instructions that drives a computer.

• The term processor has generally replaced the term central
processing unit . The processor in a personal computer or
embedded in small devices is often called a microprocessor.

• The processor (CPU, for Central Processing Unit) is the computer's
brain. It allows the processing of numeric data, meaning
information entered in binary form, and the execution of
instructions stored in memory.

Evolution of Microprocessor:

6

• A microprocessor is used as the CPU in a microcomputer. There are
now many different microprocessors available.

• Microprocessor is a program-controlled device, which fetches the
instructions from memory, decodes and executes the instructions.
Most Micro Processor are single- chip devices.

• Microprocessor is a backbone of computer system. which is called
CPU

• Microprocessor speed depends on the processing speed depends
on DATA BUS WIDTH.

• A common way of categorizing microprocessors is by the no. of bits
that their ALU can Work with at a time

 The address bus is unidirectional because the address information is
always given by the Micro Processor to address a memory location
of an input / output devices.

 The data bus is Bi-directional because the same bus is used for
transfer of data between Micro Processor and memory or input /
output devices in both the direction.

 It has limitations on the size of data. Most Microprocessor does
not support floating-point operations.

 Microprocessor contain ROM chip because it contain
instructions to execute data.

 Storage capacity is limited. It has a volatile memory. In secondary
storage device the storage capacity is larger. It is a nonvolatile
memory.

7

Evolution of Microprocessor:

 Primary devices are: RAM (Read / Write memory, High Speed,
Volatile Memory) / ROM (Read only memory, Low Speed, Non Volatile
Memory)

8

Compiler:

 Compiler is used to translate the high-level language program into machine
code at a time. It doesn’t require special instruction to store in a memory,
it stores automatically. The Execution time is less compared to Interpreter

Evolution of Microprocessor:

RISC (Reduced Instruction Set Computer):

9

• RISC stands for Reduced Instruction Set Computer. To execute each
instruction, if there is separate

• electronic circuitry in the control unit, which produces all the
necessary signals, this approach of the design of the control section
of the processor is called RISC design. It is also called hardwired
approach.

Examples of RISC processors:

• IBM RS6000, MC88100

• DEC’s Alpha 21064, 21164 and 21264 processors

Evolution of Microprocessor:

Features of RISC Processors:

10

The standard features of RISC processors are listed below:

 RISC processors use a small and limited number of instructions.

 RISC machines mostly uses hardwired control unit.

 RISC processors consume less power and are having high
performance.

 Each instruction is very simple and consistent.

 RISC processors uses simple addressing modes.

 RISC instruction is of uniform fixed length

CISC (Complex Instruction Set Computer):

11

 CISC stands for Complex Instruction Set Computer. If the control unit

contains a number of microelectronic circuitry to generate a set of

control signals and each micro circuitry is activated by a micro code, this

design approach is called CISC design.

Examples of CISC processors are:

 Intel 386, 486, Pentium, Pentium Pro, Pentium II, Pentium III

 Motorola’s 68000, 68020, 68040, etc.

Features of RISC Processors:

Features of CISC Processors:

12

 CISC chips have a large amount of different and complex
instructions.

 CISC machines generally make use of complex addressing modes.

 Different machine programs can be executed on CISC machine.

 CISC machines uses micro-program control unit.

 CISC processors are having limited number of registers

8086 Architecture :

13

 8086 Microprocessor is divided into two functional units, i.e.,

EU(Execution Unit) and BIU (Bus Interface Unit).

EU (Execution Unit):

Execution unit gives instructions to BIU stating from where to fetch the data

and then decode and execute those instructions. Its function is to control

operations on data using the instruction decoder & ALU. EU has no direct

connection with system buses as shown in the above figure, it performs

operations over data through BIU.

14

8086 Architecture :

• BIU(Bus Interface Unit):

 BIU takes care of all data and addresses transfers on the buses for the EU
like sending addresses, fetching instructions from the memory, reading
data from the ports and the memory as well as writing data to the ports
and the memory. EU has no direction connection with System Buses so
this is possible with the BIU. EU and BIU are connected with the Internal
Bus.

• Instruction queue:

 BIU contains the instruction queue. BIU gets up to 6 bytes of next
instructions and stores them in the instruction queue. When EU executes
instructions and is ready for its next instruction, then it simply reads the
instruction from this instruction queue resulting in increased execution
speed.

15

8086 Architecture :

• Segment register:

 BIU has 4 segment buses, i.e. CS, DS, SS& ES. It holds the addresses of

instructions and data in memory, which are used by the processor to

access memory locations. It also contains 1 pointer register IP, which

holds the address of the next instruction to executed by the EU.

16

8086 Architecture :

AX & DX registers:

 In 8 bit multiplication, one of the operands must be in AL. The

other operand can be a byte in memory location or in another 8

bit register. The resulting 16 bit product is stored in AX, with AH

storing the MS byte.

 In 16 bit multiplication, one of the operands must be in AX.

 The other operand can be a word in memory location or in

another 16 bit register. The resulting 32 bit product is stored in DX

and AX, with DX storing the MS word and AX storing the LS word.

17

Special functions of general purpose register

BX register :

In instructions where we need to specify in a general purpose

register the 16 bit effective address of a memory location, the

register BX is used (register indirect).

18

Special functions of general purpose register

CX register :

In Loop Instructions, CX register will be always used as the implied

counter. In I/O instructions, the 8086 receives into or sends out data

from AX or AL depending as a word or byte operation.

• Segment register:

 BIU has 4 segment buses, i.e. CS, DS, SS& ES. It holds the addresses of

instructions and data in memory, which are used by the processor to

access memory locations. It also contains 1 pointer register IP, which holds

the address of the next instruction to executed by the EU.

19

Segment register:

20

 Flag Register contains a group of status bits called flags that

indicate the status of the CPU or the result of arithmetic operations.

 There are two types of flags:

 The status flags which reflect the result of executing an instruction.

The programmer cannot set/reset these flags directly.

 The control flags enable or disable certain CPU operations.

 The programmer can set/reset these bits to control the CPU's

operation.

Flag Register and Functions of 8086 Flags

• Nine individual bits of the status register are used as control flags (3 of

them) and status flags (6 of them).The remaining 7 are not used.

• A flag can only take on the values 0 and 1. We say a flag is set if it has

the value 1.The status flags are used to record specific characteristics

of arithmetic and of logical instructions.

21

Flag Register and Functions of 8086 Flags

22

Structure of Flag Register

• Control Flags: There are three control flags

• The Direction Flag (D): Affects the direction of moving data blocks by such

instructions as MOVS, CMPS and SCAS. The flag values are 0 = up and 1 =

down and can be set/reset by the STD (set D) and CLD (clear D) instructions.

• The Interrupt Flag (I): Dictates whether or not system interrupts can occur.

Interrupts are actions initiated by hardware block such as input devices that

will interrupt the normal execution of programs. The flag values are 0 =

disable interrupts or 1 = enable interrupts and can be manipulated by the

CLI (clear I) and STI (set I) instructions.

23

Flag Register and Functions of 8086 Flags

• The Trap Flag (T): Determines whether or not the CPU is halted after the

execution of each instruction. When this flag is set (i.e. = 1), the

programmer can single step through his program to debug any errors.

When this flag = 0 this feature is off. This flag can be set by the INT 3

instruction.

• Status Flags: There are six status flags

• The Carry Flag (C): This flag is set when the result of an unsigned

arithmetic operation is too large to fit in the destination register. This

happens when there is an end carry in an addition operation or there an

end borrows in a subtraction operation. A value of 1 = carry and 0 = no

carry.
24

Flag Register and Functions of 8086 Flags

• The Overflow Flag (O): This flag is set when the result of a signed

arithmetic operation is too large to fit in the destination register (i.e. when

an overflow occurs). Overflow can occur when adding two numbers with

the same sign (i.e. both positive or both negative). A value of 1 = overflow

and 0 = no overflow.

• The Sign Flag (S): This flag is set when the result of an arithmetic or logic

operation is negative. This flag is a copy of the MSB of the result (i.e. the

sign bit). A value of 1 means negative and 0 = positive.

25

Flag Register and Functions of 8086 Flags

• The Zero Flag (Z): This flag is set when the result of an arithmetic or logic

operation is equal to zero. A value of 1 means the result is zero and a value

of 0 means the result is not zero.

• The Auxiliary Carry Flag (A): This flag is set when an operation causes a

carry from bit 3 to bit 4 (or a borrow from bit 4 to bit 3) of an operand. A

value of 1 = carry and 0 = no carry.

• The Parity Flag (P): This flags reflects the number of 1s in the result of an

operation. If the number of 1s is even its value = 1 and if the number of 1s is

odd then its value = 0.

26

Flag Register and Functions of 8086 Flags

• Addressing mode indicates a way of locating data or operands. Depending

up on the data type used in the instruction and the memory addressing

modes, any instruction may belong to one or more addressing modes or

same instruction may not belong to any of the addressing modes.

• The addressing mode describes the types of operands and the way they are

accessed for executing an instruction. According to the flow of instruction

execution, the instructions may be categorized as

 Sequential control flow instructions and

 Control transfer instructions.

27

Addressing Modes of 8086

• Sequential control flow instructions are the instructions which after

execution, transfer control to the next instruction appearing immediately

after it (in the sequence) in the program. For example the arithmetic, logic,

data transfer and processor control instructions are Sequential control flow

instructions.

• The control transfer instructions on the other hand transfer control to

some predefined address or the address somehow specified in the

instruction, after their execution. For example INT, CALL, RET & JUMP

instructions fall under this category.

28

Addressing Modes of 8086

 The addressing modes for Sequential and control flow instructions are

explained as follows.

 Immediate addressing mode:

 In this type of addressing, immediate data is a part of instruction, and

appears in the form of successive byte or bytes.

 Example: MOV AX, 0005H.

 In the above example, 0005H is the immediate data. The immediate data

may be 8- bit or 16-bit in size.

29

Addressing Modes of 8086

Direct addressing mode:

• In the direct addressing mode, a 16-bit memory address (offset) directly

specified in the instruction as a part of it.

Example: MOV AX, [5000H].

Register addressing mode:

• In the register addressing mode, the data is stored in a register and it is

referred using the particular register. All the registers, except IP, may be

used in this mode.

Example: MOV BX, AX

30

Addressing Modes of 8086

Register indirect addressing mode:

• Sometimes, the address of the memory location which contains data or

operands is determined in an indirect way, using the offset registers. The

mode of addressing is known as register indirect mode.

• In this addressing mode, the offset address of data is in either BX or

SI or DI Register. The default segment is either DS or ES.

Example: MOV AX, [BX].

