

INSTITUTE OF AERONAUTICAL ENGINEERING
(Autonomous)

Dundigal, Hyderabad -500 043
ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE LECTURE NOTES

Course Name MICROPROCESSORS AND MICROCONTROLLERS

Course Code AEC013

Programme B.Tech

Semester VI

Course Coordinator Mr. V R Seshagiri Rao, Associate Professor

Course Faculty Mr. D KhalandarBasha, Associate Professor

 Mr. B Naresh, Assistant Professor

Lecture Numbers 1-154

Topic Covered All

COURSE OBJECTIVES:

The course should enable the students to:

I Imbibe sound knowledge about architecture, instruction set and concepts of 8086 and 8051.

II
Demonstrate the ability to develop programmes for different applications using assembly language

of 8086 and 8051.

III Impart knowledge of different types of external peripherals like 8255, 8259,8279,8251,8257.

IV Be proficient in Memory and I/O interfacing with 8086 and 8051.

 COURSE LEARNING OUTCOMES (CLOs):

 Students, who complete the course, will have demonstrated the ability to do the following:

AEC013.01 Understand the internal Architecture and different modes of operation of popular 8086

microprocessors.

AEC013.02 Basic understanding of 8085 and 8086 microprocessors architectures and its functionalities.

AEC013.03 An ability to distinguish between RISC and CISC based microprocessors.

AEC013.04 Understand the importance of addressing modes and the instruction set of the processor which is

used for programming.

AEC013.05 Understand and apply the fundamentals of assembly level programming of microprocessors.

AEC013.06 Design and develop 8086 Microprocessor based systems for real time applications using low

level language like ALP.

AEC013.07 Understand the memory organization and interrupts of processors helps in various system

designingaspects.
AEC013.08 Identify the significance of interrupts and interrupt service routines with appropriate

illustrations.

AEC013.09 Ability to interface the external peripherals and I/O devices and program the 8086

microprocessor using 8255.

AEC013.10 Identify the significance of serial communication in8086 with required baud rate.

AEC013.11 An ability to distinguish between the serial and parallel data transfer schemes.

AEC013.12 Develop the interfacing of universal synchronous asynchronous receiver transmitter 8251 with

8086 processor

AEC013.13 Ability to interface the programmable interrupt controller 8259 with 8086.

AEC013.14 Understand the internal Architecture and different modes of operation of popular 8051

microcontrollers.

AEC013.15 Basic understanding of 8051 microcontrollers functionalities.

AEC013.16 Understand the different addressing modes used in assembly language programming of

microcontrollers.

AEC013.17 Write programs for arithmetic and logical computations using 8051 instruction sets.

AEC013.18 Construct, and develop of required delay circuits using timers of 8051 in the laboratory.

AEC013.19 Interfacing of physical elements using Digital and analog converters with microcontrollers.

AEC013.20 Assess and interface required memory to microcontrollers with appropriate memory mapping.

 SYLLABUS

UNIT – I: 8086 MICROPROCESSORS

Register organization of 8086, Architecture, signal description of 8086, physical memory organization, general bus

operation, I/O addressing capability, special purpose activities, Minimum mode, maximum mode of 8086 system

and timings, machine language instruction formats, addressing mode of 8086, instruction set of 8086,assembler

directives and operators.

UNIT – II: PROGRAMMING WITH 8086 MICROPROCESSOR

Machine level programs, programming with an assembler, Assembly language programs, introduction to stack,

stack structure of 8086/8088, interrupts and interrupt service routines. Interrupt cycle of 8086, non-mask able

interrupt and mask able interrupts, interrupt programming.

UNIT – III: INTERFACING WITH 8086/88

Semiconductor memory interfacing, dynamic RAM interfacing, interfacing i/o ports, PIO 8255 modes of operation

of 8255,interfacing to D/A and A/D converters, stepper motor interfacing, control of high power devices using

8255.

Programmable interrupt controller 8259A, the keyboard /display controller8279, programmable communication

interface 8251 USART, DMA Controller 8257.

UNIT – IV: 8051 MICROCONTROLLER

8051 Microcontroller – Internal architecture and pin configuration, 8051 addressing modes, instruction set, Bit

addressable features. I/O Port structures, assembly language programming using data transfer, arithmetic, logical

and branch instructions.

UNIT – V: SYSTEM DESIGNUSING MICROCONTROLLER

8051 Timers/Counters, Serial data communication and its programming, 8051 interrupts, Interrupt vector table,

Interrupt programming. Real world interfacing of 8051 with external memory, expansion of I/O ports, LCD, ADC,

DAC, stepper motor interfacing.

Text Books:

1. D. V. Hall, “Microprocessors and Interfacing”, Tata McGraw-Hill Education, 3
rd

 Edition 2013.

2. A.K Ray, K. M. Bhurchandani, “Advanced Microprocessors and Peripherals” Tata McGraw-Hill Education, 2nd

Edition, 2006.

3. Savaliya M. T, “8086 Programming and Advance Processor Architecture”, Wiley India Pvt., 1st Edition, 2012.

Reference Books:

1. N. Senthil Kumar, M. Saravanan, S. Jeevanathan, S. K. Shah, “Microprocessors and Interfacing”, Oxford

University, 1
st
 Edition, 2012.

2. Lyla B. Das, “The x86 Microprocessors”, Pearson India, 2
nd

 Edition, 2014.

Web References:

1.http://www.daenotes.com/electronics/digital-electronics/Intel-80858bitmicroprocessor#axzz2I9yUSe7I

2.https://www.smartzworld.com/notes/microprocessors-and-microcontrollers-mpmc/

3. http://www.iare.ac.in

 UNIT-I

 8086 MICROPROCESSOR

Introduction to processor:

 A processor is the logic circuitry that responds to and processes the basic instructions that

drives a computer.

 The term processor has generally replaced the term central processing unit (CPU). The

processor in a personal computer or embedded in small devices is often called a

microprocessor.

 The processor (CPU, for Central Processing Unit) is the computer's brain. It allows the

processing of numeric data, meaning information entered in binary form, and the execution

of instructions stored in memory.

Evolution of Microprocessor:

A microprocessor is used as the CPU in a microcomputer. There are now many different

microprocessors available.

 Microprocessor is a program-controlled device, which fetches the instructions from memory,

decodes and executes the instructions. Most Micro Processor are single- chip devices.

 Microprocessor is a backbone of computer system. which is called CPU

 Microprocessor speed depends on the processing speed depends on DATA BUS WIDTH.

 A common way of categorizing microprocessors is by the no. of bits that their ALU can

 Work with at a time

 The address bus is unidirectional because the address information is always given by the

Micro Processor to address a memory location of an input / output devices.

 The data bus is Bi-directional because the same bus is used for transfer of data between

Micro Processor and memory or input / output devices in both the direction.

 It has limitations on the size of data. Most Microprocessor does not support floating-point

operations.

 Microprocessor contain ROM chip because it contain instructions to execute data.

 What is the primary & secondary storage device? - In primary storage device the

 Storage capacity is limited. It has a volatile memory. In secondary storage device the storage

capacity is larger. It is a nonvolatile memory.

a) Primary devices are: RAM (Read / Write memory, High Speed, Volatile Memory)

/ ROM (Read only memory, Low Speed, Non Voliate Memory)

b) Secondary devices are: Floppy disc / Hard disk

Compiler: Compiler is used to translate the high-level language program into machine code at a

time. It doesn‟t require special instruction to store in a memory, it stores automatically. The

Execution time is less compared to Interpreter.

1.4-bit Microprocessor:

http://searchcio-midmarket.techtarget.com/definition/instruction
http://searchcio-midmarket.techtarget.com/definition/CPU
http://en.kioskea.net/contents/base/binaire.php3

 The first microprocessor (Intel 4004) was invented in 1971. It was a 4-bit calculation device

with a speed of 108 kHz. Since then, microprocessor power has grown exponentially. So

what exactly are these little pieces of silicone that run our computers(" Common Operating

Machine Particularly Used For Trade Education And Research ")

 It has 3200 PMOS transistors.

 It is a 4-bit device used in calculator.

2.8-Bit microprocessor:

 In 1972, Intel came out with the 8008 which is 8-bit.

 In 1974, Intel announced the 8080 followed by 8085 is a 8-bit processor Because 8085

processor has 8 bit ALU (Arithmetic Logic Review). Similarly 8086 processor has 16 bit

ALU. This had a larger instruction set then 8080. used NMOS transistors, so it operated

much faster than the 8008.

 The 8080 is referred to as a “Second generation Microprocessor”

3. Limitations of 8 Bit microprocessor:

 Low speed of execution

 Low memory addressing capability

 Limited number of general purpose registers

 Less power full instruction set

4. Examples for 4/ 8 / 16 / 32 bit Microprocessors:

 4-Bit processor – 4004/4040

 8-bit Processor - 8085 / Z80 / 6800

 16-bit Processor - 8086 / 68000 / Z8000

 32-bit Processor - 80386 / 80486

5. What are 1st / 2nd / 3rd / 4th generation processor?

 The processor made of PMOS technology is called 1
st
 generation processor, and it is made up

of 4 bits

 The processor made of NMOS technology is called 2
nd

 generation processor, and it is made

up of 8 bits

 The processor made of CMOS technology is called 3rd generation processor, and it is made

up of 16 bits

 The processor made of HCMOS technology is called 4
th

 generation processor, and it is made

up of 32 bits (HCMOS : High-density n- type Complementary Metal Oxide Silicon field

effect transistor)

 Block diagram of microprocessor:

The Central Processing Unit (CPU):

 This device coordinates all operations of a micro computer. It fetches programs stored in

ROM‟s or RAMs and executes the instructions depending one a specific Instructions set,

which is characteristic of each type of CPU, and which is recognized by the CPU.

The Random Access Memory (RAM): Temporary or trail programs are written.

 Besides the ROM area, every computer has some memory space for temporary storage of

data as well as for programs under development. These memory devices are RAMs or Read – write

memory. The contents of it are not permanent and are altered when power is turned off. So the RAM

memory is considered to be volatile memory.

The Read Only Memory (ROM): Permanent programs are stored.

 The permanent memory device/area is called ROM, because whatever be the memory

contents of ROMs, they cannot be over written with some other information.

 For a blank ROM, the manufacturer supplies the device without any inf. In it, information

can be entered electrically into the memory space. This is called burning a ROM or PROM.

Data Lines/Data Bus:

 The number of data lines, like add. Lines vary with the specific CPU .The set of data lines

is database like the address bus unlike add. Bus, the data bus is bidirectional because while the

information on the address Bus always flows out of the CPU; the data can flow both out of the CPU

as well as into the CPU.

Control lines/ control Bus:

 The no. of control lines also depends on the specific CPU one is using.

Ex: Read; Write lines are examples of control lines

Clock: The clock is a symmetrical square wave signal that drives the CPU

Instructions: An instruction is an elementary operation that the processor can accomplish.

Instructions are stored in the main memory, waiting to be processed by the processor. An instruction

has two fields:

 Operation code, which represents the action that the processor must execute;

 Operand code, which defines the parameters of the action. The operand code depends on the

operation. It can be data or a memory address

Introduction to 8085 Microprocessor:

The Salient Features of 8085 Microprocessor:

 8085 is an 8 bit microprocessor, manufactured with N-MOS technology.

 It has 16-bit address bus and hence can address up to 2
16

= 65536 bytes (64KB)

memory locations through A0-A15.

 The first 8 lines of address bus and 8 lines of data bus are multiplexed AD0 - AD7.

Data bus is a group of 8 lines D0 - D7.

 It supports external interrupt request.8085 consists of 16 bit program counter (PC)

and stack pointer (SP).

 Six 8-bit general purpose register arranged in pairs: BC, DE, HL.

 It requires a signal +5V power supply and can operate at 3 MHz, 5 MHz and 6

MHz Serial in/Serial out Port.

 It is enclosed with 40 pins DIP (Dual in line package).

Internal Architecture of 8085:

8085 Bus Structure: Address Bus:

 The address bus is a group of 16 lines generally identified as A0 to A15.

 The address bus is unidirectional: bits flow in one direction-from the MPU to peripheral

devices.

 The MPU uses the address bus to perform the first function: identifying a peripheral or a

memory location.

Data Bus:

 The data bus is a group of eight lines used for data flow.

 These lines are bi-directional - data flow in both directions between the MPU and

memory and peripheral devices.

 The MPU uses the data bus to perform the second function: transferring binary

information.

 The eight data lines enable the MPU to manipulate 8-bit data ranging from 00 to FF (28 =

256 numbers).

 The largest number that can appear on the data bus is 11111111.

Control Bus:

 The control bus carries synchronization signals and providing timing signals.

 The MPU generates specific control signals for every operation it performs. These signals

are used to identify a device type with which the MPU wants to communicate.

Registers of 8085:

 The 8085 have six general-purpose registers to store 8-bit data during program execution.

 These registers are identified as B, C, D, E, H, and L.

 They can be combined as register pairs-BC, DE, and HL-to perform some 16-bit

operations.

Accumulator (A):

 The accumulator is an 8-bit register that is part of the arithmetic/logic unit (ALU).

 This register is used to store 8-bit data and to perform arithmetic and logical operations.

 The result of an operation is stored in the accumulator.

Flags:

 The ALU includes five flip-flops that are set or reset according to the result of an

operation.

 The microprocessor uses the flags for testing the data conditions.

 They are Zero (Z), Carry (CY), Sign (S), Parity (P), and Auxiliary Carry (AC) flags. The

most commonly used flags are Sign, Zero, and Carry.

The bit position for the flags in flag register is,

1. Sign Flag (S):

After execution of any arithmetic and logical operation, if D7 of the result is 1, the sign flag

is set. Otherwise it is reset.

D7 is reserved for indicating the sign; the remaining is the magnitude of number.

If D7 is 1, the number will be viewed as negative number. If D7 is 0, the number will be

viewed as positive number.

2. Zero Flag (z):

If the result of arithmetic and logical operation is zero, then zero flag is set otherwise it is

reset.

3. Auxiliary Carry Flag (AC):

If D3 generates any carry when doing any arithmetic and logical operation, this flag is set.

Otherwise it is reset.

4. Parity Flag (P):

If the result of arithmetic and logical operation contains even number of 1's then this flag

will be set and if it is odd number of 1's it will be reset.

5. Carry Flag (CY):

If any arithmetic and logical operation result any carry then carry flag is set otherwise it is

reset.

Arithmetic and Logic Unit (ALU):

 It is used to perform the arithmetic operations like addition, subtraction, multiplication,

division, increment and decrement and logical operations like AND, OR and EX-OR.

 It receives the data from accumulator and registers.

 According to the result it set or reset the flags.

Program Counter (PC):

 This 16-bit register sequencing the execution of instructions.

 It is a memory pointer. Memory locations have 16-bit addresses, and that is why this is a

16-bit register.

 The function of the program counter is to point to the memory address of the next

instruction to be executed.

 When an opcode is being fetched, the program counter is incremented by one to point to

the next memory location.

Stack Pointer (SP):

 The stack pointer is also a 16-bit register used as a memory pointer.

 It points to a memory location in R/W memory, called the stack.

 The beginning of the stack is defined by loading a 16-bit address in the stack pointer

(register).

Temporary Register: It is used to hold the data during the arithmetic and logical operations.

Instruction Register: When an instruction is fetched from the memory, it is loaded in the

instruction register.

Instruction Decoder: It gets the instruction from the instruction register and decodes the

instruction. It identifies the instruction to be performed.

Serial I/O Control: It has two control signals named SID and SOD for serial data transmission.

Timing and Control unit:

 It has three control signals ALE, RD (Active low) and WR (Active low) and three status

signals IO/M(Active low), S0 and S1.

 ALE is used for provide control signal to synchronize the components of microprocessor

and timing for instruction to perform the operation.

 RD (Active low) and WR (Active low) are used to indicate whether the operation is

reading the data from memory or writing the data into memory respectively.

 IO/M(Active low) is used to indicate whether the operation is belongs to the memory or

peripherals.

 If,

Interrupt Control Unit:

 It receives hardware interrupt signals and sends an acknowledgement for receiving the

interrupt signal.

Pin Diagram and Pin Description Of 8085

8085 is a 40 pin IC, DIP package. The signals from the pins can be grouped as follows

1. Power supply and clock signals

2. Address bus

3. Data bus

4. Control and status signals

5. Interrupts and externally initiated signals

6. Serial I/O ports

1. Power supply and clock frequency signals

 Vcc + 5 volt power supply

 Vss Ground

 X1, X2: Crystal or R/C network or LC network connections to set the

frequency of internal clock generator.

 The frequency is internally divided by two. Since the basic operating timing

frequency is 3 MHz, a 6 MHz crystal is connected externally.

 CLK (output)-Clock Output is used as the system clock for peripheral and

devices interfaced with the microprocessor.

2. Address Bus:

 A8 - A15 (output; 3-state)

 It carries the most significant 8 bits of the memory address or the 8 bits of

the I/O address;

3. Multiplexed Address / Data Bus:

 AD0 - AD7 (input/output; 3-state)

 These multiplexed set of lines used to carry the lower order 8 bit address as well as data

bus.

 During the opcode fetch operation, in the first clock cycle, the lines deliver the lower

order address A0 - A7.

 In the subsequent IO / memory, read / write clock cycle the lines are used as data bus.

 The CPU may read or write out data through these lines.

4. Control and Status signals:

 ALE (output) - Address Latch Enable.

 This signal helps to capture the lower order address presented on the multiplexed address

/ data bus.

 RD (output 3-state, active low) - Read memory or IO device.

 This indicates that the selected memory location or I/O device is to be read and that the

data bus is ready for accepting data from the memory or I/O device.

 WR (output 3-state, active low) - Write memory or IO device.

 This indicates that the data on the data bus is to be written into the selected memory

location or I/O device.

 IO/M (output) - Select memory or an IO device.

 This status signal indicates that the read / write operation relates to whether the memory

or I/O device.

 It goes high to indicate an I/O operation.

 It goes low for memory operations.

5. Status Signals:

 It is used to know the type of current operation of the microprocessor.

6. Interrupts and externally initiated operations:

 They are the signals initiated by an external device to request the microprocessor to do a

particular task or work.

 There are five hardware interrupts called,

 On receipt of an interrupt, the microprocessor acknowledges the interrupt by the active

low INTA (Interrupt Acknowledge) signal.

Reset In (input, active low)

 This signal is used to reset the microprocessor.

 The program counter inside the microprocessor is set to zero.

 The buses are tri-stated.

Reset Out (Output)

 It indicates CPU is being reset.

 Used to reset all the connected devices when the microprocessor is reset

7. Direct Memory Access (DMA):

Tri state devices:

 3 output states are high & low states and additionally a high impedance state.

 When enable E is high the gate is enabled and the output Q can be 1 or 0 (if A is 0, Q is 1,

otherwise Q is 0). However, when E is low the gate is disabled and the output Q enters into a

high impedance state.

 For both high and low states, the output Q draws a current from the input of the OR gate.

 When E is low, Q enters a high impedance state; high impedance means it is electrically

isolated from the OR gate's input, though it is physically connected. Therefore, it does not

draw any current from the OR gate's input.

 When 2 or more devices are connected to a common bus, to prevent the devices from

interfering with each other, the tristate gates are used to disconnect all devices except the one

that is communicating at a given instant.

 The CPU controls the data transfer operation between memory and I/O device. Direct

Memory Access operation is used for large volume data transfer between memory and an I/O

device directly.

 The CPU is disabled by tri-stating its buses and the transfer is effected directly by

external control circuits.

 HOLD signal is generated by the DMA controller circuit. On receipt of this signal, the

microprocessor acknowledges the request by sending out HLDA signal and leaves out the

control of the buses. After the HLDA signal the DMA controller starts the direct transfer of

data.

READY (input)

 Memory and I/O devices will have slower response compared to microprocessors.

 Before completing the present job such a slow peripheral may not be able to handle

further data or control signal from CPU.

 The processor sets the READY signal after completing the present job to access the data.

 The microprocessor enters into WAIT state while the READY pin is disabled.

8. Single Bit Serial I/O ports:

 SID (input) - Serial input data line

 SOD (output) - Serial output data line

 These signals are used for serial communication.

Overview or Features of 8086
 It is a 16-bit Microprocessor (μp).It‟s ALU, internal registers works with 16bit binary

word.

 8086 has a 20 bit address bus can access up to 2
20

= 1 MB memory locations.

 8086 has a 16bit data bus. It can read or write data to a memory/port either 16bits or 8 bit

at a time.

 It can support up to 64K I/O ports.

 It provides 14, 16 -bit registers.

 Frequency range of 8086 is 6-10 MHz

 It has multiplexed address and data bus AD0- AD15 and A16 – A19.

 It requires single phase clock with 33% duty cycle to provide internal timing.

 It can prefetch upto 6 instruction bytes from memory and queues them in order to speed

up instruction execution.

 It requires +5V power supply.

 A 40 pin dual in line package.

 8086 is designed to operate in two modes, Minimum mode and Maximum mode.

o The minimum mode is selected by applying logic 1 to the MN / MX# input pin.

This is a single microprocessor configuration.

o The maximum mode is selected by applying logic 0 to the MN / MX# input pin.

This is a multi micro processors configuration.

Register Organization of 8086 General

purpose registers

The 8086 microprocessor has a total of fourteen registers that are accessible to the

programmer. It is divided into four groups. They are:

 Four General purpose registers

 Four Index/Pointer registers

 Four Segment registers

 Two Other registers

General purpose registers:

Accumulator register consists of two 8-bit registers AL and AH, which can be combined

together and used as a 16-bit register AX. AL in this case contains the low order byte of the

word, and AH contains the high-order byte. Accumulator can be used for I/O operations and

string manipulation.

Base register consists of two 8-bit registers BL and BH, which can be combined together

and used as a 16-bit register BX. BL in this case contains the low-order byte of the word, and BH

contains the high-order byte. BX register usually contains a data pointer used for based, based

indexed or register indirect addressing.

Count register consists of two 8-bit registers CL and CH, which can be combined together

and used as a 16-bit register CX. When combined, CL register contains the low order byte of

the word, and CH contains the high-order byte. Count register can be used in Loop,

shift/rotate instructions and as a counter in string manipulation

Data register consists of two 8-bit registers DL and DH, which can be combined together

and used as a 16-bit register DX. When combined, DL register contains the low order byte of the

word, and DH contains the high-order byte. Data register can be used as a port number in I/O

operations. In integer 32-bit multiply and divide instruction the DX register contains high-order

word of the initial or resulting number.

Index or Pointer Registers
These registers can also be called as Special Purpose registers.

Stack Pointer (SP) is a 16-bit register pointing to program stack, i.e. it is used to hold the

address of the top of stack. The stack is maintained as a LIFO with its bottom at the start of the

stack segment (specified by the SS segment register).Unlike the SP register, the BP can be used

to specify the offset of other program segments.

Base Pointer (BP) is a 16-bit register pointing to data in stack segment. It is usually used

by subroutines to locate variables that were passed on the stack by a calling program. BP register

is usually used for based, based indexed or register indirect addressing.

Source Index (SI) is a 16-bit register. SI is used for indexed, based indexed and register

indirect addressing, as well as a source data addresses in string manipulation instructions are

used in conjunction with the DS register to point the data locations in the data segment.

Destination Index (DI) is a 16-bit register is used in conjunction with the ES register

for string operations. DI is used for indexed, based indexed and register indirect addressing, as

well as a destination data addresses in string manipulation instructions. In short, Destination

Index and SI Source Index registers are used to hold address.

Segment Registers
Most of the registers contain data/instruction offsets within 64 KB memory segment.

There are four different 64 KB segments for instructions, stack, data and extra data. To specify

where in 1 MB of processor memory these 4 segments are located the processor uses four

segment registers.

Code segment (CS) is a 16-bit register containing address of 64 KB segment with

processor instructions. The processor uses CS segment for all accesses to instructions referenced

by instruction pointer (IP) register. CS register cannot be changed directly. The CS register is

automatically updated during far jump, far call and far return instructions.

Stack segment (SS) is a 16-bit register containing address of 64KB segment with

program stack. By default, the processor assumes that all data referenced by the stack pointer

(SP) and base pointer (BP) registers is located in the stack segment. SS register can be changed

directly using POP instruction.

Data segment (DS) is a 16-bit register containing address of 64KB segment with program

data. By default, the processor assumes that all data referenced by general registers (AX, BX,

CX, DX) and index register (SI, DI) is located in the data segment. DS register can be changed

directly using POP and LDS instructions.

Extra segment (ES) used to hold the starting address of Extra segment. Extra segment is

provided for programs that need to access a second data segment. Segment registers cannot be

used in arithmetic operations.

Other registers of 8086

Instruction Pointer (IP) is a 16-bit register. This is a crucially important register which is used

to control which instruction the CPU executes. The IP, or program counter, is used to store the

memory location of the next instruction to be executed. The CPU checks the program counter to

ascertain which instruction to carry out next. It then updates the program counter to point to the

next instruction. Thus the program counter will always point to the next instruction to be

executed.

Flag Register contains a group of status bits called flags that indicate the status of the CPU or

the result of arithmetic operations. There are two types of flags:

1. The status flags which reflect the result of executing an instruction. The programmer cannot

set/reset these flags directly.

2. The control flags enable or disable certain CPU operations. The programmer can set/reset

these bits to control the CPU's operation.