31

•

Addressing Modes of 8086

Indexed addressing mode:

• In this addressing mode, offset of the operand is stored one of the index

registers. DS & ES are the default segments for index registers SI & DI

respectively.

Example: MOV AX, [SI]

• Here, data is available at an offset address stored in SI in DS.

32

Addressing Modes of 8086

Register relative addressing mode:

• In this addressing mode, the data is available at an effective address formed

by adding an 8-bit or 16-bit displacement with the content of any one of

the register BX, BP, SI & DI in the default (either in DS & ES) segment.

Example: MOV AX, 50H [BX]

33

Addressing Modes of 8086

•
•Based indexed addressing mode:

• The effective address of data is formed in this addressing mode, by adding

content of a base register (any one of BX or BP) to the content of an index

register (any one of SI or DI). The default segment register may be ES or DS.

Example: MOV AX, [BX][SI]

Relative based indexed:

• The effective address is formed by adding an 8 or 16-bit displacement with

the sum of contents of any of the base registers (BX or BP) and any one of

the index registers, in a default segment.

Example: MOV AX, 50H [BX] [SI]
•

34

Addressing Modes of 8086

• Addressing Modes for control transfer instructions:

• Intersegment

– Intersegment direct

– Intersegment indirect

• Intrasegment

– Intrasegment direct

– Intrasegment indirect

35

Addressing Modes of 8086

• Intersegment direct:

 In this mode, the address to which the control is to be transferred is in a

different segment. This addressing mode provides a means of branching

from one code segment to another code segment. Here, the CS and IP of

the destination address are specified directly in the instruction.

Example: JMP 5000H: 2000H;

• Jump to effective address 2000H in segment 5000H.

36

Addressing Modes of 8086

Intersegment indirect:

 In this mode, the address to which the control is to be transferred lies in a

different segment and it is passed to the instruction indirectly, i.e. contents

of a memory block containing four bytes, i.e. IP(LSB), IP(MSB), CS(LSB) and

CS(MSB) sequentially. The starting address of the memory block may be

referred using any of the addressing modes, except immediate mode.

 Example: JMP [2000H].

 Jump to an address in the other segment specified at effective address

2000H in DS.

37

Addressing Modes of 8086

• Intrasegment direct mode:

 In this mode, the address to which the control is to be transferred lies in the

same segment in which the control transfers instruction lies and appears

directly in the instruction as an immediate displacement value. In this

addressing mode, the displacement is computed relative to the content of

the instruction pointer.

38

Addressing Modes of 8086

• The effective address to which the control will be transferred is given by

the sum of 8 or 16 bit displacement and current content of IP. In case of

jump instruction, if the signed displacement (d) is of 8- bits (i.e. -

128<d<+127), it as short jump and if it is of 16 bits (i.e. -

32768<d<+32767), it is termed as long jump.

Example: JMP SHORT LABEL.

39

Addressing Modes of 8086

• Intrasegment indirect mode:

• In this mode, the displacement to which the control is to be transferred is

in the same segment in which the control transfer instruction lies, but it is

passed to the instruction directly. Here, the branch address is found as the

content of a register or a memory location.

• This addressing mode may be used in unconditional branch

instructions.

• Example: JMP [BX]; Jump to effective address stored in BX.

40

Addressing Modes of 8086

INSTRUCTION SET OF 8086

41

• The Instruction set of 8086 microprocessor is classified into 7 Types, they

are:-

• Data transfer instructions

• Arithmetic& logical instructions

• Program control transfer instructions

• Machine Control Instructions

• Shift / rotate instructions

• Flag manipulation instructions

• String instructions

42

• Data transfer instruction, as the name suggests is for the transfer of
data from memory to internal register, from internal register to
memory, from one register to another register, from input port to
internal register, from internal register to output port etc

MOV instruction

• It is a general purpose instruction to transfer byte or word from
register to register, memory to register, register to memory or with
immediate addressing.

Data Transfer instructions

General Form:
• MOV destination, source
• Here the source and destination needs to be of the same size, that

is both 8 bit or both 16 bit.
• MOV instruction does not affect any flags.

Example:-

43

•
• MOV BX, 00F2H; load the immediate number 00F2H in BX

register

• MOV CL, [2000H] ;Copy the 8 bit content of the memory
location, at a displacement of 2000H

from data segment base to the CL register

Data Transfer instructions

•MOV [589H], BX; Copy the 16 bit content of BX register on to
the memory location, which at a
displacement of 589H from the data segment
base.

• MOV DS, CX; Move the content of CX to DS

PUSH instruction

• The PUSH instruction decrements the stack pointer by two and
copies the word from source to the location where stack pointer
now points. Here the source must of word size data. Source can be
a general purpose register, segment register or a memory location.

44

Data Transfer instructions

The PUSH instruction first pushes the most significant byte to sp-1, then
the least significant to the sp-2.
Push instruction does not affect any flags.

45

Data Transfer instructions

Example:-

• PUSH CX

46

; Decrements SP by 2, copy content of CX to the
stack (figure shows execution of this instruction)

; Decrement SP by 2 and copy DS to stack• PUSH DS

• POP instruction

The POP instruction copies a word from the stack location pointed by
the stack pointer to the destination. The destination can be a
General purpose register, a segment register or a memory location.
Here after the content is copied the stack pointer is automatically
incremented by two.

• The execution pattern is similar to that of the PUSH instruction.

Example:

• POP CX ; Copy a word from the top of the stack to CX and
increment SP by 2.

Data Transfer instructions

Move 8 bit data from 30F8H port

Move 16 bit data from 30F8H port

Copy contents of AL to 8 bit port 047H

47

• IN & OUT instructions

• The IN instruction will copy data from a port to the accumulator. If 8
bit is read the data will go to AL and if 16 bit then to AX. Similarly
OUT instruction is used to copy data from accumulator to an output
port.

• Both IN and OUT instructions can be done using direct and indirect
addressing modes.

Example:

• IN AL, 0F8H; Copy a byte from the port 0F8H to AL

• MOV DX, 30F8H;Copy port address in DX

• IN AL, DX;

• IN AX, DX;

• OUT 047H, AL;

• MOV DX, 30F8H;Copy port address in DX

Data Transfer instructions

XCHG instruction

• The XCHG instruction exchanges contents of the destination and
source. Here destination and source can be register and register or
register and memory location, but XCHG cannot interchange the
value of 2 memory locations.

General Format

• XCHG Destination, Source

Example:

• XCHG BX, CX; exchange word in CX with the word in BX

• XCHG AL, CL; exchange byte in CL with the byte in AL

• XCHG AX, SUM[BX];here physical address, which is
DS+SUM+[BX]. The content at physical

address and the content of AX are interchanged.

48

Data Transfer instructions

49

Mnemonic Meaning Format Operation Flags

affected

ADD Addition ADD D,S (S)+(D) (D)

carry (CF)

ALL

ADC Add with

carry

ADC D,S (S)+(D)+(CF) (D)

carry (CF)

ALL

INC Increment by

one

INC D (D)+1 (D) ALL but CY

AAA ASCII adjust

for addition

AAA If the sum is >9,AH

is incremented by 1

AF,CF

DAA Decimal

adjust for

addition

DAA Adjust AL for decimal

Packed BCD

ALL

Arithmetic Instructions:ADD, ADC, INC, AAA, DAA

Arithmetic Instructions–SUB, SBB, DEC, AAS, DAS, NEG

50

Mnemonic Meaning Format Operation Flags

affected

SUB Subtract SUB D,S (D) - (S) (D)

Borrow (CF)

All

SBB Subtract

with

borrow

SBB D,S (D) - (S) - (CF) (D) All

DEC Decrement

by one

DEC D (D) - 1 (D) All but CF

NEG Negate NEG D All

DAS Decimal

adjust for

subtraction

DAS Convert the result in ALto

packed decimal format

All

AAS ASCII

adjust for

subtraction

AAS (AL) difference

(AH) dec by 1 if borrow

CY,AC

Multiplication and Division

51

Multiplication and Division

52

AND instruction

• This instruction logically ANDs each bit of the source byte/word
with the corresponding bit in the destination and stores the result
in destination. The source can be an immediate number, register or
memory location, register can be a register or memory location.

• The CF and OF flags are both made zero, PF, ZF, SF are affected by
the operation and AF is undefined.

• General Format:

• AND Destination, Source

Example:

53

• AND BL, AL ;suppose BL=1000 0110 and AL = 1100 1010 then
after the operation BL would be BL= 1000 0010.

• AND CX, AX ;CX <= CX AND AX

• AND CL, 08 ;CL<= CL AND (0000 1000)

Logical Instructions

OR instruction

• This instruction logically ORs each bit of the source byte/word with
the corresponding bit in the destination and stores the result in
destination. The source can be an immediate number, register or
memory location, register can be a register or memory location.

• The CF and OF flags are both made zero, PF, ZF, SF are affected by
the operation and AF is undefined.

• General Format:

• OR Destination, Source

54

Logical Instructions

Example:

• OR BL, AL; suppose BL=1000 0110 and AL = 1100 1010 then
after the operation BL would be BL= 1100 1110.

• OR CX, AX;CX <= CX AND AX
• OR CL, 08;CL<= CL AND (0000 1000)
NOT instruction
• The NOT instruction complements (inverts) the contents of an

operand register or a memory location, bit by bit. The examples are
as follows:
Example:

• NOT AX (BEFORE AX= (1011)2= (B) 16 AFTER EXECUTION AX=
(0100)2= (4)16).

• NOT [5000H]

55

Logical Instructions

XOR instruction

• The XOR operation is again carried out in a similar way to the AND
and OR operation. The constraints on the operands are also similar.
The XOR operation gives a high output, when the 2 input bits are
dissimilar. Otherwise, the output is zero. The example instructions
are as follows:

Example:

• XOR AX,0098H

• XOR AX,BX

• XOR AX,[5000H]

56

Logical Instructions

Shift / Rotate Instructions

• Shift instructions move the binary data to the left or right by shifting

them within the register or memory location. They also can perform

multiplication of powers of 2+n and division of powers of 2-n.

• There are two type of shifts logical shifting and arithmetic shifting,

later is used with signed numbers while former with unsigned.

57

Logical Instructions

SHL/SAL instruction

• Both the instruction shifts each bit to left, and places the MSB in CF and LSB
is made 0. The destination can be of byte size or of word size, also it can be
a register or a memory location. Number of shifts is indicated by the count.

• All flags are affected.

General Format:

• SAL/SHL destination, count

58

Logical Instructions

SHR instruction

• This instruction shifts each bit in the specified destination to the right and
0 is stored in the MSB position. The LSB is shifted into the carry flag. The
destination can be of byte size or of word size, also it can be a register or a
memory location. Number of shifts is indicated by the count.

• All flags are affected

• General Format:

SHR destination, count

59

Logical Instructions

String - a byte or word array located in memory.

Operations that can be performed with string instructions:

• copy a string into another string

• search a string for a particular byte or word

• store characters in a string

• compare strings of characters alphanumerically

60

String Instruction Basics

61

 Source DS:SI, Destination ES:DI

– You must ensure DS and ES are correct

– You must ensure SI and DI are offsets into DS and ES
respectively

 Direction Flag (0 = Up, 1 = Down)

– CLD - Increment addresses (left to right)

– STD - Decrement addresses (right to left)

String Instruction Basics

String Control Instructions

62

1) MOVS/ MOVSB/ MOVSW

Dest string name, src string name

This instruction moves data byte or word from location in DS to
location in ES.

2) REP / REPE / REPZ / REPNE / REPNZ

Repeat string instructions until specified conditionsexist. This is

prefix a instruction.

3) CMPS / CMPSB / CMPSW
Compare string bytes or string words.

63

4)SCAS / SCASB / SCASW
Scan a string byte or string word.
Compares byte in AL or word in AX. String address is to be loaded
in DI.

5)STOS / STOSB / STOSW
Store byte or word in a string.
Copies a byte or word in AL or AX to memory location pointed by
DI.

6)LODS / LODSB /LODSW
Load a byte or word in AL or AX

Copies byte or word from memory location pointed by SI into AL or
AX register.

String Control Instructions

5. Program Execution TransferInstructions

64

These instructions are similar to branching or looping instructions. These

instructions include unconditional jump or loop instructions.

Classification:

•Unconditional transfer instructions

•Conditional transfer instructions

•Iteration control instructions

•Interrupt instructions

Unconditional transfer instructions

65

 CALL: Call a procedure, save return address on stack

 RET: Return from procedure to the main program.

 JMP: Goto specified address to get next instruction

CALL instruction: The CALL instruction is used to transfer execution

of program to a subprogram or procedure.

5. Program Execution TransferInstructions

CALL instruction

66

 Near call

1.Direct Near CALL: The destination address is specified in
the instruction itself.

2. Indirect Near CALL: The destination address is specified in any

16-bit register, except IP.

 Far call

1.Direct Far CALL: The destination address is specified in the
instruction itself. It will be in different Code Segment.

2. Indirect Far CALL: The destination address is specified in two

word memory locations pointed by a register.

5. Program Execution TransferInstructions

JMP instruction

67

The processor jumps to the specified location rather than the

instruction after the JMP instruction.

 Intra segment jump

 Inter segment jump

RET

RET instruction will return execution from a procedure to the next

instruction after the CALL instruction in the calling program.

5. Program Execution TransferInstructions

Conditional TransferInstructions

68

• JA/JNBE: Jump if above / jump if not below or equal

• JAE/JNB: Jump if above /jump if not below

• JBE/JNA: Jump if below or equal/ Jump if not above

• JC: jump if carry flag CF=1

• JE/JZ: jump if equal/jump if zero flag ZF=1

• JG/JNLE: Jump if greater/ jump if not less than or equal.

5. Program Execution TransferInstructions

Conditional TransferInstructions

69

• JGE/JNL: jump if greater than or equal/ jump if not less than

• JL/JNGE: jump if less than/ jump if not greater than or equal

• JLE/JNG: jump if less than or equal/ jump if not greater than

• JNC: jump if no carry (CF=0).

• JNE/JNZ: jump if not equal/ jump if not zero(ZF=0)

5. Program Execution TransferInstructions

Conditional TransferInstructions

70

• JNO: jump if no overflow(OF=0)

• JNP/JPO: jump if not parity/ jump if parity odd(PF=0)

• JNS: jump if not sign(SF=0)

• JO: jump if overflow flag(OF=1)

• JP/JPE: jump if parity/jump if parity even(PF=1)

• JS: jump if sign(SF=1).

5. Program Execution TransferInstructions

Iteration Control Instructions

71

 These instructions are used to execute a series of instructions for

certain number of times.

 LOOP: Loop through a sequence of instructions until CX=0.

instructions while LOOPE/LOOPZ : Loop through a sequence of

ZF=1 and instructions CX = 0.

 LOOPNE/LOOPNZ : Loop through a sequence of instructions while

ZF=0 and CX =0.

 JCXZ : jump to specified address if CX=0.

5. Program Execution Transfer Instructions

Interrupt Instructions

72

Two types of interrupt instructions:

 Hardware Interrupts (External Interrupts)

 Software Interrupts (Internal Interrupts and Instructions)

Hardware Interrupts:

• INTR is a maskable hardware interrupt.

• NMI is a non-maskable interrupt.

Software Interrupts

73

• INT : Interrupt program execution, call service procedure

• INTO : Interrupt program execution if OF=1

• IRET: Return from interrupt service procedure to main program.

Interrupt Instructions

74

ENTER : enter procedure.

LEAVE: Leaveprocedure.

BOUND: Check if effective address within specified array

bounds.

High Level Language Interface Instructions

Processor Control Instructions

75

I. Flag set/clear instructions

 STC: Set carry flag CF to 1

 CLC: Clear carry flag CF to 0

 CMC: Complement the state of the carry flag CF

 STD: Set direction flag DF to 1 (decrement string pointers)

 CLD: Clear direction flag DF to 0

 STI: Set interrupt enable flag to 1(enable INTR input)

 CLI: Clear interrupt enable Flag to 0 (disable INTR input)

II. External Hardware synchronizationinstructions

76

HLT: Halt (do nothing) until interrupt or reset.

WAIT: Wait (Do nothing) until signal on the test pin is low.

ESC: Escape to external coprocessor such as 8087 or 8089.

LOCK: An instruction prefix. Prevents another processor from taking

the bus while the adjacent instruction executes.

NOP: No operation. This instruction simply takes up three clock

cycles and does no processing.

Processor Control Instructions

Assembler Directives

77

 ASSUME

 DB

 DD

 DQ

 DT

 DW

-

-

-

-

-

Defined Byte.

Defined Double Word

Defined Quad Word

Define Ten Bytes

Define Word

 ASSUME Directive-

78

The ASSUME directive is used to tell the assembler that the name of the
logical segment should be used for a specified segment. The 8086 works
directly with only 4 physical segments: a Code segment, a data segment, a
stack segment, and an extra segment.

Example:

ASUME CS:CODE ;This tells the assembler that the logical segment named
CODE contains the instruction statements for the program and should be
treated as a code segment.

ASSUME DS:DATA ;This tells the assembler that for any instruction which
refers to a data in the data segment, data will found in the logical segment
DATA.

Assembler Directives

 DB - DB directive is used to declare a byte- type variable or to store a byte

in memory location.

 Example:

1. PRICE DB 49h, 98h, 29h ; Declare an array of 3 bytes, named as

PRICE and initialize.

2. NAME DB ‘ABCDEF’ ;Declare an array of 6 bytes and initialize with ASCII

code for letters

3. TEMP DB 100 DUP(?) ;Set 100 bytes of storage in memory and give it the

name as TEMP, but leave the 100 bytes uninitialized. Program instructions

will load values into these locations.

79

Assembler Directives

 DW

80

-The DW directive is used to define a variable of type word or to
reserve storage location of type word in memory.

 Example:

• MULTIPLIER DW 437Ah ; this declares a variable of type word and

named it as MULTIPLIER. This variable is initialized with the value

437Ah when it is loaded into memory to run.

Assembler Directives

 END - END directive is placed after the last statement of a program to

tell the assembler that this is the end of the program module. The

assembler will ignore any statement after an END directive.

 ENDP - ENDPdirective is used along with the name of the procedure

to indicate the end of a procedure to the assembler

Example:

• SQUARE_NUM PROCE ; It start the procedure, Some steps to find the

square root of a number

• SQUARE_NUM ENDP ;Hear it is the End for the procedure

81

Assembler Directives

 END

 ENDP

 ENDS

 EQU

 EVEN

 EXTRN

82

-

-

-

-

-

-

End Program

End Procedure

End Segment
Equate

Align on Even Memory Address

Assembler Directives

 ENDS - This ENDS directive is used with name of the segment to

indicate the end of that logic segment.

Example: CODE SEGMENT ;Hear it Start the logic segment

containing code ;

 CODE ENDS ;End of segment named as CODE

 GLOBAL - Can be used in place of a PUBLIC directive or in place of

an EXTRN directive.

83

Assembler Directives

 GROUP - Used to tell the assembler to group the logical statements

named after the directive into one logical group segment, allowing the

contents of all the segments to be accessed from the same group

segment base.

 INCLUDE - Used to tell the assembler to insert a block of source code

from the named file into the current source module.

 LABEL- Used to give a name to the current value in the location

counter.

 NAME- Used to give a specific name to each assembly module

when programs consisting of several modules are written.

E.g.: NAME PC_BOARD 84

Assembler Directives

 OFFSET- Used to determine the offset or displacement of a named data

item or procedure from the start of the segment which contains it.

E.g.: MOV BX, OFFSET PRICES

 ORG- The location counter is set to 0000 when the assembler starts

reading a segment. The ORG directive allows setting a desired value at any

point in the program.

E.g.: ORG 2000H

85

Assembler Directives

 PUBLIC- Used to tell the assembler that a specified name or label will be

accessed from other modules.

 SEGMENT- Used to indicate the start of a logical segment.

E.g.: CODE SEGMENT indicates to the assembler the start of a logical

segment called CODE

 SHORT- Used to tell the assembler that only a 1 byte displacement is

needed to code a jump instruction.

E.g.: JMP SHORT NEARBY_LABEL

 TYPE - Used to tell the assembler to determine the type of specified

variable.

86

Assembler Directives

Write an assembly language program for addition of two 8-
bit numbers using 8086 microprocessors.

87

DATA SEGMENT

A1 DB 50H

A2 DB 51H

RES DB ?

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS:DATA

START: MOV AX,DATA

MOV DS,AX

MOV AL,A1

MOV BL,A2

ADD AL,BL

MOV RES,AL

MOV AX,4C00H

INT 21H

CODE ENDS

END START

Write an assembly language program to find the factorial of
given number using 8086 microprocessors.

88

DATA SEGMENT

FIRST DW 03H

SEC DW 01H

DATA ENDS

CODE SEGMENT

ASSUME CS:CODE,DS:DATA

START: MOV AX,DATA

MOV DS,AX

MOV AX,SEC

MOV CX,FIRST

L1: MUL CX

DEC CX

JCXZ L2

JMP L1

L2: INT 3H

CODE ENDS

END START

Write an assembly language program to find the sum of
squares using 8086 microprocessors.

89

DATA SEGMENT

NUM DW 5H

RES DW ?