Nine individual bits of the status register are used as control flags (3 of them) and status flags (6

of them).The remaining 7 are not used.

A flag can only take on the values 0 and 1. We say a flag is set if it has the value 1.The status

flags are used to record specific characteristics of arithmetic and of logical instructions.

Control Flags: There are three control flags

1. The Direction Flag (D): Affects the direction of moving data blocks by such instructions as

MOVS, CMPS and SCAS. The flag values are 0 = up and 1 = down and can be set/reset by the

STD (set D) and CLD (clear D) instructions.

2. The Interrupt Flag (I): Dictates whether or not system interrupts can occur. Interrupts are

actions initiated by hardware block such as input devices that will interrupt the normal execution

of programs. The flag values are 0 = disable interrupts or 1 = enable interrupts and can be

manipulated by the CLI (clear I) and STI (set I) instructions.

3. The Trap Flag (T): Determines whether or not the CPU is halted after the execution of each

instruction. When this flag is set (i.e. = 1), the programmer can single step through his program

to debug any errors. When this flag = 0 this feature is off. This flag can be set by the INT 3

instruction.

Status Flags: There are six status flags

1. The Carry Flag (C): This flag is set when the result of an unsigned arithmetic operation is

too large to fit in the destination register. This happens when there is an end carry in an addition

operation or there an end borrows in a subtraction operation. A value of 1 = carry and 0 = no

carry.

2. The Overflow Flag (O): This flag is set when the result of a signed arithmetic operation is too

large to fit in the destination register (i.e. when an overflow occurs). Overflow can occur when

adding two numbers with the same sign (i.e. either positive or both negative). A value of 1 =

overflow and 0 = no overflow.

3. The Sign Flag (S): This flag is set when the result of an arithmetic or logic operation is

negative. This flag is a copy of the MSB of the result (i.e. the sign bit). A value of 1 means

negative and 0 = positive.

4. The Zero Flag (Z): This flag is set when the result of an arithmetic or logic operation is equal

to zero. A value of 1 means the result is zero and a value of 0 means the result is not zero.

5. The Auxiliary Carry Flag (A): This flag is set when an operation causes a carry from bit 3 to

bit 4 (or a borrow from bit 4 to bit 3) of an operand. A value of 1 = carry and 0 = no carry.

6. The Parity Flag (P): This flags reflects the number of 1s in the result of an operation. If the

number of 1s is even its value = 1 and if the number of 1s is odd then its value = 0.

Architecture of 8086 or Functional Block diagram of 8086

 8086 has two blocks Bus Interface Unit (BIU) and Execution Unit (EU).

 The BIU performs all bus operations such as instruction fetching, reading and writing

operands for memory and calculating the addresses of the memory operands. The

instruction bytes are transferred to the instruction queue.

 EU executes instructions from the instruction system byte queue.

 Both units operate asynchronously to give the 8086 an overlapping instruction fetch and

execution mechanism which is called as Pipelining. This results in efficient use of the

system bus and system performance.

 BIU contains Instruction queue, Segment registers, Instruction pointer, Address adder.

 EU contains Control circuitry, Instruction decoder, ALU, Pointer and Index register, Flag

register.

Figure: 8086 Architecture

Explanation of Architecture of 8086

Bus Interface Unit:

 It provides a full 16 bit bidirectional data bus and 20 bit address bus.

 The bus interface unit is responsible for performing all external bus operations.

 Specifically it has the following functions:

 Instructions fetch Instruction queuing, Operand fetch and storage, Address relocation and

Bus control.

 The BIU uses a mechanism known as an instruction stream queue to implement pipeline

architecture.

 This queue permits prefetch of up to six bytes of instruction code. Whenever the queue of

the BIU is not full, it has room for at least two more bytes and at the same time the EU is not

requesting it to read or write operands from memory, the BIU is free to look ahead in the

program by prefetching the next sequential instruction.

 These prefetching instructions are held in its FIFO queue. With its 16 bit data bus, the BIU

fetches two instruction bytes in a single memory cycle.

 After a byte is loaded at the input end of the queue, it automatically shifts up through the

FIFO to the empty location nearest the output.

 The EU accesses the queue from the output end. It reads one instruction byte after the

other from the output of the queue. If the queue is full and the EU is not requesting access to

operand in memory.

 These intervals of no bus activity, which may occur between bus cycles, are known as idle

state.

 If the BIU is already in the process of fetching an instruction when the EU request it to read

or write operands from memory or I/O, the BIU first completes the instruction fetch bus cycle

before initiating the operand read / write cycle.

 The BIU also contains a dedicated adder which is used to generate the 20bit physical

address that is output on the address bus. This address is formed by adding an appended 16

bit segment address and a 16 bit offset address.

 For example: The physical address of the next instruction to be fetched is formed by

combining the current contents of the code segment CS register and the current contents of the

instruction pointer IP register.

 The BIU is also responsible for generating bus control signals such as those for memory read

or write and I/O read or write.

Execution Unit

 The Execution unit is responsible for decoding and executing all instructions.

 The EU extracts instructions from the top of the queue in the BIU, decodes them,

generates operands if necessary, passes them to the BIU and requests it to perform the read or

write bus cycles to memory or I/O and perform the operation specified by the instruction on

the operands.

 During the execution of the instruction, the EU tests the status and control flags and

updates them based on the results of executing the instruction.

 If the queue is empty, the EU waits for the next instruction byte to be fetched and shifted

to top of the queue.

 When the EU executes a branch or jump instruction, it transfers control to a location

corresponding to another set of sequential instructions.

 Whenever this happens, the BIU automatically resets the queue and then begins to fetch

instructions from this new location to refill the queue.

General Bus Operation

 The 8086 has a combined address and data bus commonly referred as a time multiplexed

address and data bus.

 The main reason behind multiplexing address and data over the same pins is the

maximum utilization of processor pins and it facilitates the use of 40 pin standard DIP

package.

 The bus can be demultiplexed using a few latches and transceivers, when ever required.

 Basically, all the processor bus cycles consist of at least four clock cycles. These are

referred to as T1, T2, T3, and T4. The address is transmitted by the processor during T1. It is

present on the bus only for one cycle.

 The negative edge of this ALE pulse is used to separate the address and the data or status

information. In maximum mode, the status lines S0, S1 and S2 are used to indicate the type of

operation.

 Status bits S3 to S7 are multiplexed with higher order address bits and the BHE signal.

Address is valid during T1 while status bits S3 to S7 are valid during T2 through T4.

Maximum mode

 In the maximum mode, the 8086 is operated by strapping the MN/MX pin to ground.

 In this mode, the processor derives the status signal S2, S1, S0. Another chip called bus

controller derives the control signal using this status information.

 In the maximum mode, there may be more than one microprocessor in the system

configuration.

Minimum mode

 In a minimum mode 8086 system, the microprocessor 8086 is operated in minimum

mode by strapping its MN/MX pin to logic 1.

 In this mode, all the control signals are given out by the microprocessor chip itself.

 There is a single microprocessor in the minimum mode system.

Pin Diagram of 8086 and Pin description of 8086

Figure shows the Pin diagram of 8086. The description follows it.

 The Microprocessor 8086 is a 16-bit CPU available in different clock rates and packaged

in a 40 pin CERDIP or plastic package.

 The 8086 operates in single processor or multiprocessor configuration to achieve high

performance. The pins serve a particular function in minimum mode (single processor

mode) and other function in maximum mode configuration (multiprocessor mode).

 The 8086 signals can be categorized in three groups.

1. The first are the signal having common functions in minimum as well as

maximum mode.

2. The second are the signals which have special functions for minimum mode

3. The third are the signals having special functions for maximum mode.

 The following signal descriptions are common for both modes.

 AD15-AD0: These are the time multiplexed memory I/O address and data lines.

1. Address remains on the lines during T1 state, while the data is available on the data bus

during T2, T3, Tw and T4. These lines are active high and float to a tristate during

interrupt acknowledge and local bus hold acknowledge cycles.

 A19/S6, A18/S5, A17/S4, and A16/S3: These are the time multiplexed address and

status lines.

2. During T1 these are the most significant address lines for memory operations.

3. During I/O operations, these lines are low.

4. During memory or I/O operations, status information is available on those lines for T2,

T3, Tw and T4.

5. The status of the interrupt enable flag bit is updated at the beginning of each clock cycle.

6. The S4 and S3 combine indicate which segment registers is presently being used for

memory accesses as in below fig

7. These lines float to tri-state off during the local bus hold acknowledge. The status line S6

is always low.

8. The address bit is separated from the status bit using latches controlled by the ALE

signal.

9.

 BHE/S7: The bus high enable is used to indicate the transfer of data over the higher order

(D15-D8) data bus as shown in table. It goes low for the data transfer over D15-D8 and is used

to derive chip selects of odd address memory bank or peripherals. BHE is low during

T1 for read, write and interrupt acknowledge cycles, whenever a byte is to be transferred

on higher byte of data bus. The status information is available during T2, T3 and T4. The

signal is active low and tristated during hold. It is low during T1 for the first pulse of the

interrupt acknowledge cycle.

 RD – Read: This signal on low indicates the peripheral that the processor is performing

memory or I/O read operation. RD is active low and shows the state for T2, T3, Tw of any

read cycle. The signal remains tristated during the hold acknowledge.

 READY: This is the acknowledgement from the slow device or memory that they have

completed the data transfer. The signal made available by the devices is synchronized by the

8284A clock generator to provide ready input to the 8086. the signal is active high.

 INTR-Interrupt Request: This is a triggered input. This is sampled during the last clock

cycles of each instruction to determine the availability of the request. If any interrupt

request is pending, the processor enters the interrupt acknowledge cycle. This can be

internally masked by resulting the interrupt enable flag. This signal is active high and

internally synchronized.

 TEST: This input is examined by a „WAIT‟ instruction. If the TEST pin goes low,

execution will continue, else the processor remains in an idle state. The input is

synchronized internally during each clock cycle on leading edge of clock.

 CLK- Clock Input: The clock input provides the basic timing for processor operation and

bus control activity. It‟s an asymmetric square wave with 33% duty cycle.

Figure shows the Pin functions of 8086.

The following pin functions are for the minimum mode operation of 8086.

 M/IO – Memory/IO: This is a status line logically equivalent to S2 in maximum mode.

When it is low, it indicates the CPU is having an I/O operation, and when it is high, it

indicates that the CPU is having a memory operation. This line becomes active high in the

previous T4 and remains active till final T4 of the current cycle. It is tristated during local

bus “hold acknowledge “.

 INTA – Interrupt Acknowledge: This signal is used as a read strobe for interrupt

acknowledge cycles. i.e. when it goes low, the processor has accepted the interrupt.

 ALE – Address Latch Enable: This output signal indicates the availability of the valid

address on the address/data lines, and is connected to latch enable input of latches. This

signal is active high and is never tristated.

 DT/R – Data Transmit/Receive: This output is used to decide the direction of data flow

through the transceivers (bidirectional buffers). When the processor sends out data, this

signal is high and when the processor is receiving data, this signal is low.

 DEN – Data Enable: This signal indicates the availability of valid data over the address/data

lines. It is used to enable the transceivers (bidirectional buffers) to separate the data from the

multiplexed address/data signal. It is active from the middle of T2 until the middle of T4. This

is tristated during „hold acknowledge‟ cycle.

 HOLD, HLDA- Acknowledge: When the HOLD line goes high; it indicates to the

processor that another master is requesting the bus access. The processor, after receiving the

HOLD request, issues the hold acknowledge signal on HLDA pin, in the middle of the next

clock cycle after completing the current bus cycle.

 At the same time, the processor floats the local bus and control lines. When the processor

detects the HOLD line low, it lowers the HLDA signal. HOLD is an asynchronous input, and

is should be externally synchronized. If the DMA request is made while the CPU is

performing a memory or I/O cycle, it will release the local bus during T4 provided :

1. The request occurs on or before T2 state of the current cycle.

2. The current cycle is not operating over the lower byte of a word.

3. The current cycle is not the first acknowledge of an interrupt acknowledge sequence.

4. A Lock instruction is not being executed.

The following pin functions are applicable for maximum mode operation of 8086.

 S2, S1, and S0 – Status Lines: These are the status lines which reflect the type of

operation, being carried out by the processor. These become activity during T4 of the

previous cycle and active during T1 and T2 of the current bus cycles.

 LOCK: This output pin indicates that other system bus master will be prevented from

gaining the system bus, while the LOCK signal is low. The LOCK signal is activated by the

„LOCK‟ prefix instruction and remains active until the completion of the next instruction.

When the CPU is executing a critical instruction which requires the system bus, the LOCK

prefix instruction ensures that other processors connected in the system will not gain the

control of the bus.

The 8086, while executing the prefixed instruction, asserts the bus lock signal output,

which may be connected to an external bus controller. By prefetching the instruction, there is a

considerable speeding up in instruction execution in 8086. This is known as instruction

pipelining.

 At the starting the CS: IP is loaded with the required address from which the execution is

to be started. Initially, the queue will be empty and the microprocessor starts a fetch

operation to bring one byte (the first byte) of instruction code, if the CS: IP address is odd

or two bytes at a time, if the CS: IP address is even.

 The first byte is a complete opcode in case of some instruction (one byte opcode instruction)

and is a part of opcode, in case of some instructions (two byte opcode instructions), the

remaining part of code lie in second byte.

 The second byte is then decoded in continuation with the first byte to decide the instruction

length and the number of subsequent bytes to be treated as instruction data. The queue is

updated after every byte is read from the queue but the fetch cycle is initiated by BIU

only if at least two bytes of the queue are empty and the EU may be concurrently

executing the fetched instructions.

 The next byte after the instruction is completed is again the first opcode byte of the next

instruction. A similar procedure is repeated till the complete execution of the program. The

fetch operation of the next instruction is overlapped with the execution of the current

instruction. As in the architecture, there are two separate units, namely Execution unit and

Bus interface unit.

 While the execution unit is busy in executing an instruction, after it is completely decoded,

the bus interface unit may be fetching the bytes of the next instruction from memory,

depending upon the queue status.

 RQ/GT0, RQ/GT1 – Request/Grant: These pins are used by the other local bus master

in maximum mode, to force the processor to release the local bus at the end of the

processor current bus cycle.

 Each of the pin is bidirectional with RQ/GT0 having higher priority than RQ/GT1.

RQ/GT pins have internal pull-up resistors and may be left unconnected. Request/Grant

sequence is as follows:

1. A pulse of one clock wide from another bus master requests the bus access to

8086.

2. During T4(current) or T1(next) clock cycle, a pulse one clock wide from 8086 to

the requesting master, indicates that the 8086 has allowed the local bus to float

and that it will enter the „hold acknowledge‟ state at next cycle. The CPU bus

interface unit is likely to be disconnected from the local bus of the system.

3. A one clock wide pulse from another master indicates to the 8086 that the hold

request is about to end and the 8086 may regain control of the local bus at the

next clock cycle. Thus each master to master exchange of the local bus is a

sequence of 3 pulses. There must be at least one dead clock cycle after each bus

exchange. The request and grant pulses are active low. For the bus request those

are received while 8086 is performing memory or I/O cycle, the granting of the

bus is governed by the rules as in case of HOLD and HLDA in minimum mode.

Minimum Mode 8086 System

Minimum mode 8086 system

 In a minimum mode 8086 system, the microprocessor 8086 is operated in minimum

mode by strapping its MN/MX pin to logic 1.

 In this mode, all the control signals are given out by the microprocessor chip itself. There

is a single microprocessor in the minimum mode system.

 The remaining components in the system are latches, transceivers, clock generator,

memory and I/O devices. Some type of chip selection logic may be required for selecting

memory or I/O devices, depending upon the address map of the system.

 Latches are generally buffered output D-type flip-flops like 74LS373 or 8282. They are

used for separating the valid address from the multiplexed address/data signals and are

controlled by the ALE signal generated by 8086.

 Transceivers are the bidirectional buffers and some times they are called as data

amplifiers. They are required to separate the valid data from the time multiplexed

address/data signals.

 They are controlled by two signals namely, DEN and DT/R.

 The DEN signal indicates the direction of data, i.e. from or to the processor. The system

contains memory for the monitor and users program storage.

 Usually, EPROM is used for monitor storage, while RAM for users program storage. A

system may contain I/O devices.

Write Cycle Timing Diagram for Minimum Mode

 The working of the minimum mode configuration system can be better described in terms

of the timing diagrams rather than qualitatively describing the operations.

 The opcode fetch and read cycles are similar. Hence the timing diagram can be

categorized in two parts, the first is the timing diagram for read cycle and the second is

the timing diagram for write cycle.

 The read cycle begins in T1 with the assertion of address latch enable (ALE) signal and also

M / IO signal. During the negative going edge of this signal, the valid address is latched

on the local bus.

 The BHE and A0 signals address low, high or both bytes. From T1 to T4 , the M/IO

signal indicates a memory or I/O operation.

 At T2, the address is removed from the local bus and is sent to the output. The bus is then

tristated. The read (RD) control signal is also activated in T2.

 The read (RD) signal causes the address device to enable its data bus drivers. After RD goes

low, the valid data is available on the data bus.

 The addressed device will drive the READY line high. When the processor returns the read

signal to high level, the addressed device will again tristate its bus drivers.

 A write cycle also begins with the assertion of ALE and the emission of the address. The

M/IO signal is again asserted to indicate a memory or I/O operation. In T2, after sending the

address in T1, the processor sends the data to be written to the addressed location.

 The data remains on the bus until middle of T4 state. The WR becomes active at the

beginning of T2 (unlike RD is somewhat delayed in T2 to provide time for floating).

 The BHE and A0 signals are used to select the proper byte or bytes of memory or I/O

word to be read or write.

 The M/IO, RD and WR signals indicate the type of data transfer as specified in table

below.

Bus Request and Bus Grant Timings in Minimum Mode System of 8086

 Hold Response sequence: The HOLD pin is checked at leading edge of each clock pulse.

If it is received active by the processor before T4 of the previous cycle or during T1 state

of the current cycle, the CPU activates HLDA in the next clock cycle and for succeeding

bus cycles, the bus will be given to another requesting master.

 The control of the bus is not regained by the processor until the requesting master does

not drop the HOLD pin low. When the request is dropped by the requesting master, the

HLDA is dropped by the processor at the trailing edge of the next clock.

Maximum Mode 8086 System

 In the maximum mode, the 8086 is operated by strapping the MN/MX pin to ground.

 In this mode, the processor derives the status signal S2, S1, S0. Another chip called bus

controller derives the control signal using this status information.

 In the maximum mode, there may be more than one microprocessor in the system

configuration.

 The components in the system are same as in the minimum mode system.

 The basic function of the bus controller chip IC8288 is to derive control signals like RD

and WR (for memory and I/O devices), DEN, DT/R, ALE etc. using the information by

the processor on the status lines.

 The bus controller chip has input lines S2, S1, S0 and CLK. These inputs to 8288 are

driven by CPU.

 It derives the outputs ALE, DEN, DT/R, MRDC, MWTC, AMWC, IORC, IOWC and

AIOWC. The AEN, IOB and CEN pins are especially useful for multiprocessor systems.

 AEN and IOB are generally grounded. CEN pin is usually tied to +5V. The significance of

the MCE/PDEN output depends upon the status of the IOB pin.

 If IOB is grounded, it acts as master cascade enable to control cascade 8259A, else it acts as

peripheral data enable used in the multiple bus configurations.

 INTA pin used to issue two interrupt acknowledge pulses to the interrupt controller or to an

interrupting device.

 IORC, IOWC are I/O read command and I/O write command signals respectively.

 These signals enable an IO interface to read or write the data from or to the address port.

 The MRDC, MWTC are memory read command and memory write command signals

respectively and may be used as memory read or write signals.

 All these command signals instructs the memory to accept or send data from or to the

bus.

 For both of these write command signals, the advanced signals namely AIOWC and

AMWTC are available.

 Here the only difference between in timing diagram between minimum mode and

maximum mode is the status signals used and the available control and advanced

command signals.

 R0, S1, S2 are set at the beginning of bus cycle.8288 bus controller will output a pulse as

on the ALE and apply a required signal to its DT / R pin during T1.

 In T2, 8288 will set DEN=1 thus enabling transceivers, and for an input it will activate

MRDC or IORC. These signals are activated until T4. For an output, the AMWC or

AIOWC is activated from T2 to T4 and MWTC or IOWC is activated from T3 to T4.

 The status bit S0 to S2 remains active until T3 and become passive during T3 and T4.

 If reader input is not activated before T3, wait state will be inserted between T3 and T4.

Memory Read Timing Diagram in Maximum Mode of 8086

Memory Write Timing in Maximum mode of 8086

RQ/GT Timings in Maximum Mode

 The request/grant response sequence contains a series of three pulses. The request/grant

pins are checked at each rising pulse of clock input.

 When a request is detected and if the condition for HOLD request is satisfied, the

processor issues a grant pulse over the RQ/GT pin immediately during T4 (current) or T1

(next) state.

 When the requesting master receives this pulse, it accepts the control of the bus, it sends a

release pulse to the processor using RQ/GT pin.

Minimum Mode Interface

 When the Minimum mode operation is selected, the 8086 provides all control

signals needed to implement the memory and I/O interface.

 The minimum mode signal can be divided into the following basic groups :

1. Address/data bus

2. Status

3. Control

4. Interrupt and

5. DMA.

Each and every group is explained clearly.

Address/Data Bus:

 These lines serve two functions. As an address bus is 20 bits long and consists of

signal lines A0 through A19. A19 represents the MSB and A0 LSB. A 20bit address

gives the 8086 a 1Mbyte memory address space. More over it has an independent

I/O address space which is 64K bytes in length.

 The 16 data bus lines D0 through D15 are actually multiplexed with address lines

A0 through A15 respectively. By multiplexed we mean that the bus work as an

address bus during first machine cycle and as a data bus during next machine cycles.

 D15 is the MSB and D0 LSB. When acting as a data bus, they carry read/write data

for memory, input/output data for I/O devices, and interrupt type codes from an

interrupt controller.

Status signal:

 The four most significant address lines A19 through A16 are also multiplexed but in

this case with status signals S6 through S3.

 These status bits are output on the bus at the same time that data are transferred over

the other bus lines.

 Bit S4 and S3 together from a 2 bit binary code that identifies which of the 8086

internal segment registers is used to generate the physical address that was output on

the address bus during the current bus cycle. Code S4S3 = 00 identifies a register

known as extra segment register as the source of the segment address.

 Status line S5 reflects the status of another internal characteristic of the 8086. It is

the logic level of the internal enable flag. The last status bit S6 is always at the logic 0

level.

Control Signals:

 The control signals are provided to support the 8086 memory I/O interfaces. They

control functions such as when the bus is to carry a valid address in which direction data

are to be transferred over the bus, when valid write data are on the bus and when to put

read data on the system bus.

 ALE is a pulse to logic 1 that signals external circuitry when a valid address word is on

the bus. This address must be latched in external circuitry on the 1-to-0 edge of the pulse

at ALE.

 Another control signal that is produced during the bus cycle is BHE bank high enable.

Logic 0 on this used as a memory enable signal for the most significant byte half of the

data bus D8 through D1. These lines also serve a second function, which is as the S7

status line.

 Using the M/IO and DT/R lines, the 8086 signals which type of bus cycle is in progress

and in which direction data are to be transferred over the bus. The logic level of M/IO

tells external circuitry whether a memory or I/O transfer is taking place over the bus.

Logic 1 at this output signals a memory operation and logic 0 an I/O operation.

 The direction of data transfer over the bus is signaled by the logic level output at DT/R.

When this line is logic 1 during the data transfer part of a bus cycle, the bus is in the

transmit mode. Therefore, data are either written into memory or output to an I/O device.

On the other hand, logic 0 at DT/R signals that the bus is in the receive mode. This

corresponds to reading data from memory or input of data from an input port.

 The signals read RD and write WR indicates that a read bus cycle or a write bus cycle is

in progress. The 8086 switches WR to logic 0 to signal external device that valid write or

output data are on the bus.

 On the other hand, RD indicates that the 8086 is performing a read of data of the bus.

During read operations, one other control signal is also supplied. This is DEN (data

enable) and it signals external devices when they should put data on the bus. There is one

other control signal that is involved with the memory and I/O interface. This is the

READY signal.

 READY signal is used to insert wait states into the bus cycle such that it is extended by a

number of clock periods. This signal is provided by an external clock generator device

and can be supplied by the memory or I/O sub-system to signal the 8086 when they are

ready to permit the data transfer to be completed.

Interrupt signals:

 The key interrupt interface signals are interrupt request (INTR) and interrupt

acknowledge (INTA).

 INTR is an input to the 8086 that can be used by an external device to signal that it

need to be serviced.

 Logic 1 at INTR represents an active interrupt request. When an interrupt request

has been recognized by the 8086, it indicates this fact to external circuit with pulse to

logic 0 at the INTA output.

 The TEST input is also related to the external interrupt interface. Execution of a

WAIT instruction causes the 8086 to check the logic level at the TEST input.

 If the logic 1 is found, the MPU suspend operation and goes into the idle state. The

8086 no longer executes instructions; instead it repeatedly checks the logic level of

the TEST input waiting for its transition back to logic 0.

 As TEST switches to 0, execution resume with the next instruction in the program.

This feature can be used to synchronize the operation of the 8086 to an event in

external hardware.

 There are two more inputs in the interrupt interface: the nonmaskable interrupt NMI

and the reset interrupt RESET.

 On the 0-to-1 transition of NMI control is passed to a nonmaskable interrupt

service routine. The RESET input is used to provide a hardware reset for the 8086.

Switching RESET to logic 0 initializes the internal register of the 8086 and initiates a

reset service routine.

DMA Interface signals:

 The direct memory access DMA interface of the 8086 minimum mode consist of

the HOLD and HLDA signals.

 When an external device wants to take control of the system bus, it signals to the 8086

by switching HOLD to the logic 1 level. At the completion of the current bus cycle, the

8086 enters the hold state. In the hold state, signal lines AD0 through AD15, A16/S3

through A19/S6, BHE, M/IO, DT/R, RD, WR, DEN and INTR are all in the high Z

state.

 The 8086 signals external device that it is in this state by switching its HLDA output

to logic 1 level.

Maximum Mode

Interface

 When the 8086 is set for the maximum-mode configuration, it provides signals for

implementing a multiprocessor / coprocessor system environment.

 By multiprocessor environment we mean that one microprocessor exists in the

system and that each processor is executing its own program.

 Usually in this type of system environment, there are some system resources that

are common to all processors. They are called as global resources. There are also

other resources that are assigned to specific processors. These are known as local or

private resources.

 Coprocessor also means that there is a second processor in the system. In these

two processors does not access the bus at the same time. One passes the control of the

system bus to the other and then may suspend its operation.

 In the maximum-mode 8086 system, facilities are provided for implementing

allocation of global resources and passing bus control to other microprocessor or

coprocessor.

8288 Bus Controller – Bus Command and Control Signals:

 8086 does not directly provide all the signals that are required to control the memory, I/O

and interrupt interfaces.

 Specially the WR, M/IO, DT/R, DEN, ALE and INTA, signals are no longer produced by

the 8086. Instead it outputs three status signals S0, S1, S2 prior to the initiation of each

bus cycle. This 3- bit bus status code identifies which type of bus cycle is to follow.

 S2S1S0 are input to the external bus controller device, the bus controller generates the

appropriately timed command and control signals.

 The 8288 produces one or two of these eight command signals for each bus cycles. For

instance, when the 8086 outputs the code S2S1S0 equals 001; it indicates that an I/O read

cycle is to be performed.

 In the code 111 is output by the 8086, it is signaling that no bus activity is to take place.

 The control outputs produced by the 8288 are DEN, DT/R and ALE. These 3

signals provide the same functions as those described for the minimum system mode.

 This set of bus commands and control signals is compatible with the Multibus

and industry standard for interfacing microprocessor systems.

 The output of 8289 are bus arbitration signals:

Bus busy (BUSY), common bus request (CBRQ), bus priority out (BPRO), bus priority

in (BPRN), bus request (BREQ) and bus clock (BCLK).

 They correspond to the bus exchange signals of the Multibus and are used to lock

other processor off the system bus during the execution of an instruction by the 8086.

 In this way the processor can be assured of uninterrupted access to common

system resources such as global memory.

 Queue Status Signals: Two new signals that are produced by the 8086 in the

maximum- mode system are queue status outputs QS0 and QS1. Together they form

a 2-bit queue status code, QS1QS0.

 Following table shows the four different queue status.

 Local Bus Control Signal – Request / Grant Signals: In a maximum mode

configuration, the minimum mode HOLD, HLDA interface is also changed

QS1 QS0 Queue Status

0 (Low) 0 Queue Empty. The queue has been reinitiated as a

result of the execution of a transfer instruction.

0 1 First Byte. The byte taken from the queue was the

first byte of the instruction.

1 0 Queue Empty. The queue has been reinitiated as a

result of the execution of a transfer instruction.

1 1 (High) Subsequent Byte. The byte taken from the queue

was the subsequent byte of the instruction.

 . These two are replaced by request/grant lines RQ/ GT0 and RQ/ GT1,

respectively. They provide a prioritized bus access mechanism for accessing the local

bus.

Interrupts

Definition: The meaning of „interrupts‟ is to break the sequence of operation. While the CPU

is executing a program, on „interrupt‟ breaks the normal sequence of execution of

instructions, diverts its execution to some other program called Interrupt Service Routine

(ISR).After executing ISR , the control is transferred back again to the main program.

Interrupt processing is an alternative to polling.

Need for Interrupt: Interrupts are particularly useful when interfacing I/O devices that

provide or require data at relatively low data transfer rate.

Types of Interrupts: There are two types of Interrupts in 8086. They

are: (i) Hardware Interrupts and

(ii) Software Interrupts

(i) Hardware Interrupts (External Interrupts). The Intel microprocessors support

hardware interrupts through:

 Two pins that allow interrupt requests, INTR and NMI

 One pin that acknowledges, INTA, the interrupt requested on

INTR. INTR and NMI

 INTR is a maskable hardware interrupt. The interrupt can be enabled/disabled

using STI/CLI instructions or using more complicated method of updating the FLAGS

register with the help of the POPF instruction.

 When an interrupt occurs, the processor stores FLAGS register into stack, disables

further interrupts, fetches from the bus one byte representing interrupt type, and jumps

to interrupt processing routine address of which is stored in location 4 * <interrupt

type>. Interrupt processing routine should return with the IRET instruction.

 NMI is a non-maskable interrupt. Interrupt is processed in the same way as the

INTR interrupt. Interrupt type of the NMI is 2, i.e. the address of the NMI processing

routine is stored in location 0008h. This interrupt has higher priority than the maskable

interrupt.

 – Ex: NMI, INTR.

(ii) Software Interrupts (Internal Interrupts and Instructions) .Software interrupts can be

caused by:

 INT instruction - breakpoint interrupt. This is a type 3 interrupt.

 INT <interrupt number> instruction - any one interrupt from available 256 interrupts.

 INTO instruction - interrupt on overflow

 Single-step interrupt - generated if the TF flag is set. This is a type 1 interrupt. When

the CPU processes this interrupt it clears TF flag before calling the interrupt

processing routine.

 Processor exceptions: Divide Error (Type 0), Unused Opcode (type 6) and Escape

opcode (type 7).

 Software interrupt processing is the same as for the hardware interrupts.

 - Ex: INT n (Software Instructions)

 Control is provided through:

i. IF and TF flag bits

ii. IRET and IRETD

Performance of Software Interrupts

1. It decrements SP by 2 and pushes the flag register on the stack.

2. Disables INTR by clearing the IF.

3. It resets the TF in the flag Register.

4. It decrements SP by 2 and pushes CS on the stack.

5. It decrements SP by 2 and pushes IP on the stack.

6. Fetch the ISR address from the interrupt vector table.

Interrupt Vector Table

Functions associated with INT00 to INT04

INT 00 (divide error)

 INT00 is invoked by the microprocessor whenever there is an attempt to divide a

number by zero.

 ISR is responsible for displaying the message “Divide Error” on the screen

INT 01

 For single stepping the trap flag must be 1

 After execution of each instruction, 8086 automatically jumps to 00004H to fetch 4

bytes for CS: IP of the ISR.

 The job of ISR is to dump the registers on to the screen

INT 02 (Non maskable Interrupt)

 Whenever NMI pin of the 8086 is activated by a high signal (5v), the CPU Jumps

to physical memory location 00008 to fetch CS: IP of the ISR associated with NMI.

INT 03 (break point)

 A break point is used to examine the CPU and memory after the execution of a group

of Instructions.

 It is one byte instruction whereas other instructions of the form “INT nn” are 2

byte instructions.

INT 04 (Signed number overflow)

 There is an instruction associated with this INT 0 (interrupt on overflow).

 If INT 0 is placed after a signed number arithmetic as IMUL or ADD the CPU

will activate INT 04 if 0F = 1.

 In case where 0F = 0, the INT 0 is not executed but is bypassed and acts as a NOP.

Performance of Hardware Interrupts

 NMI : Non maskable interrupts - TYPE 2 Interrupt

 INTR : Interrupt request - Between 20H and FFH

Interrupt Priority Structure

Addressing Modes of 8086:

Addressing mode indicates a way of locating data or operands. Depending up on the

data type used in the instruction and the memory addressing modes, any instruction may

belong to one or more addressing modes or same instruction may not belong to any of the

addressing modes.

The addressing mode describes the types of operands and the way they are accessed for

executing an instruction. According to the flow of instruction execution, the instructions

may be categorized as

1. Sequential control flow instructions and

2. Control transfer instructions.

Sequential control flow instructions are the instructions which after execution,

transfer control to the next instruction appearing immediately after it (in the sequence) in

the program. For example the arithmetic, logic, data transfer and processor control

instructions are Sequential control flow instructions.

The control transfer instructions on the other hand transfer control to some

predefined address or the address somehow specified in the instruction, after their

execution. For example INT, CALL, RET & JUMP instructions fall under this category.

The addressing modes for Sequential and control flow instructions are explained as follows.

1. Immediate addressing mode:

In this type of addressing, immediate data is a part of instruction, and appears in

the form of successive byte or bytes.

Example: MOV AX, 0005H.

In the above example, 0005H is the immediate data. The immediate data may be 8- bit or

16-bit in size.

2. Direct addressing mode:

In the direct addressing mode, a 16-bit memory address (offset) directly

specified in the instruction as a part of it.

Example: MOV AX, [5000H].

3. Register addressing mode:

In the register addressing mode, the data is stored in a register and it is

referred using the particular register. All the registers, except IP, may be used in this

mode.

Example: MOV BX, AX

4. Register indirect addressing mode:

Sometimes, the address of the memory location which contains data or operands

is determined in an indirect way, using the offset registers. The mode of addressing is

known as register indirect mode.

In this addressing mode, the offset address of data is in either BX or SI or DI

Register. The default segment is either DS or ES.

Example: MOV AX, [BX].

5. Indexed addressing mode:

In this addressing mode, offset of the operand is stored one of the index

registers. DS & ES are the default segments for index registers SI & DI respectively.

Example: MOV AX, [SI]

Here, data is available at an offset address stored in SI in DS.

6. Register relative addressing mode:

In this addressing mode, the data is available at an effective address formed by

adding an 8-bit or 16-bit displacement with the content of any one of the register BX,

BP, SI & DI in the default (either in DS & ES) segment.

Example: MOV AX, 50H [BX]

7. Based indexed addressing mode:

The effective address of data is formed in this addressing mode, by adding

content of a base register (any one of BX or BP) to the content of an index register (any

one of SI or DI). The default segment register may be ES or DS.

Example: MOV AX, [BX][SI]

8. Relative based indexed:

The effective address is formed by adding an 8 or 16-bit displacement with the

sum of contents of any of the base registers (BX or BP) and any one of the index

registers, in a default segment.

Example: MOV AX, 50H [BX] [SI]

For the control transfer instructions, the addressing modes depend upon

whether the destination location is within the same segment or in a different one. It

also depends upon the method of passing the destination address to the processor.

Basically, there are two addressing modes for the control transfer instructions, viz.

intersegment and intrasegment addressing modes.

If the location to which the control is to be transferred lies in a different

segment other than the current one, the mode is called intersegment mode. If the

destination location lies in the same segment, the mode is called intrasegment mode.

Addressing Modes for control transfer instructions:

1. Intersegment

 Intersegment direct

 Intersegment indirect

2. Intrasegment

 Intrasegment direct

 Intrasegment indirect

1. Intersegment direct:

In this mode, the address to which the control is to be transferred is in a

different segment. This addressing mode provides a means of branching from one

code segment to another code segment. Here, the CS and IP of the destination

address are specified directly in the instruction.

Example: JMP 5000H, 2000H;

Jump to effective address 2000H in segment 5000H.

2. Intersegment indirect:

In this mode, the address to which the control is to be transferred lies in a

different segment and it is passed to the instruction indirectly, i.e. contents of a

memory block containing four bytes, i.e. IP(LSB), IP(MSB), CS(LSB) and CS(MSB)

sequentially. The starting address of the memory block may be referred using any of

the addressing modes, except immediate mode.

Example: JMP [2000H].

Jump to an address in the other segment specified at effective address 2000H in DS.

3. Intrasegment direct mode:

In this mode, the address to which the control is to be transferred lies in the

same segment in which the control transfers instruction lies and appears directly in the

instruction as an immediate displacement value. In this addressing mode, the

displacement is computed relative to the content of the instruction pointer.

The effective address to which the control will be transferred is given by the sum

of 8 or 16 bit displacement and current content of IP. In case of jump instruction, if the

signed displacement (d) is of 8-bits (i.e. -128<d<+127), it as short jump and if it is of 16

bits (i.e. -32768<d<+32767), it is termed as long jump.

Example: JMP SHORT LABEL.

4. Intrasegment indirect mode:

In this mode, the displacement to which the control is to be transferred is in the

same segment in which the control transfer instruction lies, but it is passed to the

instruction directly. Here, the branch address is found as the content of a register or a

memory location.

This addressing mode may be used in unconditional branch instructions.

Example: JMP [BX]; Jump to effective address stored in BX.

INSTRUCTION SET OF 8086

The Instruction set of 8086 microprocessor is classified into 7, they are:-

 Data transfer instructions

 Arithmetic& logical instructions

 Program control transfer instructions

 Machine Control Instructions

 Shift / rotate instructions

 Flag manipulation instructions

 String instructions

Data Transfer instructions

Data transfer instruction, as the name suggests is for the transfer of data from

memory to internal register, from internal register to memory, from one register to

another register, from input port to internal register, from internal register to output

port etc

1. MOV instruction

It is a general purpose instruction to transfer byte or word from register to

register, memory to register, register to memory or with immediate addressing.

General Form:

MOV destination, source

Here the source and destination needs to be of the same size, that is both 8 bit or both 16

bit.

MOV instruction does not affect any flags.

Example:-

MOV BX, 00F2H ; load the immediate number 00F2H in BX

Register

MOV CL, [2000H] ; Copy the 8 bit content of the memory

Location, at a displacement of 2000H from data

segment base to the CL register

MOV [589H], BX ; Copy the 16 bit content of BX register on to

the memory location, which at a displacement of 589H

from the data segment base.

MOV DS, CX ; Move the content of CX to DS

2. PUSH instruction

The PUSH instruction decrements the stack pointer by two and copies the

word from source to the location where stack pointer now points. Here the source

must of word size data. Source can be a general purpose register, segment register or a

memory location.

The PUSH instruction first pushes the most significant byte to sp-1, then the least

significant to the sp-2.

Push instruction does not affect any flags.

Example:-

PUSH CX ; Decrements SP by 2, copy content of CX to the stack (figure shows

execution of this instruction)

PUSH DS ; Decrement SP by 2 and copy DS to stack

3. POP instruction

The POP instruction copies a word from the stack location pointed by the

stack pointer to the destination. The destination can be a General purpose register, a

segment register or a memory location. Here after the content is copied the stack

pointer is automatically incremented by two.

The execution pattern is similar to that of the PUSH instruction.

Example:

POP CX ; Copy a word from the top of the stack to CX and increment SP by 2.

4. IN & OUT instructions

The IN instruction will copy data from a port to the accumulator. If 8 bit is read the

data will go to AL and if 16 bit then to AX. Similarly OUT instruction is used to copy

data from accumulator to an output port.

Both IN and OUT instructions can be done using direct and indirect addressing modes.

Example:

IN AL, 0F8H

;

Copy a byte from the port 0F8H to AL

MOV DX, 30F8H ; Copy port address in DX

IN AL, DX ; Move 8 bit data from 30F8H port

IN AX, DX ; Move 16 bit data from 30F8H port

OUT 047H, AL ; Copy contents of AL to 8 bit port 047H

MOV DX, 30F8H ; Copy port address in DX

OUT DX, AL ; Move 8 bit data to the 30F8H port

OUT DX, AX ; Move 16 bit data to the 30F8H port

5. XCHG instruction

The XCHG instruction exchanges contents of the destination and source.

Here destination and source can be register and register or register and memory

location, but XCHG cannot interchange the value of 2 memory locations.

General Format

XCHG Destination, Source

Example:

XCHG BX, CX

;

exchange word in CX with the word in BX

XCHG AL, CL ; exchange byte in CL with the byte in AL

XCHG AX, SUM[BX] ; Here physical address, which is DS+SUM+

[BX]. The content at physical address and the

content of AX are interchanged.

Arithmetic and Logic instructions

The arithmetic and logic logical group of instruction include,

1. ADD instruction

Add instruction is used to add the current contents of destination with that of

source and store the result in destination. Here we can use register and/or

memory locations. AF, CF, OF, PF, SF, and ZF flags are affected

General Format:

ADD Destination, Source

Example:

 ADD AL, 0FH ; Add the immediate content, 0FH to the content of AL and

store the result in AL

 ADD AX, BX ; AX <= AX+BX

 ADD AX,0100H – IMMEDIATE

 ADD AX,BX – REGISTER

 ADD AX,[SI] – REGISTER INDIRECT OR INDEXED

 ADD AX, [5000H] – DIRECT

 ADD [5000H], 0100H – IMMEDIATE

 ADD 0100H – DESTINATION AX (IMPLICT)

2. ADC: ADD WITH CARRY

This instruction performs the same operation as ADD instruction, but adds the

carry flag bit (which may be set as a result of the previous calculation) to the result.

All the condition code flags are affected by this instruction. The examples of this

instruction along with the modes are as follows:

Example:

 ADC AX,BX – REGISTER

 ADC AX,[SI] – REGISTER INDIRECT OR INDEXED

 ADC AX, [5000H] – DIRECT

 ADC [5000H], 0100H – IMMEDIATE

 ADC 0100H – IMMEDIATE (AX IMPLICT)

3. SUB instruction

SUB instruction is used to subtract the current contents of

destination with that of source and store the result in destination. Here we can use

register and/or memory locations. AF, CF, OF, PF, SF, and ZF flags are affected

General Format:

SUB Destination, Source

Example:

 SUB AL, 0FH ; subtract the immediate content, 0FH from the

content of AL and store the result in AL

 SUB AX, BX ; AX <= AX-BX

 SUB AX,0100H – IMMEDIATE (DESTINATION AX)

 SUB AX,BX – REGISTER

 SUB AX,[5000H] – DIRECT

 SUB [5000H], 0100H – IMMEDIATE

4. SBB: SUBTRACT WITH BORROW

The subtract with borrow instruction subtracts the source operand and the

borrow flag (CF) which may reflect the result of the previous calculations, from the

destination operand. Subtraction with borrow, here means subtracting 1 from the

subtraction obtained by SUB, if carry (borrow) flag is set.

The result is stored in the destination operand. All the flags are affected

(condition code) by this instruction. The examples of this instruction are as follows:

Example:

 SBB AX,0100H – IMMEDIATE (DESTINATION AX)

 SBB AX,BX – REGISTER

 SBB AX,[5000H] – DIRECT

 SBB [5000H], 0100H – IMMEDIATE

5. CMP: COMPARE

The instruction compares the source operand, which may be a register or an

immediate data or a memory location, with a destination operand that may be a

register or a memory location. For comparison, it subtracts the source operand

from the destination operand but does not store the result anywhere. The flags are

affected depending upon the result of the subtraction. If both of the operands are

equal, zero flag is set. If the source operand is greater than the destination operand,carry

flag is set or else, carry flag is reset. The examples of this instruction are as follows:

Example:

 CMP BX,0100H – IMMEDIATE

 CMP AX,0100H – IMMEDIATE

 CMP [5000H], 0100H – DIRECT

 CMP BX,[SI] – REGISTER INDIRECT OR INDEXED

 CMP BX, CX – REGISTER

6. INC & DEC instructions

INC and DEC instructions are used to increment and decrement the content of

the specified destination by one. AF, CF, OF, PF, SF, and ZF flags are affected.

Example:

INC AL ; AL<= AL + 1

INC AX ; AX<=AX + 1

DEC AL ; AL<= AL – 1

DEC AX ; AX<=AX – 1

7. AND instruction

This instruction logically ANDs each bit of the source byte/word with the

corresponding bit in the destination and stores the result in destination. The source can

be an immediate number, register or memory location, register can be a register or

memory location.

The CF and OF flags are both made zero, PF, ZF, SF are affected by the

operation and AF is undefined.

General Format:

AND Destination, Source

Example:

 AND BL, AL ; suppose BL=1000 0110 and AL = 1100 1010 then

after the operation BL would be BL= 1000 0010.

 AND CX, AX ; CX <= CX AND AX

 AND CL, 08 ; CL<= CL AND (0000 1000)

8. OR instruction

This instruction logically ORs each bit of the source byte/word with the

corresponding bit in the destination and stores the result in destination. The source can

be an immediate number, register or memory location, register can be a register or

memory location.

The CF and OF flags are both made zero, PF, ZF, SF are affected by the

operation and AF is undefined.

General Format:

OR Destination, Source

Example:

 OR BL, AL ; suppose BL=1000 0110 and AL = 1100 1010 then

after the operation BL would be BL= 1100 1110.

 OR CX, AX ; CX <= CX AND AX

 OR CL, 08 ; CL<= CL AND (0000 1000)

9. NOT instruction

The NOT instruction complements (inverts) the contents of an operand

register or a memory location, bit by bit. The examples are as follows:

Example:

 NOT AX (BEFORE AX= (1011)2= (B) 16 AFTER EXECUTION AX= (0100)2=

(4)16).

 NOT [5000H]

10. XOR instruction

The XOR operation is again carried out in a similar way to the AND and OR

operation. The constraints on the operands are also similar. The XOR operation gives a

high output, when the 2 input bits are dissimilar. Otherwise, the output is zero. The

example instructions are as follows:

Example:

 XOR AX,0098H

 XOR AX,BX

 XOR AX,[5000H]

Shift / Rotate Instructions

Shift instructions move the binary data to the left or right by shifting them

within the register or memory location. They also can perform multiplication of powers of

2
+n

and division of powers of 2
-n

.

There are two type of shifts logical shifting and arithmetic shifting, later is used

with signed numbers while former with unsigned.

Fig.1 Shift operations

Rotate on the other hand rotates the information in a register or memory

either from one end to another or through the carry flag.

Fig.2 Rotate operations

SHL/SAL instruction

Both the instruction shifts each bit to left, and places the MSB in CF and LSB is

made 0. The destination can be of byte size or of word size, also it can be a register or a

memory location. Number of shifts is indicated by the count.

All flags are affected.

General Format:

SAL/SHL destination, count

Example:

MOV BL, B7H

;

BL is made B7H

SAL BL, 1 ;

shift the content of BL register one place to left.

Before execution,

CY

B7 B6 B5 B4 B3 B2 B1 B0

0

1 0 1 1 0 1 1 1

After the execution,

CY B7 B6 B5 B4 B3 B2 B1 B0 1

 0 1 1 0 1 1 1 0

1. SHR instruction

This instruction shifts each bit in the specified destination to the right and 0 is

stored in the MSB position. The LSB is shifted into the carry flag. The destination can

be of byte size or of word size, also it can be a register or a memory location. Number of

shifts is indicated by the count.

All flags are affected

General Format: SHR

destination, count

Example:

MOV BL, B7H ; BL is made B7H

SHR BL, 1 ; shift the content of BL register one place to the right.

Before execution,

B7 B6 B5 B4 B3 B2 B 1 B0 CY

1 0 1 1 0 1 1 1 0

 After execution,

B7 B6 B5 B4 B3 B2 B 1 B0 CY

0 1 0 1 1 0 1 1 1

2. ROL instruction

This instruction rotates all the bits in a specified byte or word to the left

some number of bit positions. MSB is placed as a new LSB and a new CF. The

destination can be of byte size or of word size, also it can be a register or a memory

location. Number of shifts is indicated by the count.

All flags are affected

General Format: ROL

destination, count

Example:

MOV BL, B7H ; BL is made B7H

ROL BL, 1 ; rotates the content of BL register one place to the left.

Before execution,

 After the execution,

 CY B7 B6 B5 B4 B3 B2 B1 B0

 1 0 1 1 0 1 1 1 1

3. ROR instruction

This instruction rotates all the bits in a specified byte or word to the right

some number of bit positions. LSB is placed as a new MSB and a new CF. The

destination can be of byte size or of word size, also it can be a register or a memory

location. Number of shifts is indicated by the count.

All flags are affected

CY B7 B6 B5 B4 B3 B2 B1 B0

0 1 0 1 1 0 1 1 1

General Format: ROR

destination, count

Example:

MOV BL, B7H ; BL is made B7H

ROR BL, 1 ; shift the content of BL register one place to the right.

Before execution,

B7 B6 B5 B4 B3 B2 B 1 B0 CY

1 0 1 1 0 1 1 1 0

After execution,
 B7 B6 B5 B4 B3 B2 B 1 B0 CY

1 1 0 1 1 0 1 1 1

4. RCR instruction

This instruction rotates all the bits in a specified byte or word to the right

some number of bit positions along with the carry flag. LSB is placed in a new CF and

previous carry is placed in the new MSB. The destination can be of byte size or of word

size, also it can be a register or a memory location. Number of shifts is indicated by

the count.

All flags are affected

General Format: RCR

destination, count

Example:

MOV BL, B7H ; BL is made B7H

RCR BL, 1 ; shift the content of BL register one place to the right.