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS: DATA

START: MOV AX,DATA

MOV DS,AX

MOV CX,NUM

MOV BX,00

L1: MOV AX,CX

MUL CX

ADD BX,AX

DEC CX

JNZ L1

MOV RES,BX

INT 3H

CODE ENDS

END START

Procedures:

90

• While writing programs, it may be the case that a particular sequence of
instructions is used several times. To avoid writing the sequence of
instructions again and again in the program, the same sequence can be
written as a separate subprogram called a procedure.

Defining Procedures:

• Assembler provides PROC and ENDP directives in order to define
procedures. The directive PROC indicates beginning of a procedure. Its
general form is:

Procedure_name PROC [NEAR|FAR]

Procedures and Macros

Passing parameters to and from procedures:

91

The data values or addresses passed between procedures and main

program are called parameters. There are four ways of passing

parameters:

 Passing parameters in registers

 Passing parameters in dedicated memory locations

 Passing parameters with pointers passed in registers

 Passing parameters using the stack

Procedures and Macros

MACROS:

130

 When the repeated group of instruction is too short or not suitable to be

implemented as a procedure, we use a MACRO. A macro is a group of

instructions to which a name is given. Each time a macro is called in a

program, the assembler will replace the macro name with the group of

instructions.

Defining MACROS:

 Before using macros, we have to define them. MACRO directive

informs the assembler the beginning of a macro. The general form is:

 Macro_name MACRO argument1, argument2, …Arguments are optional.

ENDM informs the assembler the end of the macro. Its general form is :

ENDM

Procedures and Macros

Procedures Macros

Accessed by CALL and RET mechanism

during program execution

Accessed by name given to macro

when

defined during assembly

Machine code for instructions only put in

memory once

Machine code generated for

instructions

each time called

Parameters are passed in registers,

memory locations or stack

Parameters passed as part of statement

which calls macro

Procedures uses stack Macro does not utilize stack

A procedure can be defined anywhere in

program using the directives PROC

and ENDP

A macro can be defined anywhere in

program using the directives MACRO

and ENDM

Procedures takes huge memory for

CALL(3 bytes each time CALL is

used) instruction

Length of code is very huge if macro’s are

called for more number of times

93

Procedures and Macros

Minimum mode operation in 8086:

94

 In a minimum mode 8086 system, the microprocessor 8086 is operated in
minimum mode by strapping its MN/MX pin to logic 1.

 In this mode, all the control signals are given out by the microprocessor
chip itself. There is a single microprocessor in the minimum mode system.

 The remaining components in the system are latches, transceivers, clock
generator, memory and I/O devices. Some type of chip selection logic may
be required for selecting memory or I/O devices, depending upon the
address map of the system.

 Latches are generally buffered output D-type flip-flops like 74LS373 or
8282. They are used for separating the valid address from the multiplexed
address/data signals and are controlled by the ALE signal generated by
8086.

95

Minimum mode operation in 8086:

 Transceivers are the bidirectional buffers and sometimes they are called as
data amplifiers. They are required to separate the valid data from the time
multiplexed address/data signals.

 They are controlled by two signals namely, DEN and DT/R.

 The DEN signal indicates the direction of data, i.e. from or to the processor.
The system contains memory for the monitor and users program storage.

 Usually, EPROM is used for monitor storage, while RAM for users program
storage. A system may contain I/O devices.

96

Minimum mode operation in 8086:

In the maximum mode, the 8086 is operated by strapping the MN/MX
pin to ground.

In this mode, the processor derives the status signal S2, S1, S0.
Another chip called bus controller derives the control signal using this
status information.

In the maximum mode, there may be more than one
microprocessor in the system configuration.

The components in the system are same as in the minimum
mode system.

The basic function of the bus controller chip IC8288 is to derive control
signals like RD and WR (for memory and I/O devices), DEN, DT/R, ALE etc.
using the information by the processor on the status lines.

The bus controller chip has input lines S2, S1, S0 and CLK. These inputs to
8288 are driven by CPU.

97

Maximum mode operation in 8086:

98

Maximum mode operation in 8086:

• It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC

and AIOWC. The AEN, IOB and CEN pins are especially useful for

multiprocessor systems.

• AEN and IOB are generally grounded. CEN pin is usually tied to +5V. The

significance of the MCE/PDEN output depends upon the status of the IOB

pin.

• If IOB is grounded, it acts as master cascade enable to control cascade

8259A, else it acts as peripheral data enable used in the multiple bus

configurations.

140

Maximum mode operation in 8086:

• INTA pin used to issue two interrupt acknowledge pulses to the interrupt

controller or to an interrupting device.

• IORC, IOWC are I/O read command and I/O write command signals

respectively.

• These signals enable an IO interface to read or write the data from or to the

address port.

• The MRDC, MWTC are memory read command and memory write command

signals respectively and may be used as memory read or write signals.

140

Maximum mode operation in 8086:

• The MRDC, MWTC are memory read command and memory write

command signals respectively and may be used as memory read or write

signals.

• All these command signals instructs the memory to accept or send data

from or to the bus.

• For both of these write command signals, the advanced signals namely

AIOWC and AMWTC are available.

• Here the only difference between in timing diagram between minimum

mode and maximum mode is the status signals used and the available

control and advanced command signals.

101

Maximum mode operation in 8086:

• R0, S1, S2 are set at the beginning of bus cycle.8288 bus controller will

output a pulse as on the ALE and apply a required signal to its DT / R pin

during T1.

• In T2, 8288 will set DEN=1 thus enabling transceivers, and for an input it will

activate MRDC or IORC. These signals are activated until T4. For an output,

the AMWC or AIOWC is activated from T2 to T4 and MWTC or IOWC is

activated from T3 to T4.

102

Maximum mode operation in 8086:

Write Cycle Timing Diagram for Minimum Mode

103

Bus Request and Bus Grant Timings in Minimum Mode
System of 8086

104

Memory Read Timing Diagram in Maximum Mode of 8086

105

Memory Write Timing in Maximum mode of 8086

106

UNIT II
PROGRAMMING WITH 8086 MICROPROCESSOR

107

108

CLOs Course Learning Outcome

CLO 5 Understand and apply the fundamentals of assembly
level programming of microprocessors.

CLO 6 Design and develop 8086 Microprocessor based
systems for real time applications using low level
language like ALP.

CLO 7 Understand the memory organization and interrupts
of processors helps in various system designing
aspects.

CLO 8 Identify the significance of interrupts and interrupt
service routines with appropriate illustrations.

Assembly Language Programming

109

The assembly programming language is a low-level language which is

developed by using mnemonics. The microcontroller or microprocessor can

understand only the binary language like 0’s or 1’s therefore the assembler

convert the assembly language to binary language and store it the memory

to perform the tasks. Before writing the program the embedded designers

must have sufficient knowledge on particular hardware of the controller or

processor, so first we required to know hardware of 8086 processor.

Machine Language:

Set of fundamental instructions the machine can execute Expressed as a

pattern of 1’s and 0’s

Assembly Language Programming

110

Assembly Language:

Alphanumeric equivalent of machine language Mnemonics more human-

oriented than 1’s and 0’s

Assembler:

Computer program that transliterates (one-to-one mapping) assembly

to machine language Computer’s native language is machine/assembly

language

Why Assembly Language Programming

111

• Faster and shorter programs: Compilers do not always generate

optimum code.

• Instruction set knowledge is important for machine designers.

• Compiler writers must be familiar with details of machine language.

• Small controllers embedded in many products

• Have specialized functions,

• Rely so heavily on input/output functionality,

• HLLs inappropriate for product development.

Basic elements of 8086 assembly programming language

160

8086 assembly programming language instructions

113

• Like we know instruction are the lines of a program that means an action

for the computer to execute.

In 8086, a normal instruction is made by an operation code and sometimes

operands.

Structure:

Operation Code [Operand1 [, Operand2]]

• Operations

• The operation is usually logic or arithmetic, but we can also find some

special operation like the Jump (JMP) operation.

8086 assembly programming language instructions

114

• Operands

• Operands are the parameters of the operation in the instruction. They can

be use in 3 way:

• Immediate

• This means a direct access of a variable that have been declared in the

program.

• Register

• Here we use the content of a register to be a parameter.

• Memory

• Here we access to the content of a specific part of the memory using a

pointer

SYNTAX OF 8086/8088 ASSEMBLY LANGUAGE

115

• The language is not case sensitive.

• There may be only one statement per line. A statement may start in any

column.

• A statement is either an instruction, which the assembler translates into

machine code, or an assembler directive (pseudo-op), which instructs the

assembler to perform some specific task.

• Syntax of a statement:

{name} mnemonic {operand(s)} {; comment}

• The curly brackets indicate those items that are not present or are optional

in some statements.

SYNTAX OF 8086/8088 ASSEMBLY LANGUAGE

116

• The name field is used for instruction labels, procedure names, segment

names, macro names, names of variables, and names of constants.

• MASM 6.1 accepts identifier names up to 247 characters long. All

characters are significant, whereas under MASM 5.1, names are significant

to 31 characters only. Names may consist of letters, digits, and the

following 6 special characters: ? . @ _ $ % .If a period is used; it must be

the first character. Names may not begin with a digit.

• Instruction mnemonics, directive mnemonics, register names, operator

names and other words are reserved.

Stack

117

• A stack is a container of objects that are inserted and removed according to

the last-in first-out (LIFO) principle. In the pushdown stacks only two

operations are allowed: push the item into the stack, and pop the item out

of the stack.

• A stack is a container of objects that are inserted and removed according to

the last-in first-out (LIFO) principle. In the pushdown stacks only two

operations are allowed: push the item into the stack, and pop the item out

of the stack. A stack is a limited access data structure - elements can be

added and removed from the stack only at the top. push adds an item to the

top of the stack, pop removes the item from the top.

Stack

118

• A helpful analogy is to think of a stack of books; you can remove only the

top book, also you can add a new book on the top. A stack is a recursive

data structure. Here is a structural definition of a Stack:

• A stack is either empty or it consists of a top and the rest which is a stack;

Applications

119

• The simplest application of a stack is to reverse a word. You push a given

word to stack - letter by letter - and then pop letters from the stack.

• Another application is an "undo" mechanism in text editors; this operation

is accomplished by keeping all text changes in a stack.

• Backtracking. This is a process when you need to access the most recent

data element in a series of elements. Think of a labyrinth or maze - how do

you find a way from an entrance to an exit? Once you reach a dead end,

you must backtrack. But backtrack to where? to the previous choice point.

Therefore, at each choice point you store on a stack all possible choices.

Then backtracking simply means popping a next choice from the stack.

Stack Data Structure

120

Stack is a linear data structure which follows a particular order in which the

operations are performed. The order may be LIFO(Last In First Out) or

FILO(First In Last Out).