Before execution,

B7 B6 B5 B4 B3 B2 B 1 B0 CY

1 0 1 1 0 1 1 1 0

 After execution,

B7 B6 B5 B4 B3 B2 B 1 B0 CY

0 1 0 1 1 0 1 1 1

Program control transfer instructions

There are 2 types of such instructions. They are:

1. Unconditional transfer instructions – CALL, RET, JMP

2. Conditional transfer instructions – J condition

1. CALL instruction

The CALL instruction is used to transfer execution to a subprogram or

procedure. There are two types of CALL instructions, near and far.

A near CALL is a call to a procedure which is in the same code segment as the

CALL instruction. 8086 when encountered a near call, it decrements the SP by 2 and

copies the offset of the next instruction after the CALL on the stack. It loads the IP with

the offset of the procedure then to start the execution of the procedure.

A far CALL is the call to a procedure residing in a different segment. Here

value of CS and offset of the next instruction both are backed up in the stack. And

then branches to the procedure by changing the content of CS with the segment base

containing procedure and IP with the offset of the first instruction of the procedure.

Example:

Near call

CALL PRO ; PRO is the name of the procedure

CALL CX ; Here CX contains the offset of the first instruction of

the procedure, that is replaces the content of IP with the

content of CX

Far call

CALL DWORD PTR[8X] ; New values for CS and IP are fetched from four

memory locations in the DS. The new value for CS is fetched

from [8X] and [8X+1], the new IP is fetched from

[8X+2] and [8X+3].

2. RET instruction

 RET instruction will return execution from a procedure to the next instruction after

the CALL instruction in the calling program. If it was a near call, then IP is replaced with

the value at the top of the stack, if it had been a far call, then another POP of the stack is

required. This second popped data from the stack is put in the CS, thus resuming the

execution of the calling program. RET instruction can be followed by a number, to specify

the parameters passed.RET instruction does not affect any flags.

General format:

RET

Example:

p1 PROC ; procedure declaration.

MOV

AX,

1234h

;

RET ; return to caller.

p1 ENDP

3

.

JMP instruction

This is also called as unconditional jump instruction, because the processor jumps to

the specified location rather than the instruction after the JMP instruction. Jumps can

be short jumps when the target address is in the same segment as the JMP

instruction or far jumps when it is in a different segment.

General Format: JMP<target address>

Example:

MOV AL,05H ;

JMP label1 ; jump over to label

MOV AL, 00H ; label1:

 MOV [2000H], AL ;

RET ;

4. Conditional Jump (J cond)

Conditional jumps are always short jumps in 8086. Here

jump is done only if the condition specified is true/false. If the

condition is not satisfied, then the execution proceeds in the

normal way.

Example:

There are many conditional

jump instructions like JC :

 Jump on carry (CF=set)

JNC : Jump on non carry (CF=reset)

JZ : Jump on zero (ZF=set)

JNO : Jump on overflow (OF=set)

Etc

5. Iteration control instructions

These instructions are used to execute a series of instructions some number of

times. The number is specified in the CX register, which will be automatically

decremented in course of iteration. But here the destination address for the jump

must be in the range of -128 to 127 bytes.

Example:

Instructions here are:-

 LOOP : loop through the set of instructions until CX is 0

LOOPE/LOOPZ : here the set of instructions are repeated until CX=0 or ZF=0

LOOPNE/LOOPNZ: here repeated until CX=0 or ZF=1

Machine Control Instructions

1. HLT instruction

The HLT instruction will cause the 8086 microprocessor to fetching and

executing instructions.

The 8086 will enter a halt state. The processor gets out of this Halt signal

upon an interrupt signal in INTR pin/NMI pin or a reset signal on RESET input.

General form:-

 HLT

2. WAIT instruction

When this instruction is executed, the 8086 enters into an idle state. This idle

state is continued till a high is received on the TEST input pin or a valid interrupt

signal is received. Wait affects no flags. It generally is used to synchronize the 8086

with a peripheral device(s).

3. ESC instruction

This instruction is used to pass instruction to a coprocessor like 8087. There is a

6 bit instruction for the coprocessor embedded in the ESC instruction. In most cases

the 8086 treats ESC and a NOP, but in some cases the 8086 will access data items in

memory for the coprocessor

4. LOCK instruction

In multiprocessor environments, the different microprocessors share a system bus, which

is needed to access external devices like disks. LOCK

Instruction is given as prefix in the case when a processor needs exclusive access of the

system bus for a particular instruction. It affects no flags.

Example:

LOCK XCHG SEMAPHORE, AL : The XCHG instruction requires two

bus accesses. The lock prefix prevents another processor from taking control of the system

bus between the 2 accesses

5. NOP instruction

At the end of NOP instruction, no operation is done other than the fetching and

decoding of the instruction. It takes 3 clock cycles. NOP is used to fill in time delays

or to provide space for instructions while trouble shooting. NOP affects no flags.

Flag manipulation instructions

1. STC instruction

This instruction sets the carry flag. It does not affect any other flag.

2. CLC instruction

This instruction resets the carry flag to zero. CLC does not affect any other flag.

3. CMC instruction

This instruction complements the carry flag. CMC does not affect any other flag.

4. STD instruction

This instruction is used to set the direction flag to one so that SI and/or DI can

be decremented automatically after execution of string instruction. STD does not

affect any other flag.

5. CLD instruction

This instruction is used to reset the direction flag to zero so that SI and/or DI

can be incremented automatically after execution of string instruction. CLD does

not affect any other flag.

6. STI instruction

This instruction sets the interrupt flag to 1. This enables INTR interrupt of the

8086. STI does not affect any other flag.

7. CLI instruction

This instruction resets the interrupt flag to 0. Due to this the 8086 will not

respond to an interrupt signal on its INTR input. CLI does not affect any other flag.

String Instructions

1. MOVS/MOVSB/MOVSW

These instructions copy a word or byte from a location in the data segment to

a location in the extra segment. The offset of the source is in SI and that of

destination is in DI. For multiple word/byte transfers the count is stored in the CX

register.

When direction flag is 0, SI and DI are incremented and when it is 1, SI and DI

are decremented.

MOVS affect no flags. MOVSB is used for byte sized movements while

MOVSW is for word sized.

Example:

 CLD ; clear the direction flag to auto increment SI and DI

MOV AX, 0000H;

 MOV DS, AX ; initialize data segment register to 0

MOV ES, AX ; initialize extra segment register to 0

MOV SI, 2000H ; Load the offset of the string1 in SI

MOV DI, 2400H ; Load the offset of the string2 in DI

MOV CX, 04H ; load length of the string in CX

 REP MOVSB ; decrement CX and MOVSB until CX will be 0

2. REP/REPE/REP2/REPNE/REPNZ

REP is used with string instruction; it repeats an instruction until the specified

condition becomes false.

Example: Comments

REP

 CX=0

REPE/REPZ CX=0 OR ZF=0

REPNE/REPNZ CX=0 OR ZF=1

3. LODS/LODSB/LODSW

This instruction copies a byte from a string location pointed to by SI to AL or

a word from a string location pointed to by SI to AX.LODS does not affect any flags.

LODSB copies byte and LODSW copies word.

Example:

 CLD ; clear direction flag to auto increment SI MOV SI,

OFFSET S_STRING ; point SI at string

 LODS S_STRING ;

4. STOS/STOSB/STOSW

The STOS instruction is used to store a byte/word contained in AL/AX to

the offset contained in the DI register. STOS does not affect any flags. After

copying the content DI is automatically incremented or decremented, based on the

value of direction flag.

Example:

MOV DL, OFFSET D_STRING; assign DI with destination address.

STOS D_STRING ; assembler uses string name to determine byte or

Word, if byte then AL is used and if of word size, AX is used.

5. CMPS/CMPSB/CMPSW

CMPS is used to compare the strings, byte wise or word wise. The

comparison is affected by subtraction of content pointed by DI from that pointed by

SI. The AF, CF, OF, PF, SF and ZF flags are affected by this

instruction, but neither operand is affected.

Example:

;

Comments

MOV SI, OFFSET STRING_A ; Point first string

MOV DI, OFFSET STRING_B ; Point second string

MOV CX, 0AH ; Set the counter as 0AH

CLD ; Clear direction flag to auto increment

REPE CMPSB

; Repeatedly compare till unequal or counter =0

ASSEMBLER DIRECTIVES

There are some instructions in the assembly language program which are not a part of

processor instruction set. These instructions are instructions to the assembler, linker and

loader. These are referred to as pseudo-operations or as assembler directives. The assembler

directives enable us to control the way in which a program assembles and lists. They act

during the assembly of a program and do not generate any executable machine code.

There are many specialized assembler directives. Let us see the commonly used

assembler directive in 8086 assembly language programming.

1. ASSUME:

It is used to tell the name of the logical segment the assembler to use for a

specified segment.

E.g.: ASSUME CS: CODE tells that the instructions for a program are in a logical segment

named CODE.

2. DB -Define Byte:

The DB directive is used to reserve byte or bytes of memory locations in

the available memory. While preparing the EXE file, this directive directs the

assembler to allocate the specified number of memory bytes to the said data type that

may be a constant, variable, string, etc. Another option of this directive also initializes

the reserved memory bytes with the ASCII codes of the characters specified as a

string. The following examples show how the DB directive is used for different

purposes.

1) RANKS DB 01H,02H,03H,04H

This statement directs the assembler to reserve four memory locations for a list named

RANKS and initialize them with the above specified four values.

2) MESSAGE DB „GOOD MORNING‟

This makes the assembler reserve the number of bytes of memory equal to the number of

characters in the string named MESSAGE and initializes those locations by the

ASCII equivalent of these characters.

3) VALUE DB 50H

This statement directs the assembler to reserve 50H memory bytes and leave them

uninitialized for the variable named VALUE.

3. DD -Define Double word - used to declare a double word type variable or to reserve

memory locations that can be accessed as double word.

E.g.: ARRAY _POINTER DD 25629261H declares a

 double word named ARRAY_POINTER.

4. DQ -Define Quad word

This directive is used to direct the assembler to reserve 4 words (8 bytes)

of memory for the specified variable and may initialize it with the specified values.

E.g.: BIG_NUMBER DQ 2432987456292612H

 declares a quad word named

BIG_NUMBER.

5. DT -Define Ten Bytes:

The DT directive directs the assembler to define the specified variable

requiring 10-bytes for its storage and initialize the 10-bytes with the specified values.

The directive may be used in case of variables facing heavy numerical calculations,

generally processed by numerical processors.

E.g.: PACKED_BCD 11223344556677889900 declares an array that is 10 bytes in

length.

6. DW -Define Word:

The DW directives serves the same purposes as the DB directive, but it now

makes the assembler reserve the number of memory words (16-bit) instead of bytes.

Some examples are given to explain this directive.

1) WORDS DW 1234H, 4567H, 78ABH, 045CH

This makes the assembler reserve four words in memory (8 bytes), and initialize the words

with the specified values in the statements. During initialization, the lower bytes are

stored at the lower memory addresses, while the upper bytes are stored at the higher

addresses.

2) NUMBER1 DW 1245H

This makes the assembler reserve one word in memory.

7. END-End of Program:

The END directive marks the end of an assembly language program. When

the assembler comes across this END directive, it ignores the source lines available

later on. Hence, it should be ensured that the END statement should be the last

statement in the file and should not appear in between. Also, no useful program

statement should lie in the file, after the END statement.

8. ENDP-End Procedure - Used along with the name of the procedure to indicate the end of

a procedure.

E.g.: SQUARE_ROOT PROC: start of procedure

SQUARE_ROOT ENDP: End of procedure

9. ENDS-End of Segment:

This directive marks the end of a logical segment. The logical segments are

assigned with the names using the ASSUME directive. The names appear with the

ENDS directive as prefixes to mark the end of those particular segments.

Whatever are the contents of the segments, they should appear in the program before

ENDS. Any statement appearing after ENDS will be neglected from the segment.

The structure shown below explains the fact more clearly.

DATA SEGMENT

--------------------- DATA

ENDS

ASSUME CS: CODE, DS: DATA CODE

SEGMENT

--------------------- CODE

ENDS

10. EQU-Equate - Used to give a name to some value or symbol. Each time the assembler

finds the given name in the program, it will replace the name with the vale.

E.g.: CORRECTION_FACTOR EQU 03H

MOV AL, CORRECTION_FACTOR

11. EVEN - Tells the assembler to increment the location counter to the next even

address if it is not already at an even address.

Used because the processor can read even addressed data in one clock cycle

12. EXTRN - Tells the assembler that the names or labels following the directive are in

some other assembly module.

For example if a procedure in a program module assembled at a different time from

that which contains the CALL instruction ,this directive is used to tell the assembler

that the procedure is external

13. GLOBAL - Can be used in place of a PUBLIC directive or in place of an EXTRN

directive.

It is used to make a symbol defined in one module available to other modules.

E.g.: GLOBAL DIVISOR makes the variable DIVISOR public so that it can be accessed

from other modules.

14. GROUP-Used to tell the assembler to group the logical statements named after the

directive into one logical group segment, allowing the contents of all the segments to be

accessed from the same group segment base.

E.g.: SMALL_SYSTEM GROUP CODE, DATA, STACK_SEG

15. INCLUDE - Used to tell the assembler to insert a block of source code from the

named file into the current source module.

This will shorten the source code.

16. LABEL- Used to give a name to the current value in the location counter.

This directive is followed by a term that specifies the type you want associated with that

name.

E.g: ENTRY_POINT LABEL FAR

NEXT: MOV AL, BL

17. NAME- Used to give a specific name to each assembly module when programs

consisting of several modules are written.

E.g.: NAME PC_BOARD

18. OFFSET- Used to determine the offset or displacement of a named data item or

procedure from the start of the segment which contains it.

E.g.: MOV BX, OFFSET PRICES

19. ORG- The location counter is set to 0000 when the assembler starts reading a

segment. The ORG directive allows setting a desired value at any point in the program.

E.g.: ORG 2000H

20. PROC- Used to identify the start of a procedure.

E.g.: SMART_DIVIDE PROC FAR identifies the

start of a procedure named SMART_DIVIDE and tells the assembler that the

procedure is far

21. PTR- Used to assign a specific type to a variable or to a label.

E.g.: INC BYTE PTR[BX] tells the assembler that we want

to increment the byte pointed to by BX

22. PUBLIC- Used to tell the assembler that a specified name or label will be accessed

from other modules.

E.g.: PUBLIC DIVISOR, DIVIDEND makes the two variables DIVISOR

and DIVIDEND available to other assembly modules.

23. SEGMENT- Used to indicate the start of a logical segment.

E.g.: CODE SEGMENT indicates to the assembler the start of a logical segment

called CODE

24. SHORT- Used to tell the assembler that only a 1 byte displacement is needed to code a

jump instruction.

E.g.: JMP SHORT NEARBY_LABEL

25. TYPE - Used to tell the assembler to determine the type of a specified variable.

E.g.: ADD BX, TYPE WORD_ARRAY is used where we want to increment BX

to point to the next word in an array of words.

Macros:

 Macro is a group of instruction. The macro assembler generates the code in the

program each time where the macro is “called”. Macros can be defined by MACROP

and ENDM assembler directives. Creating macro is very similar to creating a new

opcode that can used in the program, as shown below.

Example:

INIT MACRO MOV

AX,@DATA MOV DS

MOV ES, AX ENDM

It is important to note that macro sequences execute faster than procedures because there is

no CALL and RET instructions to execute. The assembler places the macro instructions

in the program each time when it is invoked. This procedure is known as Macro

expansion.

WHILE:

In Macro, the WHILE statement is used to repeat macro sequence until the

expression specified with it is true. Like REPEAT, end of loop is specified by

ENDM statement. The WHILE statement allows to use relational operators in its

expressions.

The table-1 shows the relational operators used with WHILE statements.

Table-1: Relational operators used in WHILE statement.

OPERATOR FUNCTION

EQ Equal

NE Not equal

LE Less than or equal

LT Less than

GE Greater than or equal

GT Greater than

NOT Logical inversion

AND Logical AND

OR Logical OR

FOR statement:

A FOR statement in the macro repeats the macro sequence for a list of data. For

example, if we pass two arguments to the macro then in the first iteration the

FOR statement gives the macro sequence using first argument and in the second

iteration it gives the macro sequence using second argument. Like WHILE statement,

end of FOR is indicated by ENDM statement. The program shows the use of

FOR statement in the macro.

Example1:

DISP MACRO CHR MOV AH,

02H FOR ARG, <CHR>

MOV DL, ARG INT 21H

ENDM ENDM

. MODEL SMALL

. CODE

START: DISP „M‟, „A‟, „C‟, „R‟, „O‟ END START

UNIT – II

PROGRAMMING WITH 8086 MICROPROCESSOR

8086 ASSEMBLY LANGUAGE PROGRAMMING

Introduction:

The assembly programming language is a low-level language which is developed by using mnemonics.

The microcontroller or microprocessor can understand only the binary language like 0‟s or 1‟s therefore

the assembler convert the assembly language to binary language and store it the memory to perform the

tasks. Before writing the program the embedded designers must have sufficient knowledge on particular

hardware of the controller or processor, so first we required to know hardware of 8086 processor.

Machine Language:

Set of fundamental instructions the machine can execute Expressed as a pattern of 1‟s and 0‟s

Assembly Language:

Alphanumeric equivalent of machine language Mnemonics more human-oriented than 1‟s and 0‟s

Assembler:

Computer program that transliterates (one-to-one mapping) assembly to machine language Computer‟s

native language is machine/assembly language

Why Assembly Language Programming

Faster and shorter programs: Compilers do not always generate optimum code.

Instruction set knowledge is important for machine designers.

Compiler writers must be familiar with details of machine language.

Small controllers embedded in many products

1. Have specialized functions,

2. Rely so heavily on input/output functionality,

3. HLLs inappropriate for product development.

8086 Assembly programming means develop programs in 8086 assembly programming language. 8086

Assembly is a low level programming language. The developer has to deal with object of the processor

like segment and register. In this article, we will see what are the basic elements of this language and the

structure of a simple program.

Basic elements of 8086 assembly programming language

8086 assembly programming language instructions

https://www.elprocus.com/8051-assembly-language-programming/

Like we know instruction are the lines of a program that means an action for the computer to

execute.

In 8086, a normal instruction is made by an operation code and sometimes operands.

Structure:
Operation Code [Operand1 [, Operand2]]

Operations

The operation is usually logic or arithmetic, but we can also find some special operation like the

Jump (JMP) operation.

Operands

Operands are the parameters of the operation in the instruction. They can be use in 3 way:

 Immediate

This means a direct access of a variable that have been declared in the program.

 Register

Here we use the content of a register to be a parameter.

 Memory

Here we access to the content of a specific part of the memory using a pointer.

Special instructions

Now we will see how to declare a variable and some interrupt instruction.

Declaration

In 8086, we need to declare the name of the variable, the size of the variable and it value.

Structure:

Variable Name Size Directive value [dup (num)]

Variable Name : name of your variable.

Size Directive: word system to define the size, DB will define byte and DW will define a Word(2 byte).

Value is your variable value

dub: a system word that means duplicate used for vector.

Num: number of time you duplicate, the size of your vector.

Interrupt

Interrupt calls a sub routine of the system to be executed. We will see 2 simple interrupt:

Human-Readable Machine Language:

• Computers like ones and zeros…

001111101010000

• Humans like symbols…

ADD R6,R2,R6 ; increment index reg

Assembler is a program that turns symbols into machine instructions.

– ISA-specific:

close correspondence between symbols and instruction set

• mnemonics for opcodes

• labels for memory locations

– additional operations for allocating storage and initializing data

The assembly language programming 8086 has some rules such as

An Assembly Language Program:

 The assembly level programming 8086 code must be written in upper case letters

 The labels must be followed by a colon, for example: label:

 All labels and symbols must begin with a letter

 All comments are typed in lower case

 The last line of the program must be ended with the END directive

Op-code: A single instruction is called as an op-code that can be executed by the CPU. Here the

„MOV‟ instruction is called as an op-code.

Operands: A single piece data are called operands that can be operated by the op-code.

Example, subtraction operation is performed by the operands that are subtracted by the operand.

Syntax: SUB b, c

SYNTAX OF 8086/8088 ASSEMBLY LANGUAGE

 The language is not case sensitive.

 There may be only one statement per line. A statement may start in any column.

 A statement is either an instruction, which the assembler translates into machine code, or an assembler

directive (pseudo-op), which instructs the assembler to perform some specific task.

 Syntax of a statement:

{name} mnemonic {operand(s)} {; comment}

(a) The curly brackets indicate those items that are not present or are optional in some statements.

(b) The name field is used for instruction labels, procedure names, segment names, macro names,

names of variables, and names of constants.

(c) MASM 6.1 accepts identifier names up to 247 characters long. All characters are significant,

whereas under MASM 5.1, names are significant to 31 characters only. Names may consist of

letters, digits, and the following 6 special characters: ? . @ _ $ % .If a period is used; it must

be the first character. Names may not begin with a digit.

(d) Instruction mnemonics, directive mnemonics, register names, operator names and other words are

reserved.

 Syntax of an instruction:

{label:} mnemonic {operand { , operand} } {; comment}

https://www.elprocus.com/embedded-system-programming-using-keil-c-language/

The curly brackets indicate those items that are not present or are optional in some instructions. Thus

an instruction may have zero, one, or two operands.

 Operators:

The 8086/8088 Assembly language has a number of operators. An operator acts on an operand or

operands to produce a value at assembly time. Examples are: + , - , *, / , DUP, and OFFSET

 Comments:

A semicolon starts a comment. A comment may follow a statement or it may be on a separate line.

Multiple-line comments can be written by using the COMMENT directive. The syntax is:

COMMENT delimiter {comment}

comment

. . .
delimiter { comment }

where delimiter is any non-blank character not appearing in comment. The curly brackets indicate an

item that is optional.

e.g.,

 COMMENT *

This program finds

the maximum element in a byte array

*

Op codes and Operands:

Labels and Comments:

Assembler Directives:

• Pseudo-operations

– do not refer to operations executed by program

– used by assembler

– look like instruction, but “opcode” starts with dot

Style Guidelines:

• Use the following style guidelines to improve the readability and understandability of

your programs:

1. Provide a program header, with author‟s name, date, etc.,and purpose of program.

2. Start labels, opcode, operands, and comments in same column

for each line. (Unless entire line is a comment.)

3. Use comments to explain what each register does.

4. Give explanatory comment for most instructions.

5. Use meaningful symbolic names.

• Mixed upper and lower case for readability.

• ASCIItoBinary, InputRoutine, SaveR1

6. Provide comments between program sections.

7. Each line must fit on the page -- no wraparound or truncations.

Long statements split in aesthetically pleasing manner

Sample Program:

Count the occurrences of a character in a file

Assembly Process:

Count = 0
(R2 = 0)

Ptr = 1st file character
(R3 = M[x3012])

Input char

from keybd
(TRAP x23)

Done?
(R1 ?= EOT)

Load char from file
(R1 = M[R3])

Match?
(R1 ?= R0)

Incr Count
(R2 = R2 + 1)

Load next char from file
(R3 = R3 + 1, R1 = M[R3])

Convert count to

ASCII character
(R0 = x30, R0 = R2 + R0)

Print count
(TRAP x21)

HALT
(TRAP x25)

NO

NO

YES

YES

Constructing the Symbol Table:

1. Find the .ORIG statement,which tells us the address of the first instruction.

– Initialize location counter (LC), which keeps track of the

current instruction.

2. For each non-empty line in the program:

– If line contains a label, add label and LC to symbol table.

– Increment LC.

– NOTE: If statement is .BLKW or .STRINGZ,

increment LC by the number of words allocated.

3. Stop when .END statement is reached.

• NOTE: A line that contains only a comment is considered an empty line.

Second Pass: Generating Machine Language:

• For each executable assembly language statement,

generate the corresponding machine language instruction.

– If operand is a label,

look up the address from the symbol table.

• Potential problems:

– Improper number or type of arguments

• ex: NOT R1,#7

 ADD R1,R2

 ADD R3,R3,NUMBER

– Immediate argument too large

• ex: ADD R1,R2,#1023

– Address (associated with label) more than 256 from instruction

• can‟t use PC-relative addressing mode

Assembler:

• Using “assemble” (Unix) or (Windows),generates several different output files.

Multiple Object Files:

• An object file is not necessarily a complete program.

– system-provided library routines

– code blocks written by multiple developers

• For simulator, can load multiple object files into memory,

then start executing at a desired address.

– system routines, such as keyboard input, are loaded automatically

• loaded into “system memory,” below x3000

• user code should be loaded between x3000 and xFDFF

– each object file includes a starting address

– be careful not to load overlapping object files

Linking and Loading:

• Loading is the process of copying an executable image into memory.

– more sophisticated loaders are able to relocate images to fit into available memory

– must readjust branch targets, load/store addresses

• Linking is the process of resolving symbols between independent object files.

– suppose we define a symbol in one module,and want to use it in another

– some notation, such as .EXTERNAL, is used to tell assembler that a symbol is

defined in another module

– linker will search symbol tables of other modules to resolve symbols and complete

code generation before loading

–

Interrupts

Definition: The meaning of „interrupts‟ is to break the sequence of operation. While the CPU

is executing a program, on „interrupt‟ breaks the normal sequence of execution of

instructions, diverts its execution to some other program called Interrupt Service Routine

(ISR).After executing ISR , the control is transferred back again to the main program.

Interrupt processing is an alternative to polling.

Need for Interrupt: Interrupts are particularly useful when interfacing I/O devices that

provide or require data at relatively low data transfer rate.

Interrupt is a mechanism that allows hardware or software to suspend normal execution on

microprocessor in order to switch to interrupt service routine for hardware / software. Interrupt

can also describe as asynchronous electrical signal that sent to a microprocessor in order to stop

current execution and switch to the execution signaled (depends on priority). Whether an

interrupt is prioritized or not depends on the interrupt flag register which controlled by priority /

programmable interrupt controller (PIC).

There are 5 type of interrupts:

Types of Interrupts: There are two types of Interrupts

(i) Hardware Interrupts and

(ii)Software Interrupts

Hardware Interrupts (External Interrupts). The Intel microprocessors support hardware

interrupts through:

 Two pins that allow interrupt requests, INTR and NMI

 One pin that acknowledges, INTA, the interrupt requested on

INTR. INTR and NMI

 INTR is a maskable hardware interrupt. The interrupt can be enabled/disabled

using STI/CLI instructions or using more complicated method of updating the FLAGS

register with the help of the POPF instruction.

 When an interrupt occurs, the processor stores FLAGS register into stack, disables

further interrupts, fetches from the bus one byte representing interrupt type, and jumps

to interrupt processing routine address of which is stored in location 4 * <interrupt

type>. Interrupt processing routine should return with the IRET instruction.

 NMI is a non-maskable interrupt. Interrupt is processed in the same way as the

INTR interrupt. Interrupt type of the NMI is 2, i.e. the address of the NMI processing

routine is stored in location 0008h. This interrupt has higher priority than the maskable

interrupt.

 – Ex: NMI, INTR.

Software Interrupts (Internal Interrupts and Instructions) .Software interrupts can be caused

by:

 INT instruction - breakpoint interrupt. This is a type 3 interrupt.

 INT <interrupt number> instruction - any one interrupt from available 256 interrupts.

 INTO instruction - interrupt on overflow

 Single-step interrupt - generated if the TF flag is set. This is a type 1 interrupt. When

the CPU processes this interrupt it clears TF flag before calling the interrupt

processing routine.

 Processor exceptions: Divide Error (Type 0), Unused Opcode (type 6) and Escape

opcode (type 7).

 Software interrupt processing is the same as for the hardware interrupts.

 - Ex: INT n (Software Instructions)

 Control is provided through:

o IF and TF flag bits

o IRET and IRETD

Performance of Software Interrupts

7. It decrements SP by 2 and pushes the flag register on the stack.

8. Disables INTR by clearing the IF.

9. It resets the TF in the flag Register.

5. It decrements SP by 2 and pushes CS on the stack.

6. It decrements SP by 2 and pushes IP on the stack.

6. Fetch the ISR address from the interrupt vector table.

Interrupt Vector Table (IVT) on 8086

Interrupt vector table on 8086 is a vector that consists of 256 total interrupts placed at first 1 kb of

memory from 0000h to 03ffh, where each vector consists of segment and offset as a lookup or jump

table to memory address of bios interrupt service routine (f000h to ffffh) or dos interrupt service routine

address, the call to interrupt service routine is similar to far procedure call.

The size for each interrupt vector is 4 bytes (2 word in 16 bit), where 2 bytes (1 word) for segment and 2

bytes for offset of interrupt service routine address.

So it takes 1024 bytes (1 kb) memory for interrupt vector table. On 8086 with dos operating system,

interrupt vector table at 00h-1fh (int num 0-31) consists of lookup / jump table

address to hardware or bios interrupt handler routine, meanwhile 20h-ffh (int num 32-255) consist of

jump table address to dos interrupt handler routine.

For example int 13h that located on ivt at 0000:004c contains address of Bios ROM Interrupt Service

Routine, what it records is segment F000h, and offset 1140h, each bytes of that address will be placed

little endian. The lower the interrupt number on interrupt vector table means the more priority needed for

an interrupt.

 The interrupt vector (or interrupt pointer) table is the link between an interrupt type code and

the procedure that has been designated to service interrupts associated with that code. 8086

supports total 256 types i.e. 00H to FFH.

 For each type it has to reserve four bytes i.e. double word. This double word pointer contains

the address of the procedure that is to service interrupts of that type.

 The higher addressed word of the pointer contains the base address of the segment containing

the procedure. This base address of the segment is normally referred as NEW CS.

 The lower addressed word contains the procedure‟s offset from the beginning of the segment.

This offset is normally referred as NEW IP.

 Thus NEW CS: NEW IP provides NEW physical address from where user ISR routine will

start.

 As for each type, four bytes (2 for NEW CS and 2 for NEW IP) are required; therefore

interrupt pointer table occupies up to the first 1k bytes (i.e. 256 x 4 = 1024 bytes) of low

memory.

 The total interrupt vector table is divided into three groups namely,

Functions associated with INT00 to INT04

INT 00 (divide error)

 INT00 is invoked by the microprocessor whenever there is an attempt to divide a

number by zero.

 ISR is responsible for displaying the message “Divide Error” on the screen

INT 01
 or single stepping the trap flag must be 1

 After execution of each instruction, 8086 automatically jumps to 00004H to fetch 4

bytes for CS: IP of the ISR.

 The job of ISR is to dump the registers on to the screen

INT 02 (Non maskable Interrupt)

 When ever NMI pin of the 8086 is activated by a high signal (5v), the CPU Jumps

to physical memory location 00008 to fetch CS:IP of the ISR associated with NMI.

INT 03 (break point)

 A break point is used to examine the CPU and memory after the execution of a group

of Instructions.

 It is one byte instruction whereas other instructions of the form “INT nn” are 2

byte instructions.

INT 04 (Signed number overflow)
 There is an instruction associated with this INT 0 (interrupt on overflow).

 If INT 0 is placed after a signed number arithmetic as IMUL or ADD the CPU

will activate INT 04 if 0F = 1.

 In case where 0F = 0, the INT 0 is not executed but is bypassed and acts as a NOP.

Performance of Hardware Interrupts

 NMI : Non maskable interrupts - TYPE 2 Interrupt

 INTR : Interrupt request - Between 20H and FFH

Interrupt Priority Structure

Example Programmes

CODE FOR 8 BIT ADDER

DATA SEGMENT

A1 DB 50H

A2 DB 51H

RES DB ?

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS:DATA

START: MOV AX,DATA

MOV DS,AX

MOV AL,A1

MOV BL,A2

ADD AL,BL

MOV RES,AL

MOV AX,4C00H

INT 21H

CODE ENDS

END START

CODE FOR 16 BIT ADDER

DATA SEGMENT

 A1 DW 0036H

 A2 DW 0004H

SUM DW ?

DATA ENDS

CODE SEGMENT

ASSUME CS:CODE,DS:DATA

 START: MOV AX,DATA

MOV DS,AX

MOV AX,A1

MOV BX,A2

DIV BX

MOV SUM,AX

MOV AX,0008H

INT 21H

CODE ENDS

END START

ADD33 MATRIX

.MODEL SMALL

.DATA

M1 DB 10H,20H,30H,40H,50H,60H,70H,80H,90H

M2 DB 10H,20H,30H,40H,50H,60H,70H,80H,90H

RESULT DW 9 DUP (0)

.CODE

START: MOV AX,@DATA

 MOV DS,AX

MOV CX,9

MOV DI,OFFSET M1

MOV BX,OFFSET M2

MOV SI,OFFSET

RESULT

BACK: MOV AH,00

MOV AL,[DI]

ADD AL,[BX]

ADC AH,00

MOV [SI],AX

INC DI

INC BX

INC SI

INC SI

LOOP BACK

MOV AH,4CH

INT 21H

END START

END

ARRAY SUM

.MODEL SMALL

.DATA

ARRAY DB 12H, 24H, 26H, 63H, 25H, 86H, 2FH, 33H, 10H, 35H

SUM DW 0

.CODE

START:MOV AX, @DATA

MOV DS, AX

MOV CL, 10

XOR DI, DI

LEA BX, ARRAY

 BACK: MOV AL, [BX+DI]

MOV AH, 00H

ADD SUM, AX

INC DI

DEC CL

JNZ BACK

 END START

ASCII TO HEX

DATA SEGMENT

A DB 41H

R DB ?

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS:DATA

START: MOV AX,DATA

MOV DS,AX

MOV AL,A

SUB AL,30H

CMP AL,39H

JBE L1

SUB AL,7H

 L1: MOV R,AL

INT 3H

 CODE ENDS

 END START

AVERAGE

.MODEL SMALL

.STACK 100

.DATA

 NO1 DB 63H

NO2 DB 2EH

AVG DB ?

.CODE

 START: MOV AX,@DATA

 MOV DS,AX

MOV AL,NO1

ADD AL,NO2

ADC AH,00H

SAR AX,1

MOV AVG,AL

 END START

16 BIT SUB

DATA SEGMENT

 A1 DW 1001H

 A2 DW 1000H

 SUB DW ?

DATA ENDS

CODE SEGMENT

ASSUME CS:CODE,DS:DATA

 START: MOV AX,DATA

 MOV DS,AX

 MOV AX,A1

 MOV BX,A2

 SBB AX,BX

 MOV SUB,AX

 MOV AX,4C00H

 INT 21H

CODE ENDS

 END START

16BIT SUM

DATA SEGMENT

A1 DW 1000H

A2 DW 1001H

SUM DW ?

 DATA ENDS

 CODE SEGMENT

ASSUME CS:CODE,DS:DATA

 START: MOV AX,DATA

 MOV DS,AX

 MOV AX,A1

 MOV BX,A2

 ADC AX,BX

 MOV SUM,AX

 MOV AX,4C00H

 INT 21H

CODE ENDS

END START

8BMUL

DATA SEGMENT

A1 DB 25H

A2 DB 25H

A3 DB ?

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS:DATA

START:MOV AX,DATA

MOV DS,AX

MOV AL,A1

MOV BL,A2

MUL BL

MOV A3,AL

MOV AX,4C00H

INT 21H

 CODE ENDS

 END START

16BIT MUL

DATA SEGMENT

A1 DW 1000H

A2 DW 1000H

A3 DW ?

A4 DW ?

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS:DATA

START:MOV AX,DATA

MOV DS,AX

MOV AX,A1

MOV BX,A2

MUL BX

MOV A3,DX

MOV A4,AX

MOV AX,4C00H

INT 21H

CODE ENDS

END START

EVENODD

DATA SEGMENT

ORG 2000H

FIRST DW 3H

DATA ENDS

CODE SEGMENT

 ASSUME CS:CODE,DS:DATA

 START: MOV AX,DATA

 MOV DS,AX

 MOV AX,FIRST

 SHR AX,1

 JC L1

 MOV BX,00

 INT 3H

L1: MOV BX,01

 INT 3H

 CODE ENDS

 END START

FACTORIAL

 DATA SEGMENT

ORG 2000H

FIRST DW 3H

SEC DW 1H

DATA ENDS

CODE SEGMENT

ASSUME CS:CODE,DS:DATA

 START: MOV AX,DATA

MOV DS,AX

MOV AX,SEC

MOV CX,FIRST

L1: MUL CX

DEC CX

JCXZ L2

JMP L1

L2: INT 3H

CODE ENDS

END START

FIBONOCCI

DATA SEGMENT

ORG 2000H

FIRST DW 0H

SEC DW 01H

THIRD DW 50H

RESULT DW ?

 DATA ENDS

 CODE SEGMENT

 ASSUME CS: CODE, DS:DATA

 START: MOV AX,DATA

 MOV DS,AX

 MOV SI,OFFSET RESULT

 MOV AX,FIRST

 MOV BX,SEC

 MOV CX,THIRD

 MOV [SI],AX

 L1: INC SI

 INC SI

 MOV [SI],BX

 ADD AX,BX

 XCHG AX,BX

 CMP BX,CX

 INT 3H

 CODE ENDS

 END START

FIND NUMBER

.MODEL SMALL

.STACK 100

.DATA

ARRAY DB 63H,32H,45H,75H,12H,42H,09H,14H,56H,38H

SER_NO DB 09H

SER_POS DB ?

.CODE

START:MOV AX,@DATA

MOV DS,AX

MOV ES,AX

MOV CX,000AH

LEA DI,ARRAY

MOV AL,SER_NO

CLD

REPNE SCAS ARRAY

MOV AL,10

SUB AL CL

MOV SER_POS,AL

END START

GREATER

DATA SEGMENT

ORG 2000H

FIRST DW 5H,2H,3H,1H,4H

COUNT EQU (($-FIRST)/2)-1

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS:DATA

START: MOV AX,DATA

 MOV DS,AX

 MOV CX,COUNT

 MOV SI,OFFSET FIRST

 MOV AX,[SI]

 L2: INC SI

INC SI

MOV BX,[SI]

CMP AX,BX

JGE L1

XCHG AX,BX

JMP L1

L1: DEC CX

 JCXZ L4

JMP L2

L4: INT 3H

 CODE ENDS

 END START

HEX TO ASCII

DATA SEGMENT

A DB 08H

C DB ?

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS: DATA

START: MOV AX,DATA

 MOV DS,AX

 MOV AL,A

 ADD AL,30H

 CMP AL,39H

 JBE L1

 ADD AL,7H

 L1: MOV C,AL

 INT 3H

 CODE ENDS

 END START

MAX

.MODEL SMALL

.STACK 100

.DATA

ARRAY DB 63H,32H,45H,75,12H,42H,09H,14H,56H,38H

MAX DB 0

.CODE

START:MOV AX,@DATA

MOV DS,AX

XOR DI,DI

MOV CL,10

LEA BX,ARRAY

MOV AL,MAX

 BACK: CMP AL,[BX+DI]

 JNC SKIP

MOV DL,[BX+DI]

MOV AL,DL

 SKIP: INC DI

 DEC CL

 JNZ BACK

MOV MAX,AL

MOV AX,4C00H

INT 21H

END START

NO OF 1S

DATA SEGMENT

ORG 2000H

FIRST DW 7H

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS: DATA

START: MOV AX,DATA

 MOV DS,AX

 MOV AX,FIRST

 MOV BX,00

 MOV CX,16

 L2: SHR AX,1

 JC L1

 L4: DEC CX

 JCXZ L3

 JMP L2

 L1: INC BX

 JMP L4

 L3: INT 3H

 CODE ENDS

 END START

SMALLER

DATA SEGMENT

ORG 2000H

FIRST DW 5H,2H,3H,1H,4H

COUNT EQU (($-FIRST)/2)-1

RESULT DW ?

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS:DATA

START: MOV AX,DATA

 MOV DS,AX

 MOV CX,COUNT

 MOV SI,OFFSET FIRST

 MOV AX,[SI]

 L2: INC SI

 INC SI

 MOV BX,[SI]

 CMP AX,BX

 JB L1

 XCHG AX,BX

 JMP L1

 L1: DEC CX

 JCXZ L4

 JMP L2

 L4: MOV RESULT,AX

 CODE ENDS

 END START

SUM OF CUBES

DATA SEGMENT

ORG 2000H

NUM DB 1H

RES DW ?

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS: DATA

START: MOV DX,DATA

MOV DS,AX

MOV CL,NUM

MOV BX,00

L1: MOV AL,CL

 MOV CH,CL MUL AL

 MUL CH

 ADD BX,AX

 DEC CL

 JNZ L1

MOV RES,BX

INT 3H

CODE ENDS

END START

SUM OF SQUARES

DATA SEGMENT

NUM DW 5H

RES DW ?

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS: DATA

START: MOV AX,DATA

 MOV DS,AX MOV

CX,NUM MOV BX,00

 L1: MOV AX,CX

 MUL CX

 ADD BX,AX

 DEC CX

 JNZ L1

 MOV RES,BX

 INT 3H

 CODE ENDS

 END START

UNIT-III

INTERFACING WITH 8086/88

Introduction:

Any application of a microprocessor based system requires the transfer of data

between external circuitry to the microprocessor and microprocessor to the external circuitry.

User can give information to the microprocessor based system using keyboard and user can

see the result or output information from the microprocessor based system with the help of

display device. The transfer of data between keyboard and microprocessor, and

microprocessor and display device is called input/output data transfer or I/O data transfer.

This data transfer is done with the help of I/O ports.

Input port:

It is used to read data from the input device such as keyboard. The simplest form of

input port is a buffer. The input device is connected to the microprocessor through buffer,

as shown in the fig.1. This buffer is a tri-state buffer and its output is available only when

enable signal is active. When microprocessor wants to read data from the input device

(keyboard), the control signals from the microprocessor activates the buffer by asserting

enable input of the buffer. Once the buffer is enabled, data from the input device is available

on the data bus. Microprocessor reads this data by initiating read command.

Output port:

It is used to send data to the output device such as display from the

microprocessor. The simplest form of output port is a latch. The output device is connected

to the microprocessor through latch, as shown in the fig.2. When microprocessor wants to

send data to the output device is puts the data on the data bus and activates the clock signal

of the latch, latching the data from the data bus at the output of latch. It is then available at the

output of latch for the output device.

1 MEMORY AND I/O INTERFACING

4.1.1 I/O Interface

 Any application of a microprocessor system requires the transfer of data between

microprocessor and external environment and also within the microprocessor. This is known as

Input/output. There are three different ways that the data transfer can take place. They are

 (1) Program controlled I/O

 (2) Interrupt Program Controlled I/O

 (3) Hardware controlled I/O

 In program controlled I/O data transfer scheme the transfer of data is completely under

the control of the microprocessor program. In this case an I/O operation takes place only when an

I/O transfer instruction is executed.

 In an interrupt program controlled I/O an external device indicates directly to the

microprocessor its readiness to transfer data by a signal at an interrupt input of the

microprocessor. When microprocessor receives this signal the control is transferred to ISS

(Interrupt service subroutine) which performs the data transfer.

 Hardware controlled I/O is also known as direct memory access DMA. In this case the

data transfer takes place directly between an I/O device and memory but not through

microprocessors. Microprocessor only initializes the process of data transfer by indicating the

starting address and the number of words to be transferred.

 The instruction .set of any microprocessor contains instructions that transfer information

to an I/O device and to read information from an I/O device. In 8086 we have IN, OUT

instructions for this purpose. OUT instruction transfers information to an I/O device whereas IN

instruction is used to read information from an I/O device. Both the instructions perform the data

transfer using accumulator AL or AX. The I/O address is stored in register DX.

 The port number is specified along with IN or OUT instruction. The external I/O interface

decodes to find the address of the I/O device. The 8 bit fixed port number appears on address bus

A0 - A7 with A8 - A15 all zeros. The address connections above A15 are undefined for an I/O

instruction. The 16 bit variable port number appears on address connections A0 - A15. The above

notation indicates that first 256 I/O port addresses 00 to FF are accessed by both the fixed and

variable I/O instructions. The I/O addresses from 0000 to FFFF are accessed by the variable I/O

address.

 I/O devices can be interfaced to the microprocessors using two methods. They are I/O

mapped I/O and memory mapped I/O. The I/O mapped I/O is also known as isolated I/O or

direct I/O. In I/O mapped I/O the IN and OUT instructions transfer data between the accumulator

or memory and I/O device. In memory mapped I/O the instruction that refers memory can

perform the data transfer.

 I/O mapped I/O is the most commonly used I/O transfer technique. In this method I/O

locations are placed separately from memory. The addresses for isolated I/O devices are separate

from memory. Using this method user can use the entire memory. This method allows data

transfer only by using instructions IN, OUT. The pins M/ IO and W/R are used to indicate I/O

read or an I/O write operations. The signals on these lines indicate that the address on the address

bus is for I/O devices.

 Memory mapped I/O does not use the IN, OUT instruction it uses only the instruction that

transfers data between microprocessor and memory. A memory mapped I/O device is treated as

memory location. The disadvantage in this system is the overall memory is reduced. The

advantage of this system is that any memory transfer instruction can be used for data transfer and

control signals like I/O read and I/O write are not necessary which simplify the hardware.

4.1.2 Memory interfacing

Memory is an integral part of a microcomputer system. There are two main types of memory.

(i) Read only memory (ROM): As the name indicates this memory is available only for

reading purpose. The various types available under this category are PROM, EPROM,

EEPROM which contain system software and permanent system data.

(ii) Random Access memory (RAM): This is also known as Read Write Memory. It is a

volatile memory. RAM contains temporary data and software programs generally for

different applications.

 While executing particular task it is necessary to access memory to get instruction

codes and data stored in memory. Microprocessor initiates the necessary signals when read or

write operation is to be performed. Memory device also requires some signals to perform read

and write operations using various registers. To do the above job it is necessary to have a device

and a circuit, which performs this task is known as interfacing device and as this is involved with

memory it-is known as memory interfacing device.

The basic concepts of memory interfacing involve three different tasks. The microprocessor

should be able

to read from or write into the specified register. To do this it must be able to select the required

chip, identify the required register and it must enable the appropriate buffers.

 Any memory device must contain address lines and Input, output lines, selection

input, control input to perform read or write operation. All memory devices have address inputs

that select memory location within the memory device. These lines are labeled as AO AN. The

number of address lines indicates the total memory capacity of the memory device. A 1K

memory requires 10 address lines A0-A9. Similarly a 1MB requires 20 lines A0-A19 (in the case

of 8086). The memory devices may have separate I/O lines or a common set of bidirectional I/O

lines. Using these lines data can be transferred in either direction. Whenever output buffer is

activated the operation is read whenever input buffers are activated the operation is write. These

lines are labelled as I/O ... I/On or DODn. The size of a memory location is dependent

upon the number of data bits. If the numbers of data lines are eight D0 - D7 then 8 bits or 1 byte

of data can be stored in each location. Similarly if numbers of data bits are 16 (D0 - D15) then the

memory size is 2 bytes. For example 2K x 8 indicates there are 2048 memory locations and each

memory location can store 8 bits of data.

 Memory devices may contain one or more inputs which are used to select the memory

device or to enable the memory device. This pin is denoted by CS (Chip select) or CE (Chip

enable). When this pin is at logic '0' then only the memory device performs a read or a write

operation. If this pin is at logic „1‟ the memory chip is disabled. If there are more than one CS

input then all these pins must be activated to perform read or write operation.

 All memory devices will have one or more control inputs. When ROM is used we find

OE output enable pin which allows data to flow out of the output data pins. To perform this task

both CS and OE must be active. A RAM contains one or two control inputs. They are R / W or

RD and WR . If there is only one input R/ W then it performs read operation when R/ W pin is

at logic 1. If it is at logic 0 it performs write operation. Note that this is possible only when CS is

also active.

4.4 Memory Interface using RAMS, EPROMS and EEPROMS

Semiconductor Memory Interfacing:

Semiconductor memories are of two types, viz. RAM (Random Access Memory) and ROM

(Read Only Memory).

Static RAM Interfacing:

The semiconductor RAMs are of broadly two types-static RAM and dynamic RAM. The

semiconductor memories are organized as two dimensional arrays of memory locations. For

example, 4K x 8 or 4K byte memory contains 4096 locations, where each location contains 8-bit

data and only one of the 4096 locations can be selected at a time. Obviously, for addressing 4K

bytes of memory, twelve address lines are required. In general, to address a memory location out

of N memory locations , we will require at least n bits of address, i.e. n address lines where n =

Log2 N. Thus if the microprocessor has n address lines, then it is able to address at the most N

locations of memory, where 2
n
 = N. However, if out of N locations only P memory locations are

to be interfaced, then the least significant p address lines out of the available n lines can be

directly connected from the microprocessor to the memory chip while the remaining (n-p) higher

order address lines may be used for address decoding (as inputs to the chip selection logic). The

memory address depends upon the hardware circuit used for decoding the chip select (CS). The

output of the decoding circuit is connected with the CS pin of the memory chip. The general

procedure of static memory interfacing with 8086 is briefly described as follows:

1. Arrange the available memory chips so as to obtain 16-bit data bus width. The upper 8-

bit bank is called „odd address memory bank‟ and the lower 8-bit bank is called „even address

memory bank‟.

2. Connect available memory address lines of memory chips with those of the

microprocessor and also connect the memory RD and WR inputs to the corresponding

processor control signals. Connect the 16-bit data bus of the memory bank with that of the

microprocessor 8086.

3. The remaining address lines of the microprocessor, BHE and A0 are used for decoding

the required chip select signals for the odd and even memory banks. CS of memory is derived

from the O/P of the decoding circuit.

As a good and efficient interfacing practice, the address map of the system should be

continuous as far as possible, i.e. there should be no windows in the map. A memory location

should have a single address corresponding to it, i.e. absolute decoding should be preferred, and

minimum hardware should be used for decoding. In a number of cases, linear decoding may be

used to minimise the required hardware. Let us now consider a few example problems on

memory interfacing with 8086.

Serial and Parallel Transmission:

In telecommunications, serial transmission is the sequential transmission of signal

elements of a group representing a character or other entity of data. Digital serial

transmissions are bits sent over a single wire, frequency or optical path sequentially.

Because it requires less signal processing and less chance for error than parallel

transmission, the transfer rate of each individual path may be faster. This can be used

over longer distances as a check digit or parity bit can be sent along it easily.