Mainly the following three basic operations are performed in the stack:

• Push: Adds an item in the stack. If the stack is full, then it is said to be an

Overflow condition.

• Pop: Removes an item from the stack. The items are popped in the

reversed order in which they are pushed. If the stack is empty, then it is

said to be an Underflow condition.

Stack Structure

121

122

• If the stack top points to a memory location 52050H, it means that the

location 52050H is already occupied with the previously pushed data. The

next 16 bit push operation will decrement the stack pointer by two, so

that it will point to the new stack-top 5204EH and the decremented

contents of SP will be 204EH. This location will now be occupied by the

recently pushed data.

• Thus for a selected value of SS, the maximum value of SP=FFFFH and the

segment can have maximum of 64K locations. If the SP starts with an

initial value of FFFFH, it will be decremented by two whenever a 16-bit

data is pushed onto the stack.

Stack Structure

123

• After successive push operations, when the stack pointer contains 0000H,

any attempt to further push the data to the stack will result in stack

overflow.

• After a procedure is called using the CALL instruction, the IP is

incremented to the next instruction. Then the contents of IP, CS and flag

register are pushed automatically to the stack. The control is then

transferred to the specified address in the CALL instruction i.e. starting

address of the procedure. Then the procedure is executed.

Stack Structure

Interrupts

124

Definition:

The meaning of ‘interrupts’ is to break the sequence of operation. While

the CPU is executing a program, on ‘interrupt’ breaks the normal sequence

of execution of instructions, diverts its execution to some other program

called Interrupt Service Routine (ISR).After executing ISR , the control is

transferred back again to the main program. Interrupt processing is an

alternative to polling.

Interrupts

125

Need for Interrupt:

Interrupts are particularly useful when interfacing I/O devices that provide

or require data at relatively low data transfer rate.

Interrupt is a mechanism that allows hardware or software to suspend

normal execution on microprocessor in order to switch to interrupt service

routine for hardware / software. Interrupt can also describe as

asynchronous electrical signal that sent to a microprocessor in order to

stop current execution and switch to the execution signaled (depends on

priority). Whether an interrupt is prioritized or not depends on the

interrupt flag register which controlled by priority / programmable

interrupt

Interrupt Cycle of 8086

126

• Interrupts in 8086 microprocessor. ... Whenever an interrupt occurs the

processor completes the execution of the current instruction and starts the

execution of an Interrupt Service Routine (ISR) or Interrupt Handler. ISR is a

program that tells the processor what to do when the interrupt occurs.

• In 8086 microprocessor following tasks are performed when

microprocessor encounters an interrupt:

• The value of flag register is pushed into the stack. It means that first the

value of SP (Stack Pointer) is decremented by 2 then the value of flag

register is pushed to the memory address of stack segment.

Interrupt Cycle of 8086

127

• The value of starting memory address of CS (Code Segment) is pushed into

the stack.

• The value of IP (Instruction Pointer) is pushed into the stack.

• IP is loaded from word location (Interrupt type) * 04.

• CS is loaded from the next word location.

• Interrupt and Trap flag are reset to 0.

Hardware Interrupts

128

Hardware interrupts are those interrupts which are caused by any

peripheral device by sending a signal through a specified pin to the

microprocessor. There are two hardware interrupts in 8086 microprocessor.

They are: (A) NMI (Non Maskable Interrupt) – It is a single pin non maskable

hardware interrupt which cannot be disabled. It is the highest priority

interrupt in 8086 microprocessor. After its execution, this interrupt

generates a TYPE 2 interrupt. IP is loaded from word location 00008 H and

CS is loaded from the word location 0000A H.

Hardware Interrupts

129

• (B) INTR (Interrupt Request) – It provides a single interrupt request and is

activated by I/O port. This interrupt can be masked or delayed. It is a level

triggered interrupt. It can receive any interrupt type, so the value of IP and

CS will change on the interrupt type received.

 These are instructions that are inserted within the program to generate

interrupts.

 There are 256 software interrupts in 8086 microprocessor. The

instructions are of the format INT type where type ranges from 00 to FF.

The starting address ranges from 00000 H to 003FF H.

 These are 2 byte instructions. IP is loaded from type * 04 H and CS is

loaded from the next address give by (type * 04) + 02 H. Some important

software interrupts are:

130

Software Interrupts

TYPE 0 corresponds to division by zero(0).

(A) TYPE 1 is used for single step execution for debugging of program.

(B) TYPE 2 represents NMI and is used in power failure conditions.

(C) TYPE 3 represents a break-point interrupt.

(D) TYPE 4 is the overflow interrupt.

131

Software Interrupts

Interrupt Vector Table (IVT) on 8086

132

Non Maskable Interrupt

133

• Hardware interrupt is caused by any peripheral device by sending a signal

through a specified pin to the microprocessor. The 8086 has two hardware

interrupt pins, i.e. NMI and INTR. NMI is a non- maskable interrupt and

INTR is a maskable interrupt having lower priority.

• t is a single non-maskable interrupt pin (NMI) having higher priority than the

maskable interrupt request pin (INTR)and it is of type 2 interrupt.

• When this interrupt is activated, these actions take place −

• Completes the current instruction that is in progress.

• Pushes the Flag register values on to the stack.

Non Maskable Interrupt

134

• Pushes the CS (code segment) value and IP (instruction pointer) value

of the return address on to the stack.

• IP is loaded from the contents of the word location 00008H.

• CS is loaded from the contents of the next word location 0000AH.

• Interrupt flag and trap flag are reset to 0.

Maskable Interrupt

135

• The 8086 has two hardware interrupt pins, i.e. ... NMI is a non-maskable

interrupt and INTR is a maskable interrupt having lower priority. One

moreinterrupt pin associated is INTA called interrupt acknowledge.

• The INTR is a maskable interrupt because the microprocessor will be

interrupted only if interrupts are enabled using set interrupt flag

instruction. It should not be enabled using clear interrupt Flag instruction.

• The INTR interrupt is activated by an I/O port. If the interrupt is enabled

and NMI is disabled, then the microprocessor first completes the current

execution and sends ‘0’ on INTA pin twice.

Maskable Interrupt

136

• The first ‘0’ means INTA informs the external device to get ready and

during the second ‘0’ the microprocessor receives the 8 bit, say X, from

the programmable interrupt controller.

• These actions are taken by the microprocessor −

• First completes the current instruction.

• Activates INTA output and receives the interrupt type, say X.

• Flag register value, CS value of the return address and IP value of the

return address are pushed on to the stack.

• IP value is loaded from the contents of word location X × 4

• CS is loaded from the contents of the next word location.

• Interrupt flag and trap flag is reset to 0

UNIT III
INTERFACING WITH 8086/88

137

138

CLOs Course Learning Outcome

CLO 9 Ability to interface the external peripherals and I/O devices
and program the 8086 microprocessor using 8255.

CLO 10 Identify the significance of serial communication in8086 with
required baud rate.

CLO 11 An ability to distinguish between the serial and parallel data
transfer schemes.

CLO 12 Develop the interfacing of universal synchronous
asynchronous receiver transmitter 8251 with 8086 processor

CLO 13 Ability to interface the programmable interrupt controller
8259 with 8086.

• Interface two 4Kx8 EPROMS and two 4Kx8 RAM chips with 8086.
select suitable maps.

139

Memory interfacing to 8086 (Static RAM and EPROM)

140

Memory interfacing to 8086 (Static RAM and EPROM)

141

Memory interfacing to 8086 (Static RAM and EPROM)

8255- PROGRAMMABLE PERIPHERAL INTERFACE

84 191

 It has 24 input/output lines

 24 lines divided into 3 ports

• Port A(8bit)

• Port B(8 bit)

• Port C upper(4 bit), Port C Lower (4 bit)

All the above 3 ports can act as input or output ports

Block Diagram

Figure: Block Diagram of 8255(PPI)

85 192

8255- PROGRAMMABLE PERIPHERAL INTERFACE

Data Bus buffer

86 193

 It is a 8-bit bidirectional Data bus.

 Used to interface between 8255 data bus with system bus.

 The internal data bus and Outer pins D0-D7 pins are connected in

internally.

 The direction of data buffer is decided by Read/Control Logic.

8255- PROGRAMMABLE PERIPHERAL INTERFACE

Read/Write Control Logic
Address Bus.This is getting the input signals from control bus and

Control signal are RD andWR.

Address signals are A0, A1, and CS

8255 operation is enabledor disabled by CS.

Group A and B get the Control Signal from CPU and send the command to

the individual control blocks.

Group A send the control signal to port A and Port C (Upper) PC7-PC4.

Group B send the control signal to port B and Port C (Lower) PC3-PC0.

87 194

8255- PROGRAMMABLE PERIPHERAL INTERFACE

PORT A:

88 195

 This is a 8-bit buffered I/O latch.

 It can be programmed by mode 0 , mode 1, mode 2 .

PORT B:

This is a 8-bit buffer I/O latch.

It can be programmed by mode 0 and mode 1.

PORTC:

 This is a 8-bit Unlatched buffer Input and an Output latch.

 It is spitted into two parts.

 It can be programmed by bit set/reset operation.

8255- PROGRAMMABLE PERIPHERAL INTERFACE

8255-PROGRAMMABLE PERIPHERAL INTERFACE

90 198

8255 Pin Diagram

8255- PROGRAMMABLE PERIPHERAL INTERFACE

Pin Description of 8255

91 199

PA7-PA0: These are eight port A lines that acts as either latched
output or buffered input lines depending upon the control
word loaded into the control word register.

PC7-PC4:

PC3-PC0:

Upper nibble of port C lines. They may act as either output
latches or input buffers lines. This port also can be used for
generation of handshake lines in mode 1 or mode 2.

These are the lower port C lines, other details are the same
as PC7-PC4 lines.

PB0-PB7: eight port B lines which are used
lines or buffered input lines in the same

These are the
as latched output
way as port A.

8255- PROGRAMMABLE PERIPHERAL INTERFACE

Pin Description of 8255

149

RD: This is the input line driven by the microprocessor and should be low
to indicate read operation to8255.

WR: This is an input line driven by the microprocessor. A low on this line
indicates writeoperation.

CS : This is a chip select line. If this line goes low, it enables the 8255 to
respond to RD and WR signals, otherwise RD and WR signal are neglected.

A1-A0: These are the address input lines and are driven by the
microprocessor.

 RESET: The 8255 is placed into its reset state if this input line is a
logical 1. All peripheral ports are set to the input mode.

8255- PROGRAMMABLE PERIPHERAL INTERFACE

Various modes of 8255:

150

These are two basic modes of operation of 8255. I/O mode and Bit Set-Reset

mode (BSR).