In telecommunications, parallel transmission is the simultaneous transmission of the

signal elements of a character or other entity of data. In digital communications, parallel

transmission is the simultaneous transmission of related signal elements over two or more

separate paths. Multiple electrical wires are used which can transmit multiple bits

simultaneously, which allows for higher data transfer rates than can be achieved with

serial transmission. This method is used internally within the computer, for example the

internal buses, and sometimes externally for such things as printers, The major issue with this

is "skewing" because the wires in parallel data transmission have slightly different

http://en.wikipedia.org/wiki/Telecommunication
http://en.wikipedia.org/wiki/Serial_transmission
http://en.wikipedia.org/wiki/Transmission_(telecommunications)
http://en.wikipedia.org/wiki/Signal_element
http://en.wikipedia.org/wiki/Signal_element
http://en.wikipedia.org/wiki/Character_(computing)
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Parity_bit
http://en.wikipedia.org/wiki/Parallel_transmission
http://en.wikipedia.org/wiki/Signalling_(telecommunication)
http://en.wikipedia.org/wiki/Digital
http://en.wikipedia.org/wiki/Telecommunication

properties (not intentionally) so some bits may arrive before others, which may corrupt the

message. A parity bit can help to reduce this. However, electrical wire parallel data

transmission is therefore less reliable for long distances because corrupt transmissions are far

more likely.

Interrupt driven I/O:

In this technique, a CPU automatically executes one of a collection of special

routines whenever certain condition exists within a program or a processor system. Example

CPU gives response to devices such as keyboard, sensor and other components when they

request for service. When the CPU is asked to communicate with devices, it services the

devices. Example each time you type a character on a keyboard, a keyboard service routine

is called. It transfers the character you typed from the keyboard I/O port into the processor

and then to a data buffer in memory.

The interrupt driven I/O technique allows the CPU to execute its main program and

only stop to service I/O device when it is told to do so by the I/O system as shown in fig.3.

This method provides an external asynchronous input that would inform the processor that it

should complete whatever instruction that is currently being executed and fetch a new

routine that will service the requesting device. Once this servicing is completed, the

processor would resume exactly where it left off.

An analogy to the interrupt concept is in the classroom, where the professor serves as

CPU and the students as I/O ports. The classroom scenario for this interrupt analogy will be

such that the professor is busy in writing on the blackboard and delivering his lecture.

The student raises his finger when he wants to ask a question (student requesting for

service). The professor then completes his sentence and acknowledges student‟s request by

saying “YES” (professor acknowledges the interrupt request). After acknowledgement from

the professor, student asks the question and professor gives answer to the question

(professor services the interrupt). After that professor continues its remaining lecture form

where it was left.

PIO 8255:

The parallel input-output port chip 8255 is also called as programmable peripheral

input-output port. The Intel‟s 8255 are designed for use with Intel‟s 8-bit, 16-bit and

higher capability microprocessors. It has 24 input/output lines which may be individually

programmed in two groups of twelve lines each, or three groups of eight lines.

The two groups of I/O pins are named as Group A and Group B. Each of these two

groups contains a subgroup of eight I/O lines called as 8-bit port and another subgroup of

four lines or a 4-bit port. Thus Group A contains an 8-bit port Along with a 4-bit port C

upper.

The port A lines are identified by symbols PA0-PA7 while the port C lines are

identified as PC4-PC7 similarly. Group B contains an 8-bit port B, containing lines PB0- PB7

and a 4-bit port C with lower bits PC0-PC3. The port C upper and port C lower can be used

in combination as an 8-bit port C. Both the port Cs is assigned the same address. Thus one

may have either three 8-bit I/O ports or two 8-bit and two 4-bit I/O ports from 8255. All of

these ports can function independently either as input or as output ports. This can be achieved

by programming the bits of an internal register of 8255 called as control word register

(CWR). The internal block diagram and the pin configuration of 8255 are shown in figs.

The 8-bit data bus buffer is controlled by the read/write control logic. The read/write

control logic manages all of the internal and external transfer of both data and control words.

RD, WR, A1, A0 and RESET are the inputs, provided by the microprocessor to

READ/WRITE control logic of 8255. The 8-bit, 3-state bidirectional buffer is used to

interface the 8255 internal data bus with the external system data bus. This buffer receives

or transmits data upon the execution of input or output instructions by the microprocessor.

The control words or status information is also transferred through the buffer.

Pin Diagram of 8255A

The pin configuration of 8255 is shown in fig.

 The port A lines are identified by symbols PA0-PA7 while the port C lines are

 Identified as PC4-PC7. Similarly, Group B contains an 8-bit port B, containing

lines PB0-PB7 and a 4-bit port C with lower bits PC0- PC3. The port C upper and

port C lower can be used in combination as an 8-bit port C.

 Both the port C is assigned the same address. Thus one may have either three

8-bit I/O ports or two 8-bit and two 4-bit ports from 8255. All of these ports can

function independently either as input or as output ports. This can be achieved

by programming the bits of an internal register of 8255 called as control word

register (CWR).

 The 8-bit data bus buffer is controlled by the read/write control logic. The read/write

control logic manages all of the internal and external transfers of both data and

control words.

 RD,WR, A1, A0 and RESET are the inputs provided by the microprocessor to the

READ/ WRITE control logic of 8255. The 8-bit, 3-state bidirectional buffer is

used to interface the 8255 internal data bus with the external system data bus.

 This buffer receives or transmits data upon the execution of input or output

instructions by the microprocessor. The control words or status information is also

transferred through the buffer.

The signal description of 8255 is briefly presented as follows:

 PA7-PA0: These are eight port A lines that acts as either latched output or buffered

input lines depending upon the control word loaded into the control word

register.

 PC7-PC4: Upper nibble of port C lines. They may act as either output latches or

input buffers lines.

 This port also can be used for generation of handshake lines in mode1 or mode2.

 PC3-PC0: These are the lower port C lines; other details are the same as PC7-

PC4 lines.

 PB0-PB7: These are the eight port B lines which are used as latched output lines or

buffered input lines in the same way as port A.

 RD: This is the input line driven by the microprocessor and should be low to

indicate read operation to 8255.

 WR: This is an input line driven by the microprocessor. A low on this line

indicates write operation.

 CS: This is a chip select line. If this line goes low, it enables the 8255 to respond to

RD and WR signals, otherwise RD and WR signal are neglected.

 D0-D7: These are the data bus lines those carry data or control word to/from the

microprocessor.

 RESET: Logic high on this line clears the control word register of 8255. All ports are

set as input ports by default after reset.

 A1-A0: These are the address input lines and are driven by the microprocessor.

 These lines A1-A0 with RD, WR and CS from the following operations for 8255.

These address lines are used for addressing any one of the four registers, i.e.

three ports and a control word register as given in table below.

In case of 8086 systems, if the 8255 is to be interfaced with lower order data bus, the A0

and A1 pins of 8255 are connected with A1 and A2 respectively.

Modes of Operation of 8255

 These are two basic modes of operation of 8255. I/O mode and Bit Set-Reset

mode (BSR).

 In I/O mode, the 8255 ports work as programmable I/O ports, while in BSR mode only

port C (PC0-PC7) can be used to set or reset its individual port bits.

 Under the I/O mode of operation, further there are three modes of operation of

8255, so as to support different types of applications, mode 0, mode 1 and mode 2.

 BSR Mode: In this mode any of the 8-bits of port C can be set or reset depending on

D0 of the control word. The bit to be set or reset is selected by bit select flags D3, D2

and D1 of the CWR as given in table.

I/O Modes:

a) Mode 0 (Basic I/O mode): This mode is also called as basic input/output Mode. This

mode provides simple input and output capabilities using each of the three ports. Data can be

simply read from and written to the input and output ports respectively, after appropriate

initialization.

The salient features of this mode are as listed below:

1. Two 8-bit ports (port A and port B) and two 4-bit ports (port C upper and lower) are

available. The two 4-bit ports can be combined used as a third 8-bit port.

2. Any port can be used as an input or output port.

3. Output ports are latched. Input ports are not latched.

4. A maximum of four ports are available so that overall 16 I/O configurations are

possible.

 All these modes can be selected by programming a register internal to 8255known as

CWR.

 The control word register has two formats. The first format is valid for I/O modes

of operation, i.e. modes 0, mode 1 and mode 2 while the second format is valid for

bit set/reset (BSR) mode of operation.

These formats are shown in following fig.

b) Mode 1: (S t rob ed input/output mode) in this mode the handshaking control the

input and output action of the specified port. Port C lines PC0-PC2, provide strobe or

handshake lines for port B. This group which includes port B and PC0-PC2 is called as

group B for Strobed data input/output. Port C lines PC3-PC5 provides strobe lines for port

A. This group including port A and PC3-PC5 from group A. Thus port C is utilized for

generating handshake signals.

The salient features of mode 1 are listed as follows:

1. Two groups – group A and group B are available for strobed data transfer.

2. Each group contains one 8-bit data I/O port and one 4-bit control/data port.

3. The 8-bit data port can be either used as input and output port. The inputs and outputs

both are latched.

4. Out of 8-bit port C, PC0-PC2 are used to generate control signals for port B

andPC3-PC5 are used to generate control signals for port A. the lines PC6, PC7

may be used as independent data lines.

The control signals for both the groups in input and output modes are explained as

follows:

Input control signal definitions (mode 1):

• STB (Strobe input) – If this lines falls to logic low level, the data available at 8-

bit input port is loaded into input latches.

• IBF (Input buffer full) – If this signal rises to logic 1, it indicates that data has

been loaded into latches, i.e. it works as an acknowledgement. IBF is set by a low

on STB and is reset by the rising edge of RD input.

• INTR (Interrupt request) – This active high output signal can be used to

interrupt the CPU whenever an input device requests the service. INTR is set by a

high STB pin and a high at IBF pin. INTE is an internal flag that can be

controlled by the bit set/reset mode of either PC4 (INTEA) or PC2 (INTEB) as

shown in fig.

• INTR is reset by a falling edge of RD input. Thus an external input device can be

request the service of the processor by putting the data on the bus and

sending the strobe signal.

Output control signal definitions (mode 1):

• OBF (Output buffer full) – This status signal, whenever falls to low, indicates

that CPU has written data to the specified output port. The OBF flip- flop will

beset by a rising edge of WR signal and reset by a low going edge at the ACK

input.

• ACK (Acknowledge input) – ACK signal acts as an acknowledgement to be given

by an output device. ACK signal, whenever low, informs the CPU that the data

transferred by the CPU to the output device through the port is received by the

output device.

• INTR (Interrupt request) – Thus an output signal that can be used to interrupt

the CPU when an output device acknowledges the data received from the

CPU.INTR is set when ACK, OBF and INTE are 1. It is reset by a

Falling edge on WR input. The INTEA and INTEB flags are controlled by the bit set-

reset mode ofPC6 and PC2 respectively.

c) Mode 2 (Strobed bidirectional I/O): This mode of operation of 8255 is also called as

strobed bidirectional I/O. This mode of operation provides 8255 with additional features for

communicating with a peripheral device on an 8-bit data bus. Handshaking signals are

provided to maintain proper data flow and synchronization between the data transmitter

and receiver. The interrupt generation and other functions are similar to mode 1.

In this mode, 8255 is a bidirectional 8-bit port with handshake signals. The Rd and WR

signals decide whether the 8255 is going to operate as an input port or output port.

The Salient features of Mode 2 of 8255 are listed as follows:

1. The single 8-bit port in group A is available.

2. The 8-bit port is bidirectional and additionally a 5-bit control port is available.

3. Three I/O lines are available at port C.(PC2 – PC0)

4. Inputs and outputs are both latched.

5. The 5-bit control port C (PC3-PC7) is used for generating / accepting

handshake signals for the 8-bit data transfer on port A.

Control signal definitions in mode 2:

 INTR – (Interrupt request) As in mode 1, this control signal is active high and

is used to interrupt the microprocessor to ask for transfer of the next data byte

to/from it. This signal is used for input (read) as well as output (write) operations.

 Control Signals for Output operations:

 OBF (Output buffer full) – This signal, when falls to low level, indicates that

the CPU has written data to port A.

 ACK (Acknowledge) This control input, when falls to logic low level,

Acknowledges that the previous data byte is received by the destination and

next byte may be sent by the processor. This signal enables the internal tristate

buffers to send the next data byte on port A.

 INTE1 (A flag associated with OBF) This can be controlled by bit set/reset mode

with PC6.

Control signals for input operations:

 STB (Strobe input)a low on this line is used to strobe in the data into the input

Latches of 8255.

 IBF (Input buffer full) when the data is loaded into input buffer, this signal rises to

logic „1‟. This can be used as an acknowledge that the data has been received by

the receiver.

 The waveforms in fig show the operation in Mode 2 for output as well as input

port.

 Note: WR must occur before ACK and STB must be activated before RD.

 The following fig shows a schematic diagram containing an 8-bit bidirectional

port, 5-bit control port and the relation of INTR with the control pins. Port B can

either be set to Mode 0 or 1 with port A(Group A) is in Mode 2.

 Mode 2 is not available for port B. The following fig shows the control word.

 The INTR goes high only if IBF, INTE2, STB and RD go high or OBF,

 INTE1, ACK and WR go high. The port C can be read to know the status of the

peripheral device, in terms of the control signals, using the normal I/O

instructions.

Interfacing Analog to Digital Data Converters:

 In most of the cases, the PIO 8255 is used for interfacing the analog to digital

converters with microprocessor.

 We have already studied 8255 interfacing with 8086 as an I/O port, in previous

section. This section we will only emphasize the interfacing techniques of analog to

digital converters with 8255.

 The analog to digital converters is treated as an input device by the microprocessor

that sends an initializing signal to the ADC to start the analogy to digital data

conversation process. The start of conversation signal is a pulse of a specific

duration.

 The process of analog to digital conversion is a slow

 Process and the microprocessor have to wait for the digital data till the conversion is

over. After the conversion is over, the ADC sends end of conversion EOC signal to

inform the microprocessor that the conversion is over and the result is ready at the

output buffer of the ADC. The set asks of issuing an SOC pulse to ADC, reading

EOC signal from the ADC and reading the digital output of the ADC are carried out

by the CPU using 8255 I/O ports.

 The time taken by the ADC from the active edge of SOC pulse till the active edge of

EOC signal is called as the conversion delay of the ADC.

 It may range anywhere from a few microseconds in case of fast ADC to even a few

hundred milliseconds in case of slow ADCs.

 The available ADC in the market use different conversion techniques for

conversion of analog signal to digitals. Successive approximation techniques and

dual slope integration techniques are the most popular techniques used in the

integrated ADC chip.

 General algorithm for ADC interfacing contains the following steps:

 Ensure the stability of analog input, applied to the ADC.

 Issue start of conversion pulse to ADC

 Read end of conversion signal to mark the end of conversion processes.

 Read digital data output of the ADC as equivalent digital output.

 Analog input voltage must be constant at the input of the ADC right from the start of

conversion till the end of the conversion to get correct results. This may be

ensured by as ample and hold circuit which samples the analog signal and holds it

constant for specific time duration. The microprocessor may issue a hold signal to the

sample and hold circuit.

 If the applied input changes before the complete conversion process is over, the

digital equivalent of the analog input calculated by the ADC may not be correct.

ADC 0808/0809:

 The analog to digital converter chips 0808 and 0809 are 8-bit CMOS, successive

approximation converters. This technique is one of the fast techniques for analog

to digital conversion. The conversion delay is 100µs at a clock frequency of 640

KHz, which is quite low as compared to other converters. These converters do not

need any external zero or full scale adjustments as they are already taken care of by

internal circuits.

 These converters internally have a 3:8 analog multiplexer so that at a time eight

different analog conversion by using address lines - ADD A, ADD B, ADD C, as

shown. Using these address inputs, multichannel data acquisition system can be

designed using a single ADC. The CPU may drive these lines using output port lines in

case of multichannel applications. In case of single input applications, these may be

hardwired to select the proper input.

 There are unipolar analog to digital converters, i.e. they are able to convert

only positive analog input voltage to their digital equivalent. These chips do not contain

any internal sample and hold circuit.

 If one needs a sample and hold circuit for the conversion of fast signal into

equivalent digital quantities, it has to be externally connected at each of the

analog inputs.

Fig (1) and Fig (2) show the block diagrams and pin diagrams for ADC 0808/0809.

Table.1

Analog I/P

selected

Address lines

C B A

I/P 0 0 0 0

I/P 1 0 0 1

I/P 2 0 1 0

I/P 3 0 1 1

I/P 4 1 0 0

I/P 5 1 0 1

I/P 6 1 1 0

I/P 7 1 1 1

Fig.1 Block Diagram of ADC 0808/0809

Fig.2 Pin Diagram of ADC 0808/0809

Some Electrical Specifications Of The ADC 0808/0809 Are Given In Table.2.

Table.2

The Timing Diagram Of Different Signals Of Adc0808 Is Shown In Fig.3

Fig.3 Timing Diagram Of ADC 0808.

Interfacing ADC0808 with 8086

Interfacing Digital To Analog Converters:

The digital to analog converters convert binary numbers into their analog

equivalent voltages. The DAC find applications in areas like digitally controlled gains,

motor speed controls, programmable gain amplifiers, etc.

DAC0800 8-bit Digital to Analog Converter

 The DAC 0800 is a monolithic 8-bit DAC manufactured by National Semiconductor.

 It has settling time around 100ms and can operate on a range of power supply voltages

i.e. from 4.5V to +18V.

 Usually the supply V+ is 5V or +12V.

 The V-pin can be kept at a minimum of -12V.

Pin Diagram of DAC 0800

Interfacing DAC0800 with 8086 Ad

7523 8-Bit Multiplying DAC:

 Intersil‟s AD 7523 is a 16 pin DIP, multiplying digital to analog converter,

containing R-2R ladder(R=10KΩ) for digital to analog conversion along with

single pole double through NMOS switches to connect the digital inputs to the

ladder.

Pin Diagram of AD7523

 The supply range extends from +5V to +15V , while Vref may be anywhere

between -10V to +10V. The maximum analog output voltage will be +10V,

when all the digital inputs are at logic high state. Usually a Zener is connected

between OUT1 and OUT2 to save the DAC from negative transients.

 An operational amplifier is used as a current to voltage converter at the output

of AD 7523 to convert the current output of AD7523 to a proportional output

voltage.

 It also offers additional drive capability to the DAC output. An external feedback

resistor acts to control the gain. One may not connect any external feedback

resistor, if no gain control is required.

Interfacing AD7523 with 8086 Stepper

Motor Interfacing:

 A stepper motor is a device used to obtain an accurate position control of rotating

shafts. It employs rotation of its shaft in terms of steps, rather than continuous

rotation as in case of AC or DC motors. To rotate the shaft of the stepper motor, a

sequence of pulses is needed to be applied to the windings of the stepper motor, in a

proper sequence.

 The number of pulses required for one complete rotation of the shaft of the stepper

motor is equal to its number of internal teeth on its rotor. The stator teeth and the

rotor teeth lock with each other to fix a position of the shaft.

 With a pulse applied to the winding input, the rotor rotates by one teeth position or an

angle x. The angle x may be calculated as:

X=360
0
/no. of rotor teeth

 After the rotation of the shaft through angel x, the rotor locks itself with the next

tooth in the sequence on the internal surface of stator.

 The internal schematic of a typical stepper motor with four windings is shown in

fig.1.

 The stepper motors have been designed to work with digital circuits. Binary

level pulses of 0-5V are required at its winding inputs to obtain the rotation of

shafts. The sequence of the pulses can be decided, depending upon the required

motion of the shaft.

 Fig.2 shows a typical winding arrangement of the stepper motor.

 Fig.3 shows conceptual positioning of the rotor teeth on the surface of rotor, for a six

teeth rotor.

Fig.1 Internal schematic of a four winding stepper motor

Fig.2 Winding arrangement of a stepper motor.

Fig.3 Stepper motor rotor

 The circuit for interfacing a winding Wn with an I/O port is given in fig.4. Each of the

windings of a stepper motor needs this circuit for its interfacing with the output

port. A typical stepper motor may have parameters like torque 3 Kg-cm, operating

voltage 12V, current rating 0.2 A and a step angle 1.8
0

i.e. 200 steps/revolution

(number of rotor teeth).

 A simple schematic for rotating the shaft of a stepper motor is called a wave

scheme. In this scheme, the windings Wa, Wb, Wc and Wd are applied with the

required voltages pulses, in a cyclic fashion. By reversing the sequence of excitation,

the direction of rotation of the stepper motor shaft may be reversed.

 Table.1 shows the excitation sequences for clockwise and anticlockwise rotations.

Another popular scheme for rotation of a stepper motor shaft applies pulses to two

successive windings at a time but these are shifted only by one position at a time. This

scheme for rotation of stepper motor shaft is shown in table2.

Fig.4 interfacing stepper motor winding.

Table.1 Excitation sequence of a stepper motor using wave switching scheme.

Motion step A B C D

Clock

Wise Direction

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

5 1 0 0 0

1 1 0 0 0

2 0 0 0 1

Anti clock

wise

Direction

3 0 0 1 0

4 0 1 0 0

5 1 0 0 0

Table.2 An alternative scheme for rotating stepper motor shaft

Motion step A B C D

Clock wise

Direction

1 0 0 1 1

2 0 1 1 0

3 1 1 0 0

4 1 0 0 1

5 0 0 1 1

Anti clock

wise

Direction

1 0 0 1 1

2 1 0 0 1

3 1 1 0 0

4 0 1 1 0

5 0 0 0 0

Keyboard Interfacing

 In most keyboards, the key switches are connected in a matrix of Rows and

Columns.

 Getting meaningful data from a keyboard requires three major tasks:

1. e t e c t a k e y p r e s s

2. D e b o u n c e t h e k e y p r e s s .

3. Encode the keypress (produce a standard code for the pressed

key).

 Logic „0‟ is read by the microprocessor when the key is pressed.

Key Debounce:

Whenever a mechanical push-bottom is pressed or released once,the mechanical

components of the key do not change the positionsmoothly; rather it generates a transient

response. These may be interpreted as the multiple pressures and responded accordingly.

 The rows of the matrix are connected to four output Port lines, &columns are

connected to four input Port lines.

 When no keys are pressed, the column lines are held high by the pull-up resistors

connected to +5v.

 Pressing a key connects a row & a column.

 To detect if any key is pressed is to output 0‟s to all rows & then check columns to

see it a pressed key has connected a low (zero) to a column.

 Once the columns are found to be all high, the program enters another loop, which

waits until a low appears on one of the columns i.e indicating a key press.

 A simple 20/10 m sec delay is executed to debounce task.

 After the debounce time, another check is made to see if the key is still pressed. If

the columns are now all high, then no key is pressed & the initial detection was

caused by a noise pulse.

 To avoid this problem, two schemes are suggested:

1. Use of Bistable multivibrator at the output of the key to debounce it.

2. The microprocessor has to wait for the transient period (at least

for 10 ms), so that the transient response settles down and reaches a steady

state.

 If any of the columns are low now, then the assumption is made that it was a valid

key press.

 The final task is to determine the row & column of the pressed key &convert this

information to Hex-code for the pressed key.

 The 4-bit code from I/P port & the 4-bit code from O/P port (row &column) are

converted to Hex-code.

Interfacing 4x4 keyboard

Programmable interrupt controller 8259A

8259 microprocessor is defined as Programmable Interrupt Controller (PIC) microprocessor.

There are 5 hardware interrupts and 2 hardware interrupts in 8085 and 8086 respectively. But by

connecting 8259 with CPU, we can increase the interrupt handling capability. 8259 combines the

multi interrupt input sources into a single interrupt output. Interfacing of single PIC provides 8

interrupts inputs from IR0-IR7.

For example, interfacing of 8085 and 8259 increases the interrupt handling capability of 8085

microprocessor from 5 to 8 interrupt levels.

Features of 8259 PIC microprocessor –

1. It is a LSI chip which manages 8 levels of interrupts i.e. it is used to implement 8 level interrupt
systems.

2. It can be cascaded in a master slave configuration to handle up to 64 levels of interrupts.
3. It can identify the interrupting device.
4. It can resolve the priority of interrupt requests i.e. it does not require any external priority

resolver.
5. It can be operated in various priority modes such as fixed priority and rotating priority.
6. The interrupt requests are individually mask-able.
7. The operating modes and masks may be dynamically changed by the software at any time during

execution of programs.
8. It accepts requests from the peripherals, determines priority of incoming request, checks

whether the incoming request has a higher priority value than the level currently being serviced
and issues an interrupt signal to the microprocessor.

9. It provides 8 bit vector number as an interrupt information.
10. It does not require clock signal.
11. It can be used in polled as well as interrupt modes.
12. The starting address of vector number is programmable.
13. It can be used in buffered mode.

 Block Diagram of 8259 PIC microprocessor

The Block Diagram consists of 8 blocks which are – Data Bus Buffer, Read/Write Logic, Cascade

Buffer Comparator, Control Logic, Priority Resolver and 3 registers- ISR, IRR, IMR.

1. Data bus buffer –
This Block is used as a mediator between 8259 and 8085/8086 microprocessor by acting

as a buffer. It takes the control word from the 8085 (let say) microprocessor and transfer it

to the control logic of 8259 microprocessor. Also, after selection of Interrupt by 8259

microprocessor, it transfer the opcode of the selected Interrupt and address of the Interrupt

service sub routine to the other connected microprocessor. The data bus buffer consists of

8 bits represented as D0-D7 in the block diagram. Thus, shows that a maximum of 8 bits

data can be transferred at a time.