In I/O Mode:

The 8255 ports work as programmable I/O ports, while in BSR mode only port

C (PC0-PC7) can be used to set or reset its individual port bits.

Under the I/O mode of operation, further there are three modes of operation

of 8255, so as to support different types of applications, mode 0, mode 1 and

mode 2.

8255- PROGRAMMABLE PERIPHERAL INTERFACE

 Mode 0 (Basic I/O mode): This mode is also called as basic input/output

Mode. This mode provides simple input and output capabilities using each

of the three ports. Data can be simply read from and written to the input

and output ports respectively, after appropriate initialization.

151

8255- PROGRAMMABLE PERIPHERAL INTERFACE

Mode 1: (Strobed input/output mode) in this mode the handshaking

control the input and output action of the specified port. Port C lines PC0-

PC2, provide strobe or handshake lines for port B.

This group which includes port B and PC0-PC2 is called as group B for

Strobed data input/output. Port C lines PC3-PC5 provides strobe lines for port

A.

This group including port A and PC3-PC5 from group A. Thus port C is

utilized for generating handshake signals.

152

8255- PROGRAMMABLE PERIPHERAL INTERFACE

 Mode 2 (Strobed bidirectional I/O): This mode of operation of 8255 is also

called as strobed bidirectional I/O. This mode of operation provides 8255

with additional features for communicating with a peripheral device on an

8-bit data bus.

 Handshaking signals are provided to maintain proper data flow and

synchronization between the data transmitter and receiver.

 The interrupt generation and other functions are similar to mode 1.

153

8255- PROGRAMMABLE PERIPHERAL INTERFACE

 BSR Mode:

In this mode any of the 8-bits of port C can be set or reset depending on D0

of the control word. The bit to be set or reset is selected by bit select flags

D3, D2 and D1 of the CWR as given in table.

154

8255- PROGRAMMABLE PERIPHERAL INTERFACE

8255 interfacing with 8086:

155

 Stepper motor is often used in computer systems. Normally DC and AC

motors move smoothly in a circular fashion.

 Stepper motor is a DC motor, specially designed, which moves in discrete

or fixed step and thus complete one rotation of 360 degrees. To rotate

the shaft of the motor a sequence of pulses are applied to the windings

in a predefined sequence.

 The number of pulses required to complete one rotation depends on the

number of teeth on the rotor. Hence rotation Per pulse sequence is

3600/NT where NT is the number of teeth on rotor.

156

Stepper motor

Programs for Stepper Motor Rotation:

157

1. Program to rotate the stepper motor continuously in clockwise

direction for following specification

NT = Number of teeth on rotor = 200 Speed

of motor = 12 rotations/minute. CPU

frequency = 10MHz

Stepper motor

DATA SEGMENT

PORTC EQU 8004H

CNTLPRT EQU 8006H

DELAY EQU 14705

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS: DATA

158

START:

BACK:

SELF:

MOV AX, DATA

MOV DS, AX

MOV AL, 80H

MOV DX, CNTLPORT

OUT DX, AL

MOV AL, 33H

MOV DX, PORTC

OUT DX, AL

ROR AL, 1

MOV CX, DELAY

LOOP SELF

DELAY LOOP FOR 25Ms

JMP BACK

CODE ENDS

END START

Stepper motor

DAC0800 8-bit Digital to Analog Converter

159

• The DAC 0800 is a monolithic 8-bit DAC manufactured by National

Semiconductor.

• It has settling time around 100ms and can operate on a range of power

supply voltages i.e. from 4.5V to +18V.

• Usually the supply V+ is 5V or +12V.

• The V-pin can be kept at a minimum of -12V.

Digital to analog converter interfacing

160

Digital to analog converter interfacing

Intersil‟s AD 7523 is a 16 pin DIP, multiplying digital to analog converter,

containing R-2R ladder(R=10KΩ) for digital to analog conversion along with

single pole double through NMOS switches to connect the digital inputs to

the ladder.

161

Digital to analog converter
interfacing

Digital to analog converter interfacing

Pin Diagram of AD7523

162

• The supply range extends from +5V to +15V , while Vref may be anywhere

between -10V to +10V. The maximum analog output voltage will be +10V,

when all the digital inputs are at logic high state. Usually a Zener is

connected between OUT1 and OUT2 to save the DAC from negative

transients.

• An operational amplifier is used as a current to voltage converter at the

output of AD 7523 to convert the current output of AD7523 to a

proportional output voltage.

• It also offers additional drive capability to the DAC output. An external

feedback resistor acts to control the gain. One may not connect any

external feedback resistor, if no gain control is required.

Block Diagram of ADC 0808/0809

163

Analog to Digital Converter Interfacing

Pin Diagram of ADC 0808/0809

164

Timing Diagram Of ADC 0808.

165

Interfacing ADC0808 with 8086

166

Programmable interrupt controller 8259A

167

• 8259 microprocessor is defined as Programmable Interrupt Controller

(PIC) microprocessor. There are 5 hardware interrupts and 2 hardware

interrupts in 8085 and 8086 respectively.

• But by connecting 8259 with CPU, we can increase the interrupt handling

capability. 8259 combines the multi interrupt input sources into a single

interrupt output. Interfacing of single PIC provides 8 interrupts inputs

from IR0-IR7.

• For example, interfacing of 8085 and 8259 increases the interrupt

handling capability of 8085 microprocessor from 5 to 8 interrupt levels.

Features of 8259 PIC microprocessor

168

• It is a LSI chip which manages 8 levels of interrupts i.e. it is used to

implement 8 level interrupt systems.

• It can be cascaded in a master slave configuration to handle up to 64 levels of

interrupts.

• It can identify the interrupting device.

• It can resolve the priority of interrupt requests i.e. it does not require any

external priority resolver.

• It can be operated in various priority modes such as fixed priority and

rotatingpriority.

• The interrupt requests are individually mask-able.

Features of 8259 PIC microprocessor

169

• The operating modes and masks may be dynamically changed by the

software at any time during execution of programs.

• It accepts requests from the peripherals, determines priority of incoming

request, checks whether the incoming request has a higher priority value

than the level currently being serviced and issues an interrupt signal to the

microprocessor.

• It provides 8 bit vector number as an interrupt information.

• It does not require clock signal.

• It can be used in polled as well as interrupt modes.

• The starting address of vector number is programmable.

• It can be used in buffered mode

Block Diagram of 8259 PIC microprocessor

170

Pin Description of 8086

171

keyboard /display controller8279

172

8279 programmable keyboard/display controller is designed by Intel that

interfaces a keyboard with the CPU. The keyboard first scans the keyboard

and identifies if any key has been pressed. It then sends their relative

response of the pressed key to the CPU and vice-a-versa.

How Many Ways the Keyboard is Interfaced with the CPU?

The Keyboard can be interfaced either in the interrupt or the polled mode.

In the Interrupt mode, the processor is requested service only if any key is

pressed, otherwise the CPU will continue with its main task.

In the Polled mode, the CPU periodically reads an internal flag of 8279 to

check whether any key is pressed or not with key pressure.

Architecture and Description

173

• I/O Control and Data Buffer

• This unit controls the flow of data through the microprocessor. It is enabled

only when D is low. Its data buffer interfaces the external bus of the system

with the internal bus of the microprocessor. The pins A0, RD, and WR are

used for command, status or data read/write operations.

• Control and Timing Register and Timing Control

• This unit contains registers to store the keyboard, display modes, and

other operations as programmed by the CPU. The timing and control unit

handles the timings for the operation of the circuit.

174

Architecture and Description….

8279 − Pin Description

175

Programmable communication interface 8251 USART

176

• Most of devices are parallel in nature. These devices transfer data

simultaneously on data lines. But parallel data transfer process is very

complicated and expensive. Hence in some situations the serial I/O mode

is used where one bit is transferred over a single line at a time. In this type

of transmission parallel word is converted into a stream of serial bits which

is known as parallel to serial conversion. The rate of transmission in serial

mode is BAUD, i.e., bits per second. The serial data transmission involves

starting, end of transmission, error verification bits along with the data.

Block Diagram of Serial I/O Interface

177

• The microprocessor has to identify the port address to perform read or

write operation. Serial I/O uses only one data line, chip select, read, write

control signals.

INTRODUCTION SERIAL COMMUNICATION

178

Serial communication is common method of transmitting data between a

computer and a peripheral device such as a programmable instrument or

even another computer.

Serial communication transmits data one bit at a time, sequentially, over a

single communication line to a receiver. Serial is also a most popular

communication protocol that is used by many devices for instrumentation.

Introduction Serial Communication

179

This method is used when data transfer rates are very low or the data must

be transferred over long distances and also where the cost of cable and

synchronization difficulties makes parallel communication impractical.

Serial communication is popular because most computers have one or

more serial ports, so no extra hardware is needed other than a cable to

connect the instrument to the computer or two computers together.

8251a-usart-universal Synchronous/Asynchronous
Receiver/Transmitter

180

•

• A USART is also called a programmable communications interface (PCI).

When information is to be sent by 8086 over long distances, it is

economical to send it on a single line. The 8086 has to convert parallel

data to serial data and then output it. Thus lot of microprocessor time is

required for such a conversion.

• Similarly, if 8086 receives serial data over long distances, the 8086 has to

internally convert this into parallel data before processing it. Again, lot of

time is required for such a conversion. The 8086 can delegate the job of

conversion from serial to parallel and vice versa to the 8251A USART

used in thesystem.

8251A-USART-Universal Synchronous/Asynchronous
Receiver/Transmitter

181

• The Intel 8251A is the industry standard Universal

Synchronous/Asynchronous Receiver/Transmitter (USART), designed

for data communications with Intel microprocessor families such as

8080, 85, 86 and

• The 8251A converts the parallel data received from the processor on

the D7-0 data pins into serial data, and transmits it on TxD (transmit

data) output pin of 8251A. Similarly, it converts the serial data

received on RxD (receive data) input into parallel data, and the

processor reads it using the data pins D7-0.

Features

182

 Compatible with extended range of Intel microprocessors.

 It provides both synchronous and asynchronous data transmission.

 Synchronous 5-8 bit characters.

 Asynchronous 5-8 bit characters.

 It has full duplex, double buffered transmitter and receiver.

 Detects the errors-parity, overrun and framing errors.

 All inputs and outputs are TTL compatible.

 Available in 28-pin DIP package.

Architecture 8251A

240

Pin Diagram

184

8251A USART Interfacing With 8086

185

Recommended Standard -232c (RS-232C)

186

• RS-232 was first introduced in 1962 by the Radio Sector of the Electronic

Industries Association EIA. RS-232 (Recommended standard-232) is a

standard interface approved by the Electronic Industries Association (EIA)

for connecting serial devices. In other words, RS-232 is a long-established

standard that describes the physical interface and protocol for relatively

low-speed serial data communication between computers and related

devices. An industry trade group, the Electronic Industries Association

(EIA), defined it originally for teletypewriter devices.

Recommended Standard -232c (RS-232C)

187

• In 1987, the EIA released a new version of the standard and changed the

name to EIA-232-D. Many people, however, still refer to the standard as

RS- 232C, or just RS-232. RS-232 is the interface that your computer uses

to talk to and exchange data with your modem and other serial devices.

The serial ports on most computers use a subset of the RS- 232C standard.

188

Recommended Standard -232c (RS-232C)

• Direct memory access (DMA) is a feature of modern computer systems that

allows certain hardware subsystems to read/write data to/from memory

without microprocessor intervention, allowing the processor to do other

work.

• Used in disk controllers, video/sound cards etc, or between memory

locations.

• Typically, the CPU initiates DMA transfer, does other operations while the

transfer is in progress, and receives an interrupt from the DMA controller

once the operation is complete.

• Can create cache coherency problems (the data in the cache may be

different from the data in the external memory after DMA)
189

Need For DMA

DMA Data Transfer Method

190

• The I/O device asserts the appropriate DRQ signal for the channel.

• The DMA controller will enable appropriate channel, and ask the CPU to

release the bus so that the DMA may use the bus. The DMA requests the

bus by asserting the HOLD signal which goes to the CPU.

• The CPU detects the HOLD signal, and will complete executing the current

instruction. Now all of the signals normally generated by the CPU are placed

in a tri-stated condition (neither high or low) and then the CPU asserts the

HLDA signal which tells the DMA controller that it is now in charge of the

bus.

• The CPU may have to wait (hold cycles).

191

DMA Data Transfer Method

• DMA activates its -MEMR, -MEMW, -IOR, -IOW output signals, and the

address outputs from the DMA are set to the target address, which will be

used to direct the byte that is about to transferred to a specific memory

location.

• The DMA will then let the device that requested the DMA transfer know

that the transfer is commencing by asserting the -DACK signal.

• The peripheral places the byte to be transferred on the bus Data lines.

• Once the data has been transferred, The DMA will de-assert the - DACK2

signal, so that the FDC knows it must stop placing data on the bus.

192

DMA Data Transfer Method

• The DMA will now check to see if any of the other DMA channels have any

work to do. If none of the channels have their DRQ lines asserted, the DMA

controller has completed its work and will now tri-state the -MEMR, -

MEMW, -IOR, -IOW and address signals.

• Finally, the DMA will de-assert the HOLD signal. The CPU sees this, and de-

asserts the HOLDA signal. Now the CPU resumes control of the buses and

address lines, and it resumes executing instructions and accessing main

memory and the peripherals.

250

DMA Data Transfer Method

• Here is a list of some of the prominent features of 8257 −

• It has four channels which can be used over four I/O devices.

• Each channel has 16-bit address and 14-bit counter.

• Each channel can transfer data up to 64kb.

• Each channel can be programmed independently.

• Each channel can perform read transfer, write transfer and verify
transfer operations.

• It generates MARK signal to the peripheral device that 128 bytes
have

• been transferred.

• It requires a single phase clock.

• Its frequency ranges from 250Hz to 3MHz.

194

Features of 8257

195

Pin diagram of 8257

Block Diagram of 8257

196

Terminal Count Register:

270

Mode Set Register:

198

Status Register:

199

200

UNIT IV
8051 MICROCONTROLLER

201

202

CLOs Course Learning Outcome

CLO 14 Understand the internal Architecture and different modes of
operation of popular 8051 microcontrollers.

CLO 15 Basic understanding of 8051 microcontrollers functionalities.

CLO 16 Understand the different addressing modes used in assembly
language programming of microcontrollers.

CLO 17 Write programs for arithmetic and logical computations using
8051 instruction sets.

 The overall system cost is high.

 A large sized PCB is required for assembling all the
components.

 Overall product design requires more time.

 Physical size of the product is big.

 A discrete components are used, the system is not reliable.

Disadvantages of Microprocessor

203

 As the peripherals are integrated into a single chip, the overall system

cost is very less.

 As the peripherals are integrated with a microprocessor the system is

more reliable.

 Though microcontroller may have on chip ROM,RAM and I/O ports,

addition ROM, RAM I/O ports may be interfaced externally if required.

 On chip ROM provide a software security.

Advantages of Microcontroller based System

204

8051 Basic Component

 4K bytes internal ROM

 128 bytes internal RAM

 Four 8-bit I/O ports (P0 - P3).

 Two 16-bit timers/counters

 One serial interface

 64k external memory for code

 64k external memory for data

 210 bit addressable

 Microcontroller

205

Block Diagram

206

CPU

On-chip
RAM

On-chip
ROM for
program
code

4 I/O Ports
Serial
PortOSC

Interrupt
Control

External interrupts
Timer/Counter

Timer 1

Timer 0

Bus
Control

TxD RxDP0 P1 P2 P3

Address/Data

Counter
Inputs

Internal Block Diagram of 8051

280

Pin Diagram of 8051

208

Basic circuit of 8051

209

PORT 0-Description

210

– 8-bit R/W -General
Purpose I/O

– Or acts as amultiplexed low byte
address and data bus for
external memory design

PORT 1 -Description

211

– Only 8-bit R/W - General
Purpose I/O

PORT 2 -Description

212

– 8-bit R/W - General
Purpose I/O

– Or high byte of the
address bus for external
memory design

PORT 3 - Description

213

PORT 3 Pin Function Description

P3.0 RXD Serial Input

P3.1 TXD Serial Output

P3.2 INT0 External Interrupt 0

P3.3 INT1 External Interrupt 1

P3.4 T0 Timer 0

P3.5 T1 Timer 1

P3.6 WR External Memory Write

P3.7 RD External Memory Read

8051 addressing modes

214

Immediate addressing mode

215

In this addressing mode the source operand is constant. In immediate

addressing mode, when the instruction is assembled, the operand comes

immediately after the op-code.

The immediate data must be preceded by ‘#’ sign. This addressing

mode can be used to load information into any of the register, including the

DPTR. Ex: MOVA,#25H

MOV R4,#62

MOV DPTR,#4532H

Register addressing mode

216

 Register addressing mode involves the use of registers to hold the data

to be manipulated.

Ex :-

MOV A, R0

MOV R2, A

ADD A,R5

// copy the contents of R0 in toA.

// copy the contents of A in to R2.

// add the content of R5 to content ofA.

Direct addressing mode

217

 In direct addressing mode, the data is in a RAM memory location whose

address is known, and this address is given as a part of the instruction.

Contrast this with the immediate addressing mode in which the operand

itself is provided with the instruction.

Ex:-

MOV R0,40H //save content of RAM location 40h intoR0.

MOV 56H,A // save content ofA in RAM location 56H

Register indirect addressing mode

218

 In the register indirect addressing mode, a register is used as a pointer to

the data. If the data is inside the CPU, only register R0 and R1 are used

for this purpose. they must be preceded by the “@” sign.

Ex :-

MOV A,@R0

// move contents of RAM location whose address is held
by R0 into A.

MOV @R1,B

// move contents of B RAM location whose address is held

by R

Indexed addressing mode

219

 Indexed addressing mode is widely used in accessing data elements of look-

up table entries located in the program ROM space of the 8051.

 The instruction used for this purpose is “MOV A, @A+DPTR”.

 Indexed addressing mode is widely used in accessing data elements of look-

up table entries located in the program ROM space of the 8051.

 The instruction used for this purpose is “MOV A, @A+DPTR”.

Instruction set of 8051

220

 8051 has simple instruction set in different groups. There are,

 Arithmeticinstructions

 Logicalinstructions

 Data transferinstructions

 Branching and loopinginstructions

 Bit controlinstructions

Arithmetic instructions

221

 These instructions are used to perform various mathematical operations

like addition, subtraction, multiplication, and division etc.

EX: ADD A,R1

ADDCA,#2

SUBB A,R2

INC A

DECA

Logical instructions

222

The logical instructions are the instructions which are used for performing

some operations like AND, OR, NOT, X- OR and etc., on the operands.

EX:
ANL A,Rn

ORL A,Rn

XRL A,Rn

CLR A

CPLA

// AND register toaccumulator

// OR register to accumulator

// Exclusive OR Reg toAcc

//Clear Accumulator

// Complement Accumulator

Branch and Looping Instructions

223

 These instructions are used for both branching as well as looping.

 These instructions include conditional & unconditional jump or loop
instructions.

EX:

 JC

 JNC

 JB

 JNB

 JBC

// Jump if carry equal to one

// Jump if carry equal to zero

// Jump if bit equal to one

// Jump if bit equal to zero

// Jump if bit equal to one and clearbit

Unconditional Jump Instructions

224

In 8051 there are two unconditional jumps. They are:

 SJMP // Short jump

 LJMP // Long jump

Writing “1” to Output Pin P1.X

Vcc

Load(L1)

Read latch

Read pin

Write to latch

Internal CPU

bus

M1

D Q

P1.X

Clk Q

2. output pin is
Vcc

P1.X

pin

1. write a 1 to thepin
1

0 output 1

TB1

TB2

Writing “0” to Output Pin P1.X

Vcc

Load(L1)

Read latch

Read pin

Write to latch

Internal CPU

bus

M1

D Q

P1.X

Clk Q

2. output pin is
ground

P1.X

pin

1. write a 0 to thepin
0

1 output 0

TB1

TB2

Reading “High” at Input Pin

Vcc

Load(L1)

Read latch

Write to latch

Internal CPUbus

M1

P1.Xpin
D Q

P1.X

Clk Q

2. MOVA,P1

external pin=High
1. write a 1 to the pinMOV

P1,#0FFH

1

0

1

TB2

TB1

Read pin

3. Read pin=1 Read latch=0

Write to latch=1

Reading “Low” at Input Pin

Vcc

Load(L1)

Read latch

Write to latch

Internal CPUbus

M1

P1.Xpin
D Q

P1.X

Clk Q

2. MOVA,P1

external pin=Low1. write a 1 to thepin

MOV P1,#0FFH

1

0

0

TB2

TB1

Read pin

3. Read pin=1 Read latch=0

Write to latch=1

A and B Registers

• A and B are “accumulators” forarithmetic instructions

• They can be accessed by direct mode as special function registers:

• B – address 0F0h

• A – address 0E0h - use “ACC” for directmode

Arithmetic Instructions

 Add

 Subtract

 Increment

 Decrement

 Multiply

 Divide

 Decimaladjust

Arithmetic Instructions

Mnemonic

ADD A, byte

ADDC A, byte

SUBB A, byte

INC A

INC byte

INC DPTR

DEC A

DEC byte

MUL AB

DIV AB

DA A

Description

add A to byte, put result in A

add with carry

subtract withborrow

increment A

increment byte in memory

increment data pointer

decrement accumulator

decrement byte

multiply accumulator by b register

divide accumulator by b register

decimal adjust the accumulator

ADD Instructions

add a, byte

addc a, byte

These instructions affect 3 bits in PSW:

C = 1 if result of add is greater thanFF

AC = 1 if there is a carry out of bit 3

OV = 1 if there is a carry out of bit 7, but not from bit 6,or visa versa.