2. Read/Write logic –
This block works only when the value of pin CS is low (as this pin is active low). This

block is responsible for the flow of data depending upon the inputs of RD and WR. These

two pins are active low pins used for read and write operations.

3. Control logic –
It is the centre of the microprocessor and controls the functioning of every block. It has

pin INTR which is connected with other microprocessor for taking interrupt request and

pin INT for giving the output. If 8259 is enabled, and the other microprocessor Interrupt

flag is high then this causes the value of the output INT pin high and in this way 8259

responds to the request made by other microprocessor.

4. Interrupt request register (IRR) –
It stores all the interrupt level which are requesting for Interrupt services.

5. Interrupt service register (ISR) –
It stores the interrupt level which are currently being executed.

6. Interrupt mask register (IMR) –
It stores the interrupt level which have to be masked by storing the masking bits of the

interrupt level.

7. Priority resolver –
It examines all the three registers and set the priority of interrupts and according to the

priority of the interrupts, interrupt with highest priority is set in ISR register. Also, it reset

the interrupt level which is already been serviced in IRR.

8. Cascade buffer –
To increase the Interrupt handling capability, we can further cascade more number of pins

by using cascade buffer. So, during increment of interrupt capability, CSA lines are used

to control multiple interrupt structure.

SP/EN (Slave program/Enable buffer) pin is when set to high, works in master mode else in slave mode. In
Non Buffered mode, SP/EN pin is used to specify whether 8259 work as master or slave and in Buffered
mode, SP/EN pin is used as an output to enable data bus.

We can see through above diagram that there are total 28 pins in 8259 PIC microprocessor where Vcc :5V
Power supply and Gnd: ground. Other pins use are explained above

keyboard /display controller8279

8279 programmable keyboard/display controller is designed by Intel that interfaces a keyboard

with the CPU. The keyboard first scans the keyboard and identifies if any key has been pressed. It

then sends their relative response of the pressed key to the CPU and vice-a-versa.

How Many Ways the Keyboard is Interfaced with the CPU?

The Keyboard can be interfaced either in the interrupt or the polled mode. In the Interrupt mode,

the processor is requested service only if any key is pressed, otherwise the CPU will continue

with its main task.

In the Polled mode, the CPU periodically reads an internal flag of 8279 to check whether any key

is pressed or not with key pressure.

How Does 8279 Keyboard Work?

The keyboard consists of maximum 64 keys, which are interfaced with the CPU by using the key-

codes. These key-codes are de-bounced and stored in an 8-byte FIFORAM, which can be

accessed by the CPU. If more than 8 characters are entered in the FIFO, then it means more than

eight keys are pressed at a time. This is when the overrun status is set.

If a FIFO contains a valid key entry, then the CPU is interrupted in an interrupt mode else the

CPU checks the status in polling to read the entry. Once the CPU reads a key entry, then FIFO is

updated, and the key entry is pushed out of the FIFO to generate space for new entries.

Architecture and Description

I/O Control and Data Buffer

This unit controls the flow of data through the microprocessor. It is enabled only when D is low.

Its data buffer interfaces the external bus of the system with the internal bus of the

microprocessor. The pins A0, RD, and WR are used for command, status or data read/write

operations.

Control and Timing Register and Timing Control

This unit contains registers to store the keyboard, display modes, and other operations as

programmed by the CPU. The timing and control unit handles the timings for the operation of the

circuit.

Scan Counter

It has two modes i.e. Encoded mode and Decoded mode. In the encoded mode, the counter

provides the binary count that is to be externally decoded to provide the scan lines for the

keyboard and display.

In the decoded scan mode, the counter internally decodes the least significant 2 bits and provides

a decoded 1 out of 4 scan on SL0-SL3.

Return Buffers, Keyboard Debounce, and Control

This unit first scans the key closure row-wise, if found then the keyboard debounce unit

debounces the key entry. In case, the same key is detected, then the code of that key is directly

transferred to the sensor RAM along with SHIFT & CONTROL key status.

FIFO/Sensor RAM and Status Logic

This unit acts as 8-byte first-in-first-out (FIFO) RAM where the key code of every pressed key is

entered into the RAM as per their sequence. The status logic generates an interrupt request after

each FIFO read operation till the FIFO gets empty.

In the scanned sensor matrix mode, this unit acts as sensor RAM where its each row is loaded

with the status of their corresponding row of sensors into the matrix. When the sensor changes its

state, the IRQ line changes to high and interrupts the CPU.

Display Address Registers and Display RAM

This unit consists of display address registers which holds the addresses of the word currently

read/written by the CPU to/from the display RAM.

8279 − Pin Description

The following figure shows the pin diagram of 8279

Data Bus Lines, DB0 - DB7

These are 8 bidirectional data bus lines used to transfer the data to/from the CPU.

CLK

The clock input is used to generate internal timings required by the microprocessor.

RESET

As the name suggests this pin is used to reset the microprocessor.

CS Chip Select

When this pin is set to low, it allows read/write operations, else this pin should be set to high.

A0

This pin indicates the transfer of command/status information. When it is low, it indicates the

transfer of data.

RD, WR

This Read/Write pin enables the data buffer to send/receive data over the data bus.

IRQ

This interrupt output line goes high when there is data in the FIFO sensor RAM. The interrupt

line goes low with each FIFO RAM read operation. However, if the FIFO RAM further contains

any key-code entry to be read by the CPU, this pin again goes high to generate an interrupt to the

CPU.

Vss, Vcc

These are the ground and power supply lines of the microprocessor.

SL0 − SL3

These are the scan lines used to scan the keyboard matrix and display the digits. These lines can

be programmed as encoded or decoded, using the mode control register.

RL0 − RL7

These are the Return Lines which are connected to one terminal of keys, while the other terminal

of the keys is connected to the decoded scan lines. These lines are set to 0 when any key is

pressed.

SHIFT

The Shift input line status is stored along with every key code in FIFO in the scanned keyboard

mode. Till it is pulled low with a key closure, it is pulled up internally to keep it high

CNTL/STB - CONTROL/STROBED I/P Mode

In the keyboard mode, this line is used as a control input and stored in FIFO on a key closure. The

line is a strobe line that enters the data into FIFO RAM, in the strobed input mode. It has an

internal pull up. The line is pulled down with a key closure.

BD

It stands for blank display. It is used to blank the display during digit switching.

OUTA0 – OUTA3 and OUTB0 – OUTB3

These are the output ports for two 16x4 or one 16x8 internal display refresh registers. The data

from these lines is synchronized with the scan lines to scan the display and the keyboard.

Operational Modes of 8279

There are two modes of operation on 8279 − Input Mode and Output Mode.

Input Mode

This mode deals with the input given by the keyboard and this mode is further classified into 3

modes.

 Scanned Keyboard Mode − In this mode, the key matrix can be interfaced using either

encoded or decoded scans. In the encoded scan, an 8×8 keyboard or in the decoded scan, a

4×8 keyboard can be interfaced. The code of key pressed with SHIFT and CONTROL

status is stored into the FIFO RAM.

 Scanned Sensor Matrix − In this mode, a sensor array can be interfaced with the

processor using either encoder or decoder scans. In the encoder scan, 8×8 sensor matrix or

with decoder scan 4×8 sensor matrix can be interfaced.

 Strobed Input − In this mode, when the control line is set to 0, the data on the return lines

is stored in the FIFO byte by byte.

Output Mode

This mode deals with display-related operations. This mode is further classified into two output

modes.

 Display Scan − This mode allows 8/16 character multiplexed displays to be organized as

dual 4-bit/single 8-bit display units.

 Display Entry − This mode allows the data to be entered for display either from the right

side/left side.

Programmable communication interface 8251 USART

SERIAL COMMUNICATION STANDARDS

 Most of devices are parallel in nature. These devices transfer data simultaneously on data

lines. But parallel data transfer process is very complicated and expensive. Hence in some

situations the serial I/O mode is used where one bit is transferred over a single line at a time. In

this type of transmission parallel word is converted into a stream of serial bits which is known as

parallel to serial conversion. The rate of transmission in serial mode is BAUD, i.e., bits per

second. The serial data transmission involves starting, end of transmission, error verification bits

along with the data. Any serial I/O involves the following concepts.

(a) Interfacing requirements (b) Alphanumeric codes (c) Transmission format (d) Error checks in

data communication (e) Data communication over lines (f) Standards in serial I/O

 The microprocessor has to identify the port address to perform read or write operation.

Serial I/O uses only one data line, chip select, read, write control signals.

 Data transfer takes place using ASCII code (American standard code for Information

Interchange) which is 7 bit code with 128 combinations. The data can be transmitted by taking

various parameters into consideration such as synchronization or synchronization, direction of

data flow speed, errors, medium of data transmission etc. In synchronous transmission both

transmitter and receiver operate, in synchronous to each other.

 Synchronization used for high speed operations. In asynchronous data transmission data is

transmitted between Start and Stop bits with logic 1 as mark logic 0 as space. In asynchronous we

get around 11 bits for data transmission one start, 8 bits of data, 2 stop bits. A synchronous data

transmission is used for less than 20 Kbits /second transmission.

DIFFERENCE BETWEEN SYNCHRONOUS AND ASYNCHRONOUS TRANSMISSION:

 SERIAL COMMUNICATION

INTRODUCTION

Serial communication is common method of transmitting data between a computer and a

peripheral device such as a programmable instrument or even another computer. Serial

communication transmits data one bit at a time, sequentially, over a single communication line

to a receiver. Serial is also a most popular communication protocol that is used by many devices

for instrumentation. This method is used when data transfer rates are very low or the data must

be transferred over long distances and also where the cost of cable and synchronization

difficulties makes parallel communication impractical. Serial communication is popular because

most computers have one or more serial ports, so no extra hardware is needed other than a cable

to connect the instrument to the computer or two computers together.

SERIAL AND PARALLEL TRANSMISSION

Let us now try to have a comparative study on parallel and serial communications to

understand the differences and advantages & disadvantages of both in detail.

We know that parallel ports are typically used to connect a PC to a printer and are rarely

used for other connections. A parallel port sends and receives data eight bits at a time over eight

separate wires or lines. This allows data to be transferred very quickly. However, the setup looks

more bulky because of the number of individual wires it must contain. But, in the case of a serial

communication, as stated earlier, a serial port sends and receives data, one bit at a time over one

wire. While it takes eight times as long to transfer each byte of data this way, only a few wires

are required. Although this is slower than parallel communication, which allows the

transmission of an entire byte at once, it is simpler and can be used over longer distances. So, at

first sight it would seem that a serial link must be inferior to a parallel one, because it can

transmit less data on each clock tick. However, it is often the case that, in modern technology,

serial links can be clocked considerably faster than parallel links, and achieves a

higher data rate.

Even in shorter distance communications, serial computer buses are becoming more

common because of a tipping point where the disadvantages of parallel busses (clock skew,

interconnect density) outweigh their advantage of simplicity. The serial port on your PC is a

full-duplex device meaning that it can send and receive data at the same time. In order to be able

to do this, it uses separate lines for transmitting and receiving data.

 From the above discussion we could understand that serial communications have many

advantages over parallel one like:

 Requires fewer interconnecting cables and hence occupies less space.

 "Cross talk" is less of an issue, because there are fewer conductors compared to

that of parallel communication cables.

 Many IC s and peripheral devices have serial interfaces.

 Clock skew between different channels is not an issue.

 Cheaper to implement.

Clock skew:

Clock skew is a phenomenon in synchronous circuits in which the clock signal sent from

the clock circuit arrives at different components at different times, which can be caused by many

things, like:

 Wire-interconnect length

 Temperature variations

 Variation in intermediate devices

 capacitive coupling

 Material imperfections

SERIAL DATA TRANSMISSION MODES

 When data is transmitted between two pieces of equipment, three communication modes of

operation can be used.

 Simplex: In a simple connection, data is transmitted in one direction only. For example, from a

computer to printer that cannot send status signals back to the computer.

 Half-duplex: In a half-duplex connection, two-way transfer of data is possible, but only in one

direction at a time.

 Full duplex: In a full-duplex configuration, both ends can send and receive data simultaneously,

which technique is common in our PCs.

SERIAL DATA TRANSFER SCHEMS

 Like any data transfer methods, Serial Communication also requires coordination between the

sender and receiver. For example, when to start the transmission and when to end it, when one

particular bit or byte ends and another begins, when the receiver's capacity has been exceeded,

and so on. Here comes the need for synchronization between the sender and the receiver. A

protocol defines the specific methods of coordinating transmission between a sender and

receiver. For example a serial data signal between two PCs must have individual bits and bytes

that the receiving PC can distinguish. If it doesn't, then the receiving PC can't tell where one

byte ends and the next one begin or where one bit ends and begins. So the signal must be

synchronized in such a way that the receiver can distinguish the bits and bytes as the transmitter

intends them to be distinguished.

 There are two ways to synchronize the two ends of the communication.

1. Synchronous data transmission

2. Asynchronous data transmission

Synchronous Data Transmission

The synchronous signaling methods use two different signals. A pulse on one signal line

indicates when another bit of information is ready on the other signal line.

In synchronous transmission, the stream of data to be transferred is encoded and sent on

one line, and a periodic pulse of voltage which is often called the "clock" is put on another line,

that tells the receiver about the beginning and the ending of each bit.

 Advantages: The only advantage of synchronous data transfer is the Lower overhead and thus,

greater throughput, compared to asynchronous one.

Disadvantages:

 Slightly more complex

 Hardware is more expensive

Asynchronous data transmission

The asynchronous signaling methods use only one signal. The receiver uses transitions on

that signal to figure out the transmitter bit rate (known as auto baud) and timing. A pulse from

the local clock indicates when another bit is ready. That means synchronous transmissions use

an external clock, while asynchronous transmissions are use special signals along the

transmission medium. Asynchronous communication is the commonly prevailing

communication method in the personal computer industry, due to the reason that it is easier to

implement and has the unique advantage that bytes can be sent whenever they are ready,

a no need to wait for blocks of data to a c c u m u l a t e .

Advantages:

 Simple and doesn't require much synchronization on both communication sides.

 The timing is not as critical as for synchronous transmission; therefore hardware

can be made cheaper.

 Set-up is very fast, so well suited for applications where messages are generated

at irregular intervals, for example data entry from the keyboard.

Disadvantages:

One of the main disadvantages of asynchronous technique is the large relative overhead,

where a high proportion of the transmitted bits are uniquely for control purposes and thus carry

no useful information.

8251A-PROGRAMMABLE COMMUNICATION INTERFACE

(8251A-USART-Universal Synchronous/Asynchronous Receiver/Transmitter)

INTRODUCTION

 A USART is also called a programmable communications interface (PCI). When information is

to be sent by 8086 over long distances, it is economical to send it on a single line. The 8086 has

to convert parallel data to serial data and then output it. Thus lot of microprocessor time is

required for such a conversion.

 Similarly, if 8086 receives serial data over long distances, the 8086 has to internally convert this

into parallel data before processing it. Again, lot of time is required for such a conversion. The

8086 can delegate the job of conversion from serial to parallel and vice versa to the 8251A

USART used in the system.

 The Intel8251A is the industry standard Universal Synchronous/Asynchronous

Receiver/Transmitter (USART), designed for data communications with Intel microprocessor

families such as 8080, 85, 86 and

88. The 8251A converts the parallel data received from the processor on the D7-0 data pins into

serial data, and transmits it on TxD (transmit data) output pin of 8251A. Similarly, it converts

the serial data received on RxD (receive data) input into parallel data, and the processor reads it

using the data pins D7-0.

FEATURES

 Compatible with extended range of Intel microprocessors.

 It provides both synchronous and asynchronous data transmission.

 Synchronous 5-8 bit characters.

 Asynchronous 5-8 bit characters.

 It has full duplex, double buffered transmitter and receiver.

 Detects the errors-parity, overrun and framing errors.

 All inputs and outputs are TTL compatible.

 Available in 28-pin DIP package.

ARCHITECTURE

 The 8251A is a USART (Universal Synchronous Asynchronous Receiver Transmitter) for serial

data communication. As a peripheral device of a microcomputer system, the 8251 receives

parallel data from the CPU and transmits serial data after conversion. This device also receives

serial data from the outside and transmits parallel data to the CPU after conversion. The internal

block diagram of 8251A is shown in fig below.

 Data Bus Buffer: This bidirectional, 8-bit buffer used to interface the 8251A to the system data

bus and also used to read or write status, command word or data from or to the 8251A.

 Read/Write control logic: The Read/Write Control logic interfaces the 8251A with

microprocessor, determines the functions of the 8251A according to the control word written

into its control register and monitors the data flow. This section has three registers and they are

control register, status register and data buffer.

 The active low signals � � , 𝑊 � , � � and �/� are used for read/write operations

with these three registers.

 When�/�) is high, the control register is selected for writing control word or

reading status word. When �/� is low, the data buffer is selected for read/write

operation.

 When the reset is high, it forces 8251A into the idle mode.

 The clock input is necessary for 8251A for communication with microprocessor

and this clock does not control either the serial transmission or the reception rate.

 Transmitter section: The transmitter section accepts parallel data from microprocessor and

converts them into serial data. The transmitter section is double buffered, i.e., it has a buffer

register to hold an 8-bit parallel data and another register called output register to convert the

parallel data into serial bits. When output register is empty, the data is transferred from buffer to

output register. Now the processor can again load another data in buffer register.

 If buffer register is empty, then TxRDY is goes to high.

 If output register is empty then TxEMPTY goes to high.

 The clock signal � 𝑥 � controls the rate at which the bits are transmitted by the

USART.

 The clock frequency can be 1,16 or 64 times the baud rate.

 Receiver Section: The receiver section accepts serial data and converts them into parallel data.

The receiver section is double buffered, i.e., it has an input register to receive serial data and

convert to parallel, and a buffer register to hold the parallel data. When the RxD line goes low,

the control logic assumes it as a START bit, waits for half a bit time and samples the line again.

If the line is still low, then the input register accepts the following bits, forms a character and

loads it into the buffer register. The microprocessor reads the parallel data from the buffer

register.

 When the input register loads a parallel data to buffer register, the RxRDY line

goes high.

 The clock signal � 𝑥 � controls the rate at which bits are received by the USART.

 During asynchronous mode, the signal SYNDET/BRKDET will indicate the

break in the data transmission. During synchronous mode, the signal

SYNDET/BRKDET will indicate the reception of synchronous character.

 MODEM Control: The MODEM control unit allows to interface a MODEM to 8251A and to

establish data communication through MODEM over telephone lines. This unit takes care of

handshake signals for MODEM interface.

PIN DIAGRAM

D0 to D7 (l/O terminal): This is bidirectional data bus which receives control words and

transmits data from the CPU and sends status words and received data to CPU.

RESET (Input terminal): A "High" on this input forces the 8251 into "reset status." The device

waits for the writing of "mode instruction." The min. reset width is six clock inputs during the

operating status of CLK.

CLK (Input terminal): CLK signal is used to generate internal device timing. CLK signal is

independent of RXC or TXC. However, the frequency of CLK must be greater than 30 times the

RXC and TXC at Synchronous mode and Asynchronous "x1" mode, and must be greater than 5

times at Asynchronous "x16" and "x64" mode.

WR (Input terminal): This is the "active low" input terminal which receives a signal for writing

transmit data and control words from the CPU into the 8251.

RD (Input terminal): This is the "active low" input terminal which receives a signal for reading

receive data and status words from the 8251.

C/ D (Input terminal): This is an input terminal which receives a signal for selecting data or

command words and status words when the 8251 is accessed by the CPU. If C/D = low, data will

be accessed. If C/D = high, command word or status word will be accessed.

CS (Input terminal): This is the "active low" input terminal which selects the 8251 at low level

when the CPU accesses. Note: The device won‟t be in "standby status"; only setting CS = High.

TXD (output terminal): This is an output terminal for transmitting data from which serial-

converted data is sent out. The device is in "mark status" (high level) after resetting or during a

status when transmit is disabled. It is also possible to set the device in "break status" (low level)

by a command.

TXRDY (output terminal): This is an output terminal which indicates that the 8251is ready to

accept a transmitted data character. But the terminal is always at low level if CTS = high or the

device was set in "TX disable status" by a command. Note: TXRDY status word indicates that

transmit data character is receivable, regardless of CTS or command. If the CPU writes a data

character, TXRDY will be reset by the leading edge or WR signal.

TXEMPTY (Output terminal): This is an output terminal which indicates that the 8251 has

transmitted all the characters and had no data character. In "synchronous mode," the terminal is

at high level, if transmit data characters are no longer remaining and sync characters are

automatically transmitted. If the CPU writes a data character, TXEMPTY will be reset by the

leading edge of WR signal. Note : As the transmitter is disabled by setting CTS "High" or

command, data written before disable will be sent out. Then TXD and TXEMPTY will be

"High". Even if a data is written after disable, that data is not sent out and TXE will be "High”.

After the transmitter is enabled, it sent out. (Refer to Timing Chart of Transmitter Control and

Flag Timing)

TXC (Input terminal): This is a clock input signal which determines the transfer speed of

transmitted data. In "synchronous mode," the baud rate will be the same as the frequency of

TXC. In "asynchronous mode", it is possible to select the baud rate factor by mode instruction. It

can be 1, 1/16 or 1/64 the TXC. The falling edge of TXC sifts the serial data out of the 8251.

RXD (input terminal): This is a terminal which receives serial data.

RXRDY (Output terminal): This is a terminal which indicates that the 8251 contains a

character that is ready to READ. If the CPU reads a data character, RXRDY will be reset by the

leading edge of RD signal. Unless the CPU reads a data character before the next one is received

completely, the preceding data will be lost. In such a case, an overrun error flag status word will

be set.

RXC (Input terminal): This is a clock input signal which determines the transfer speed of

received data. In "synchronous mode," the baud rate is the same as the frequency of RXC. In

"asynchronous mode," it is possible to select the baud rate factor by mode instruction. It can be

1, 1/16, 1/64 the RXC.

SYNDET/BD (Input or output terminal): This is a terminal whose function changes according

to mode. In "internal synchronous mode." this terminal is at high level, if sync characters are

received and synchronized. If a status word is read, the terminal will be reset. In "external

synchronous mode, "this is an input terminal. A "High" on this input forces the 8251 to start

receiving data characters.

In "asynchronous mode," this is an output terminal which generates "high level “output upon the

detection of a "break" character if receiver data contains a "low-level" space between the stop

bits of two continuous characters. The terminal will be reset, if RXD is at high level. After Reset

is active, the terminal will be output at low level.

DSR (Input terminal): This is an input port for MODEM interface. The input status of the

terminal can be recognized by the CPU reading status words.

DTR (Output terminal): This is an output port for MODEM interface. It is possible to set the

status of DTR by a command.

CTS (Input terminal): This is an input terminal for MODEM interface which is used for

controlling a transmit circuit. The terminal controls data transmission if the device is set in "TX

Enable" status by a command. Data is transmittable if the terminal is at low level.

RTS (Output terminal): This is an output port for MODEM interface. It is possible to set the

status RTS by a command.

8251A USART INTERFACING WITH 8086

PROGRAMMING THE 8251A

 Prior to starting a data transmission or reception, the 8251A must be loaded with a set of

control words generated by the microprocessor. These control signals define the complete

functional definition of the 8251A and must immediately follow a reset operation (internal or

external). The control words are split into two formats.

1. Mode instruction

2. Command instruction

 Mode instruction: Mode instruction is used for setting the function of the 8251A. Mode

instruction will be in "wait for write" at either internal reset or external reset. That is, the

writing of a control word after resetting will be recognized as a "mode instruction."

Items set by mode instruction are as follows:

• Synchronous/asynchronous mode

• Stop bit length (asynchronous mode)

• Character length

• Parity bit

• Baud rate factor (asynchronous mode)

• Internal/external synchronization (synchronous mode)

• Number of synchronous characters (Synchronous mode)

 The bit configuration of mode instruction format is shown in Figures below. In the case of

synchronous mode, it is necessary to write one-or two byte sync characters. If sync characters

were written, a function will be set because the writing of sync characters constitutes part of

mode instruction.

Fig. Mode instruction format, Asynchronous mode

Fig. Mode instruction format, Synchronous mode

Command Instruction: Command is used for setting the operation of the 8251. It is possible to

write a command whenever necessary after writing a mode instruction and sync characters.

Items to be set by command are as follows:

• Transmit Enable/Disable

• Receive Enable/Disable

• DTR, RTS Output of data.

• Resetting of error flag.

• Sending to break characters

• Internal resetting

• Hunt mode (synchronous mode)

Status Word: It is possible to see the internal status of the 8251 by reading a status word. The

format of status word is shown below.

Fig. Status word

RECOMMENDED STANDARD -232C (RS-232C)

 RS-232 was first introduced in 1962 by the Radio Sector of the Electronic Industries Association

(EIA). RS-232 (Recommended standard-232) is a standard interface approved by the Electronic

Industries Association (EIA) for connecting serial devices. In other words, RS-232 is a long-

established standard that describes the physical interface and protocol for relatively low-speed serial

data communication between computers and related devices. An industry trade group, the Electronic

Industries Association (EIA), defined it originally for teletypewriter devices. In 1987, the EIA

released a new version of the standard and changed the name to EIA-232-D. Many people,

however, still refer to the standard as RS-232C, or just RS-232. RS-232 is the interface that your

computer uses to talk to and exchange data with your modem and other serial devices. The serial

ports on most computers use a subset of the RS-232C standard.