Increment and Decrement

• The increment and decrement instructions do NOT affect the C flag.

• Notice we can only Increment the data pointer, not decrement.

INC A increment A

INC byte increment byte in memory

INC DPTR increment data pointer

DEC A decrement accumulator

DEC byte decrement byte

Other LogicInstructions

• CLR - clear

• RL – rotate left

• RLC – rotate left through Carry

• RR – rotate right

• RRC – rotate right through Carry

• SWAP – swap accumulatornibbles

UNIT V
8051 TIMERS/COUNTERS

235

236

CLOs Course Learning Outcome

CLO 18 Construct, and develop of required delay circuits using timers
of 8051 in the laboratory.

CLO 19 Interfacing of physical elements using Digital and analog
converters with microcontrollers.

CLO 20 Assess and interface required memory to microcontrollers
with appropriate memory mapping.

 8051 has two 16-bit programmable timers/counters. They can be

configured to operate either as timers or as event counters. The names of

the two counters are T0 and T1 respectively.

 The timer content is available in four 8-bit special function registers,

viz, TL0,TH0,TL1 and TH1 respectively.

 In the "timer" function mode, the counter is incremented in every

machine cycle. Thus, one can think of it as counting machine cycles.

Hence the clock rate is 1/12 th of the oscillatorfrequency.

 In the "counter" function mode, the register is incremented in response to

a 1 to 0 transition at its corresponding external input pin (T0 or T1). It

requires 2 machine cycles to detect a high to low.

TIMER/COUNTER

 The operation of the timers/counters is controlled by two special function

registers, TMOD and TCON respectively.

Timer Mode control (TMOD) Special Function Register:

 TMOD register is not bit addressable.

 TMOD Address: 89 H

Operation of Timer/Counter

Timer/ Counter control logic:

Figure: Timer/ Counter control logic Diagram

Timer modes of operation

Timer Mode-0:

In this mode, the timer is used as a 13-bit UP counter as follows.

Fig: Operation of Timer in Mode 2

The lower 5 bits of TLX and 8 bits of THX are used for the 13 bit count.

Upper 3 bits of TLX are ignored. When the counter rolls over from all 0's to

all 1's, TFX flag is set and an interrupt is generated.

Timer modes of operation

The input pulse is obtained from the previous stage. If TR1/0 bit is 1 and

Gate bit is 0, the counter continues counting up. If TR1/0 bit is 1 and Gate

bit is 1, then the operation of the counter is controlled by input. This mode

is useful to measure the width of a given pulse fed to input.

 This mode is similar to mode-0 except for the fact that the Timer operates

in 16-bit mode.

Timer Mode-1:

Fig: Operation of Timer in Mode 1

Timer Mode-2: (Auto-Reload Mode)

This is a 8 bit counter/timer operation. Counting is performed in TLX while

THX stores a constant value. In this mode when the timer overflows i.e. TLX

becomes FFH, it is fed with the value stored in THX. For example if we load THX

with 50H then the timer in mode 2 will count from 50H to FFH. After that 50H

is again reloaded. This mode is useful in applications like fixed time sampling

Fig: Operation of Timer in Mode 2

Timer Mode-3:

Timer 1 in mode-3 simply holds its count. The effect is same as setting TR1=0.

Timer0 in mode-3 establishes TL0 and TH0 as two separate counters.

Fig: Operation of Timer in Mode 3

Control bits TR1 and TF1 are used by Timer-0 (higher 8 bits) (TH0) in Mode-3

while TR0 and TF0 are available to Timer-0 lower 8 bits(TL0).

 An interrupt is an external or internal event that interrupts the

microcontroller to inform it that a device needs its service.

Interrupts vs. Polling

 A single microcontroller can serve several devices.

 There are two ways to do that:

– interrupts

– polling.

Interrupts

 In Polling , the microcontroller ‘s program simply checks each of the I/O

devices to see if any device needs servicing. If so, it performs the service.

 In the interrupt method, whenever any device needs microcontrollers

service, it tells to microcontroller by sending an interrupt signal.

 The program which is associated with the interrupt is called the interrupt

service routine (ISR) or interrupt handler.

Interrupts

 Finish current instruction and saves the PC on stack.

 Jumps to a fixed location in memory depend on type of interrupt.

 Starts to execute the interrupt service routine until RETI (return
from interrupt).

 Upon executing the RETI the microcontroller returns to the place
where it was interrupted. Get pop PC from stack.

Steps in executing an interrupt

 Original 8051 has 6 sources of interrupts

1. Reset

2. Timer 0 overflow

3. Timer 1 overflow

4. External Interrupt 0

5. External Interrupt 1

6. Serial Port events buffer full, buffer empty, etc)

Interrupt Sources

 Each interrupt has a specific place in code memory where program

execution (interrupt service routine) begins.

External Interrupt 0

Timer 0 overflow

External Interrupt 1

Timer 1 overflow

Serial

Timer 2 overflow(8052+)

:

:

:

:

:

:

0003h

000Bh

0013h

001Bh

0023h

002bh

Interrupt Vectors

Note: that there are
only 8 memory
locations between
vectors.

Interrupt Enable (IE) register

 All interrupt are disabled after reset

 We can enable and disable them by IE

Enabling an interrupt

 by bit operation
 Recommended in the middle of program

SETB EA
SETB ET0
SETB ET1
SETB EX0
SETB EX1
SETB ES

;Enable All
;Enable Timer0 over flow
;Enable Timer1 over flow
;Enable INT0
;Enable INT1
;Enable Serial port

 by mov instruction
 Recommended in the first of program

• MOV IE, #10010110B

SETB

SETB

SETB

SETB

SETB

SETB

IE.7

IE.1

IE.3

IE.0

IE.2

IE.4

Disabling an interrupt

CLRB

CLRB

CLRB

EA

ET0

ET1

;Disable All

; Disable Timer0 over flow

; Disable Timer1 over flow

CLRB EX0 ; Disable INT0

CLRB EX1 ; Disable INT1

CLRB ES ; Disable Serial port

 What if two interrupt sources interrupt at the same time?

 The interrupt with the highest PRIORITY gets serviced first.

 All interrupts have a power on default priority order.

1. External interrupt 0 (INT0)

2. Timer interrupt0 (TF0)

3. External interrupt 1 (INT1)

4. Timer interrupt1 (TF1)

5. Serial communication (RI+TI)

 Priority can also be set to “high” or “low” by IP reg.

Interrupt Priorities

IP.7: reserved

IP.6: reserved

IP.5: timer 2 interrupt priority bit(8052 only)

IP.4: serial port interrupt priority bit

IP.3: timer 1 interrupt priority bit

IP.2: external interrupt 1 priority bit

IP.1: timer 0 interrupt priority bit

IP.0: external interrupt 0 priority bit

Interrupt Priorities (IP) Register

 The serial port of 8051 is full duplex, i.e., it can transmit and receive

simultaneously.

 The register SBUF is used to hold the data. The special function register

SBUF is physically two registers. One is, write-only and is used to hold data

to be transmitted out of the 8051 via TXD.

 The other is, read-only and holds the received data from external sources

via RXD. Both mutually exclusive registers have the same address 099H.

SERIAL COMMUNICATION

8051 SERIAL DATA COMMUNICATION

8051 SERIAL DATA COMMUNICATION AND
PROGRAMMING

Real world interfacing of 8051 with external memory

• A single microcontroller can serve several devices. There are two ways to

do that is interrupts or polling. In the interrupt method, whenever any

device needs its services, the device notifies the micro controller

interrupts whatever it is doing and serves the device.

• The program which is associated with the interrupt is called the interrupt

service routine (ISR) or Interrupt handler.

• In polling, the microcontrollers continuously monitor the status of several

devices and serve each of them as certain conditions are met.

• The advantage of interrupts is that microcontroller can serve many

devices.

8051 SERIAL DATA COMMUNICATION AND PROGRAMMING

 Addresses of Ports and Devices in 4. Addresses of Ports and Devices in Real

World Interfacing

 Device Control Register, Status Register, Receive Buffer, Transmit Buffer

 Each I/O device is at a distinct address or set of addresses

 Each device has three sets of registers ─data buffer register(s), control

register(s) and status register

Device Addresses

 Device control and status addresses and port address remains constant and

are not re-locatable in a program as the glue circuit (hardware) to accesses

these is fixed during the circuit design. There can be common addresses for

input and output buffers, for example SBUF in 8051

8051 SERIAL DATA COMMUNICATION AND PROGRAMMING

The processor, memory, devices Glue Circuit

 The processor, memory and devices are interfaced (glued) together using a

programmable circuit like GAL or FPGA. The circuit consists of the address

decoders as per the memory and device addresses allocated and the

needed latches multiplexers/ demultiplexers.

Device Addresses

 There may be common addresses for control and status bits There can

be a control bits, which changes the function of a register at a device

address

8051 SERIAL DATA COMMUNICATION AND PROGRAMMING

Stepper motors are basically two types: Unipolar and Bipolar.

• Unipolar stepper motor generally has five or six wire, in which four wires

are one end of four stator coils, and other end of the all four coils is tied

together which represents fifth wire, this is called common wire.

• In Bipolar stepper motor there is just four wires coming out from two

sets of coils, means there are no common wire.

Stepper Motor interacting with 8051

• Stepper motor is made up of a stator and a rotator.

• Stator represents the four electromagnet coils which remain stationary

around the rotator, and rotator represents permanent magnet which

rotates.

• Whenever the coils energised by applying the current, the

electromagnetic field is created, resulting the rotation of rotator

(permanent magnet).

• On the basis of this “sequence” we can divide the working method of

Unipolar stepper motor in three modes: Wave drive mode, full step drive

mode and half step drive mode.

Stepper Motor interacting with 8051

• Wave drive mode: In this mode one coil is energised at a time, all four coil

are energised one after another. It produces less torque in compare with Full

step drive mode but power consumption is less.

• Following is the table for producing this mode using microcontroller, means

we need to give Logic 1 to the coils in the sequential manner.

Stepper Motor interacting with 8051