 RS-232C is defined as the “Interface between data terminal equipment and data communications

equipment using serial binary data exchange.” This definition defines data terminal equipment

(DTE) as the computer, while data communications equipment (DCE) is the modem. A modem

cable has pin-to-pin connections, and is designed to connect a DTE device to a DCE device. In

addition to communications between computer equipment over telephone lines, RS-232C is now

widely used for direct connections between data acquisition devices and computer systems. As in

the definition of RS-232, the computer is data transmission equipment (DTE). RS-232C cables are

commonly available with 4, 9 or 25-pin wiring. The 25-pin cable connects every pin; the 9-pin

cables do not include many of the uncommonly used connections; 4-pin cables provide the bare

minimum connections, and have jumpers to provide “handshaking” for those devices that require

it.

 An RS-232 serial port was once a standard feature of a personal computer, used for

connections to modems, printers, mice, data storage, uninterruptible power supplies, and other

peripheral devices. However, the low transmission speed, large voltage swing, and large standard

connectors motivated development of the Universal Serial Bus, which has displaced RS-232 from

most of its peripheral interface roles.

 In RS-232, user data is sent as a time-series of bits. Both synchronous and asynchronous

transmissions are supported by the standard. In addition to the data circuits, the standard defines a

http://en.wikipedia.org/wiki/Electronic_Industries_Alliance
http://en.wikipedia.org/wiki/Electronic_Industries_Alliance
http://en.wikipedia.org/wiki/Serial_port
http://en.wikipedia.org/wiki/Personal_computer
http://en.wikipedia.org/wiki/Modem
http://en.wikipedia.org/wiki/Printer_(computing)
http://en.wikipedia.org/wiki/Mouse_(computing)
http://en.wikipedia.org/wiki/Uninterruptible_power_supplies
http://en.wikipedia.org/wiki/Universal_Serial_Bus
http://en.wikipedia.org/wiki/Time-series
http://en.wikipedia.org/wiki/Bit

number of control circuits used to manage the connection between the DTE and DCE. Each data or

control circuit only operates in one direction, which is, signaling from a DTE to the attached DCE

or the reverse. Since transmit data and receive data are separate circuits, the interface can operate in

a full duplex manner, supporting concurrent data flow in both directions.

 The RS-232 standard defines the voltage levels that correspond to logical one and logical zero

levels for the data transmission and the control signal lines. Valid signals are either in the range of

+3 to +15 volts for logic 0 or the range -3 to -15 volts for logic 1, the range between -3 to +3 volts is

not a valid RS-232 level. For data transmission lines (TxD, RxD and their secondary channel

equivalents) logic one is defined as a negative voltage, the signal condition is called "mark." Logic

zero is positive and the signal condition is termed "space." The 9-pin RS-232C standard is shown in

figure below.

TTL TO RS-232C AND RS-232C TO TTL CONVERSION

 The RS-232C standard does not define elements as the character encoding or the framing of

characters, or error detection protocols. Details of character format and transmission bit rate

are controlled by the serial port hardware, often a single integrated circuit called a

USART that converts data from parallel to asynchronous start-stop serial form. Details

of voltage levels, slew rate, and short-circuit behavior are typically controlled by a line driver

(MC 1488) that converts from the USART's logic levels (TTL levels) to RS-232 compatible

http://en.wikipedia.org/wiki/Full_duplex
http://en.wikipedia.org/wiki/Character_encoding
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/UART
http://en.wikipedia.org/wiki/Asynchronous_start-stop
http://en.wikipedia.org/wiki/Line_driver
http://en.wikipedia.org/wiki/Logic_level

signal levels, and a receiver (MC 1489) that converts RS-232 compatible signal levels to the

USART's logic levels (TTL levels). The figure shows the conversion of TTL to RS-232C and

Rs-232C to TTL levels.

Fig. (a). TTL to Rs-232C and Fig. (b). RS-232C to TTL Conversion

INTRODUCTION TO HIGH SPEED SERIAL COMMUNICATION STANDARDS

 In telecommunication and computer science, serial communication is the process

of sending data one bit at a time, sequentially, over a communication channel or computer bus.

This is in contrast to parallel communication, where several bits are sent as a whole, on a link

with several parallel channels. Serial communication is used for all long-haul communication

and most computer networks, where the cost of cable and synchronization difficulties make

parallel communication impractical. Serial computer buses are becoming more common even

at shorter distances, as improved signal integrity and transmission speeds in newer serial

technologies have begun to outweigh the parallel bus's advantage of simplicity.

 Examples of serial communication standards are:

 Morse code telegraphy

http://en.wikipedia.org/wiki/Telecommunication
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Communication_channel
http://en.wikipedia.org/wiki/Computer_bus
http://en.wikipedia.org/wiki/Parallel_communication
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Cable
http://en.wikipedia.org/wiki/Synchronization
http://en.wikipedia.org/wiki/Signal_integrity
http://en.wikipedia.org/wiki/Morse_code
http://en.wikipedia.org/wiki/Telegraphy

 RS-232 (low-speed, implemented by serial ports)

 RS-422

 RS-423

 RS-485

 I²C

 SPI

 ARINC 818 Avionics Digital Video Bus

 Atari SIO (Joe Decuir credits his work on Atari SIO as the basis of USB)

 Universal Serial Bus (moderate-speed, for connecting peripherals to computers)

 FireWire

 Ethernet

 Fibre Channel (high-speed, for connecting computers to mass storage devices)

 InfiniBand (very high speed, broadly comparable in scope to PCI)

 MIDI control of electronic musical instruments

 DMX512 control of theatrical lighting

 SDI-12 industrial sensor protocol

 CoaXPress industrial camera protocol over Coax

 Serial Attached SCSI

 Serial ATA

 Space Wire Spacecraft communication network

 Hyper Transport

 PCI Express

 SONET and SDH (high speed telecommunication over optical fibers)

 T-1, E-1 and variants (high speed telecommunication over copper pairs)

 MIL-STD-1553A/B

DMA Controller 8257

Introduction

http://en.wikipedia.org/wiki/RS-232
http://en.wikipedia.org/wiki/Serial_port
http://en.wikipedia.org/wiki/RS-422
http://en.wikipedia.org/wiki/RS-423
http://en.wikipedia.org/wiki/RS-485
http://en.wikipedia.org/wiki/I%C2%B2C
http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
http://en.wikipedia.org/wiki/ARINC_818
http://en.wikipedia.org/wiki/Atari_SIO
http://en.wikipedia.org/wiki/Universal_Serial_Bus
http://en.wikipedia.org/wiki/FireWire
http://en.wikipedia.org/wiki/Ethernet
http://en.wikipedia.org/wiki/Fibre_Channel
http://en.wikipedia.org/wiki/InfiniBand
http://en.wikipedia.org/wiki/Peripheral_Component_Interconnect
http://en.wikipedia.org/wiki/MIDI
http://en.wikipedia.org/wiki/DMX512
http://en.wikipedia.org/wiki/SDI-12
http://en.wikipedia.org/wiki/CoaXPress
http://en.wikipedia.org/wiki/Serial_Attached_SCSI
http://en.wikipedia.org/wiki/Serial_ATA
http://en.wikipedia.org/wiki/SpaceWire
http://en.wikipedia.org/wiki/HyperTransport
http://en.wikipedia.org/wiki/PCI_Express
http://en.wikipedia.org/wiki/Synchronous_Optical_Networking
http://en.wikipedia.org/wiki/Synchronous_Optical_Networking
http://en.wikipedia.org/wiki/T-carrier
http://en.wikipedia.org/wiki/E-carrier
http://en.wikipedia.org/wiki/MIL-STD-1553

DMA stands for Direct Memory Access. It is designed by Intel to transfer data at the fastest rate.

It allows the device to transfer the data directly to/from memory without any interference of the

CPU.

Using a DMA controller, the device requests the CPU to hold its data, address and control bus, so

the device is free to transfer data directly to/from the memory. The DMA data transfer is initiated

only after receiving HLDA signal from the CPU.

How DMA Operations are performed?

Following is the sequence of operations performed by a DMA −

 Initially, when any device has to send data between the device and the memory, the device

has to send DMA request (DRQ) to DMA controller.

 The DMA controller sends Hold request (HRQ) to the CPU and waits for the CPU to

assert the HLDA.

 Then the microprocessor tri-states all the data bus, address bus, and control bus. The CPU

leaves the control over bus and acknowledges the HOLD request through HLDA signal.

 Now the CPU is in HOLD state and the DMA controller has to manage the operations

over buses between the CPU, memory, and I/O devices.

Features of 8257

Here is a list of some of the prominent features of 8257 −

 It has four channels which can be used over four I/O devices.

 Each channel has 16-bit address and 14-bit counter.

 Each channel can transfer data up to 64kb.

 Each channel can be programmed independently.

 Each channel can perform read transfer, write transfer and verify transfer operations.

 It generates MARK signal to the peripheral device that 128 bytes have been transferred.

 It requires a single phase clock.

 Its frequency ranges from 250Hz to 3MHz.

 It operates in 2 modes, i.e., Master mode and Slave mode.

8257 Architecture

The following image shows the architecture of 8257 −

The internal architecture of 8257 is shown in figure. The chip support four DMA channels, i.e. four

peripheral devices can independently request for DMA data transfer through these channels at a time. The

DMA controller has 8-bit internal data buffer, a read/write unit, a control unit, a priority resolving unit

along with a set of registers. The 8257 performs the DMA operation over four independent DMA

channels. Each of four channels of 8257 has a pair of two 16-bit registers, viz. DMA address register and

terminal count register

There are two common registers for all the channels; namely, mode set register and status register.

Thus there are a total of ten registers. The CPU selects one of these ten registers using address lines Ao-

A3. Table shows how the Ao-A3 bits may be used for selecting one of these registers.

8257 Pin Description

The following image shows the pin diagram of a 8257 DMA controller

DRQ0−DRQ3

These are the four individual channel DMA request inputs, which are used by the peripheral

devices for using DMA services. When the fixed priority mode is selected, then DRQ0 has the

highest priority and DRQ3 has the lowest priority among them.

DACKo − DACK3

These are the active-low DMA acknowledge lines, which updates the requesting peripheral about

the status of their request by the CPU. These lines can also act as strobe lines for the requesting

devices.

Do − D7

These are bidirectional, data lines which are used to interface the system bus with the internal

data bus of DMA controller. In the Slave mode, it carries command words to 8257 and status

word from 8257. In the master mode, these lines are used to send higher byte of the generated

address to the latch. This address is further latched using ADSTB signal.

IOR

It is an active-low bidirectional tri-state input line, which is used by the CPU to read internal

registers of 8257 in the Slave mode. In the master mode, it is used to read data from the peripheral

devices during a memory write cycle.

IOW

It is an active low bi-direction tri-state line, which is used to load the contents of the data bus to

the 8-bit mode register or upper/lower byte of a 16-bit DMA address register or terminal count

register. In the master mode, it is used to load the data to the peripheral devices during DMA

memory read cycle.

CLK

It is a clock frequency signal which is required for the internal operation of 8257.

RESET

This signal is used to RESET the DMA controller by disabling all the DMA channels.

Ao - A3

These are the four least significant address lines. In the slave mode, they act as an input, which

selects one of the registers to be read or written. In the master mode, they are the four least

significant memory address output lines generated by 8257.

CS

It is an active-low chip select line. In the Slave mode, it enables the read/write operations to/from

8257. In the master mode, it disables the read/write operations to/from 8257.

A4 - A7

These are the higher nibble of the lower byte address generated by DMA in the master mode.

READY

It is an active-high asynchronous input signal, which makes DMA ready by inserting wait states.

HRQ

This signal is used to receive the hold request signal from the output device. In the slave mode, it

is connected with a DRQ input line 8257. In Master mode, it is connected with HOLD input of

the CPU.

HLDA

It is the hold acknowledgement signal which indicates the DMA controller that the bus has been

granted to the requesting peripheral by the CPU when it is set to 1.

MEMR

It is the low memory read signal, which is used to read the data from the addressed memory

locations during DMA read cycles.

MEMW

It is the active-low three state signal which is used to write the data to the addressed memory

location during DMA write operation.

ADST

This signal is used to convert the higher byte of the memory address generated by the DMA

controller into the latches.

AEN

This signal is used to disable the address bus/data bus.

TC

It stands for „Terminal Count‟, which indicates the present DMA cycle to the present peripheral

devices.

MARK

The mark will be activated after each 128 cycles or integral multiples of it from the beginning. It

indicates the current DMA cycle is the 128th cycle since the previous MARK output to the

selected peripheral device.

Vcc

It is the power signal which is required for the operation of the circuit.

DMA Address Register

Each DMA channel has one DMA address register. The function of this register is to store the address of

the starting memory location, which will be accessed by the DMA channel. Thus the starting address of the

memory block which will be accessed by the device is first loaded in the DMA address register of the

channel. The device that wants to transfer data over a DMA channel, will access the block of the memory

with the starting address stored in the DMA Address Register.

Terminal Count Register

Each of the four DMA channels of 8257 has one terminal count register (TC). This 16-bit register issued

for ascertaining that the data transfer through a DMA channel ceases or stops after the required number of

DMA cycles. The low order 14-bits of the terminal count register are initialized with the binary equivalent

of the number of required DMA cycles minus one.

After each DMA cycle, the terminal count register content will be decremented by one and finally it

becomes zero after the required number of DMA cycles are over. The bits 14 and 15 of this register

indicate the type of the DMA operation (transfer). If the device wants to write data into the memory, the

DMA operation is called DMA write operation. Bit 14 of the register in this case will be set to one and bit

15 will be set to zero.Table gives detail of DMA operation selection and corresponding bit configuration

of bits 14 and 15 of the TC register.

Table 3. DMA operation selection using A15/RD and A15/WR

Mode Set Register

The mode set register is used for programming the 8257 as per the requirements of the system. The

function of the mode set register is to enable the DMA channels individually and also to set the various

modes of operation.

The DMA channel should not be enabled till the DMA address register and the terminal count register

contain valid information, otherwise, an unwanted DMA request may initiate

a DMA cycle, probably destroying the valid memory data. The bits Do -D3 enable one of the four DMA

channels of 8257. for example, if Do is „1‟, channel 0 is enabled. If bit 4 is set, rotating priority is enabled,

otherwise, the normal, i.e. fixed priority is enabled.

If the TC STOP bit is set, the selected channel is disabled after the terminal count condition is reached, and

it further prevents any DMA cycle on the channel. To enable the channel again, this bit must be

reprogrammed. If the TC STOP bit is programmed to be zero, the channel is not disabled, even after the

count reaches zero and further request are allowed on the same channel.

The auto load bit, if set, enables channel 2 for the repeat block chaining operations, without

immediate software intervention between the two successive blocks. The channel 2 registers are used as

usual, while the channel 3 registers are used to store the block reinitialisation parameters, i.e. the DMA

starting address and terminal count.

After the first block is transferred using DMA, the channel 2 registers are reloaded

with the corresponding channel 3 registers for the next block transfer, if the update flag is set. The

extended write bit, if set to „1‟, extends the duration of MEMW and IOW signals by activating them

earlier, this is useful in interfacing the peripherals with different access times.

If the peripheral is not accessed within the stipulated time, it is expected to give the

„NOT READY‟ indication to 8257, to request it to add one or more wait states in the DMA CYCLE. The

mode set register can only be written into.

Status Register

The status register of 8257 is shown in figure. The lower order 4-bits of this register contain the terminal

count status for the four individual channels. If any of these bits is set, it indicates that the specific channel

has reached the terminal count condition.

These bits remain set till either the status is read by the CPU or the 8257 is reset.

The update flag is not affected by the read operation. This flag can only be cleared by resetting 8257 or by

resetting the auto load bit of the mode set register. If the update flag is set, the contents of the channel 3

registers are reloaded to the corresponding registers of channel 2 whenever the channel 2 reaches a

terminal count condition, after transferring one block and the next block is to be transferred using the auto

load feature of 8257. The update flag is set every time; the channel 2 registers are loaded with contents of

the channel 3 registers. It is cleared by the completion of the first DMA cycle of the new block. This

register can only read.

UNIT-IV

8051 MICROCONTROLLER

THE 8051 ARCHITECTURE

Different aspects of a microprocessor/controller:

• Hardware :Interface to the real world

• Software :order how to deal with inputs

The necessary tools for a microprocessor/controller:

• CPU: Central Processing Unit

• I/O: Input /Output

• Bus: Address bus & Data bus

• Memory: RAM & ROM

• Timer

• Interrupt

• Serial Port

• Parallel Port

•

Microprocessors:

General-purpose microprocessor :

• CPU for Computers

• No RAM, ROM, I/O on CPU chip itself

• Example：Intel‟s x86, Motorola‟s 680x0

 General purpose of microprocessor or Block diagram

Microcontroller :

• A smaller computer

• On-chip RAM, ROM, I/O ports...

• Example：Motorola‟s 6811, Intel‟s 8051, Zilog‟s Z8 and PIC 16X

Microprocessor vs. Microcontroller :

Three criteria in Choosing a Microcontroller :

1. meeting the computing needs of the task efficiently and cost effectively

• speed, the amount of ROM and RAM, the number of I/O ports and timers, size,

packaging, power consumption

• easy to upgrade

• cost per unit

2. availability of software development tools

• assemblers, debuggers, C compilers, emulator, simulator, technical support

3. wide availability and reliable sources of the microcontrollers.

Block Diagram:

The basic features 8051 Core:

• 8-bit CPU optimized for control applications

• Capability for single bit Boolean operations.

• Supports up to 64K of program memory.

• Supports up to 64K of program memory.

• 4 K bytes of on-chip program memory.

• Newer devices provide more.

• 128 or 256 bytes of on-chip data RAM.

• Four 8 bit ports.

• Two 16-bit timer/counters.

• UART.

• Interrupts.

• On-chip clock oscillator.

Architecture Of 8051

Pin Description of the 8051:

1
2
3

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38

37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

P1.0
P1.1
P1.2

P1.3
P1.4
P1.5
P1.6
P1.7
RST

(RXD)P3.0
(TXD)P3.1

(T0)P3.4
(T1)P3.5

XTAL2
XTAL1

GND

(INT0)P3.2

(INT1)P3.3

(RD)P3.7
(WR)P3.6

Vcc
P0.0(AD0)
P0.1(AD1)

P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)

EA/VPP
ALE/PROG

PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

8051

(8031)

Pins of 8051（1/4)

• Vcc（pin 40）：

– Vcc provides supply voltage to the chip.

– The voltage source is +5V.

• GND（pin 20）：ground

• XTAL1 and XTAL2（pins 19,18）

XTAL Connection to 8051:

Pins of 8051（2/4）:

• RST（pin 9）：reset

– It is an input pin and is active high（normally low）.

• The high pulse must be high at least 2 machine cycles.

– It is a power-on reset.

• Upon applying a high pulse to RST, the microcontroller will reset and all

values in registers will be lost.

• Reset values of some 8051 registers

Power-On RESET Circuit:

Pins of 8051（3/4）:

• /EA（pin 31）：external access

– There is no on-chip ROM in 8031 and 8032 .

– The /EA pin is connected to GND to indicate the code is stored externally.

– /PSEN ＆ ALE are used for external ROM.

– For 8051, /EA pin is connected to Vcc.

– “/” means active low.

• /PSEN（pin 29）：program store enable

– This is an output pin and is connected to the OE pin of the ROM.

Pins of 8051（4/4）:

 ALE（pin 30）：address latch enable

 It is an output pin and is active high.

 8051 port 0 provides both address and data.

 The ALE pin is used for de-multiplexing the address and data by connecting to the

G pin of the 74LS373 latch.

 I/O port pins

 The four ports P0, P1, P2, and P3.

 Each port uses 8 pins.

 All I/O pins are bi-directional.

Pins of I/O Port:

• The 8051 has four I/O ports

– Port 0 （pins 32-39）：P0（P0.0～P0.7）

– Port 1（pins 1-8） ：P1（P1.0～P1.7）

– Port 2（pins 21-28）：P2（P2.0～P2.7）

– Port 3（pins 10-17）：P3（P3.0～P3.7）

– Each port has 8 pins.

• Named P0.X （X=0,1,...,7）, P1.X, P2.X, P3.X

• Ex：P0.0 is the bit 0（LSB）of P0

• Ex：P0.7 is the bit 7（MSB）of P0

• These 8 bits form a byte.

• Each port can be used as input or output (bi-direction).

Hardware Structure of I/O Pin:

• Each pin of I/O ports

– Internal CPU bus：communicate with CPU

– A D latch store the value of this pin

• D latch is controlled by “Write to latch”

– Write to latch＝1：write data into the D latch

– 2 Tri-state buffer：

• TB1: controlled by “Read pin”

– Read pin＝1：really read the data present at the pin

• TB2: controlled by “Read latch”

– Read latch＝1：read value from internal latch

– A transistor M1 gate

• Gate=0: open

• Gate=1: close

A Pin of Port 1:

Writing “1” to Output Pin P1.X:

Writing “0” to Output Pin P1.X:

Reading “High” at Input Pin:

Reading “Low” at Input Pin:

Other Pins:

• P1, P2, and P3 have internal pull-up resisters.

– P1, P2, and P3 are not open drain.

• P0 has no internal pull-up resistors and does not connects to Vcc inside the 8051.

– P0 is open drain.

– Compare the figures of P1.X and P0.X.

• However, for a programmer, it is the same to program P0, P1, P2 and P3.

• All the ports upon RESET are configured as output.

A Pin of Port 0:

Port 0 with Pull-Up Resistors:

Port 3 Alternate Functions:

Registers :

What is an Addressing Mode?

An Addressing Mode is a way to locate a target Data, which is also called as Operand. The 8051

Family of Microcontrollers allows five types of Addressing Modes for addressing the Operands.

They are:

 Immediate Addressing
 Register Addressing
 Direct Addressing
 Register – Indirect Addressing
 Indexed Addressing

Immediate Addressing

In Immediate Addressing mode, the operand, which follows the Opcode, is a constant data of

either 8 or 16 bits. The name Immediate Addressing came from the fact that the constant data to

be stored in the memory immediately follows the Opcode.

The constant value to be stored is specified in the instruction itself rather than taking from a

register. The destination register to which the constant data must be copied should be the same

size as the operand mentioned in the instruction.

Example: MOV A, #030H

Here, the Accumulator is loaded with 30 (hexadecimal). The # in the operand indicates that it is a

data and not the address of a Register.

Immediate Addressing is very fast as the data to be loaded is given in the instruction itself.

Register Addressing

In the 8051 Microcontroller Memory Organization Tutorial, we have seen the organization of

RAM and four banks of Working Registers with eight Registers in each bank.

In Register Addressing mode, one of the eight registers (R0 – R7) is specified as Operand in the

Instruction.

It is important to select the appropriate Bank with the help of PSW Register. Let us see a example

of Register Addressing assuming that Bank0 is selected.

Example: MOV A, R5

Here, the 8-bit content of the Register R5 of Bank0 is moved to the Accumulator.

Direct Addressing

In Direct Addressing Mode, the address of the data is specified as the Operand in the instruction.

Using Direct Addressing Mode, we can access any register or on-chip variable. This includes

general purpose RAM, SFRs, I/O Ports, Control registers.

Example: MOV A, 47H

Here, the data in the RAM location 47H is moved to the Accumulator.

Register Indirect Addressing

In the Indirect Addressing Mode or Register Indirect Addressing Mode, the address of the

Operand is specified as the content of a Register. This will be clearer with an example.

Example: MOV A, @R1

The @ symbol indicates that the addressing mode is indirect. If the contents of R1 is 56H, for

example, then the operand is in the internal RAM location 56H. If the contents of the RAM

location 56H is 24H, then 24H is moved into accumulator.

Only R0 and R1 are allowed in Indirect Addressing Mode. These register in the indirect

addressing mode are called as Pointer registers.

Indexed Addressing Mode

With Indexed Addressing Mode, the effective address of the Operand is the sum of a base register

and an offset register. The Base Register can be either Data Pointer (DPTR) or Program Counter

(PC) while the Offset register is the Accumulator (A).

In Indexed Addressing Mode, only MOVC and JMP instructions can be used. Indexed

Addressing Mode is useful when retrieving data from look-up tables.

Example: MOVC A, @A+DPTR

Instruction set of 8051
The following table shows the 8051 Instruction Groups and Instructions in each group. There are 49
Instruction Mnemonics in the 8051 Microcontroller Instruction Set and these 49 Mnemonics are divided
into five groups

8051 has about 111 instructions. These can be grouped into the following categories

1. Arithmetic Instructions

2. Logical Instructions

3. Data Transfer instructions

4. Boolean Variable Instructions

5. Program Branching Instructions

The following nomenclatures for register, data, address and variables are used while write instructions.

A: Accumulator

B: "B" register

C: Carry bit

Rn: Register R0 - R7 of the currently selected register bank

Direct: 8-bit internal direct address for data. The data could be in lower 128bytes of RAM (00 - 7FH) or it

could be in the special function register (80 - FFH).

@Ri: 8-bit external or internal RAM address available in register R0 or R1. This is used for indirect

addressing mode.

#data8: Immediate 8-bit data available in the instruction.

#data16: Immediate 16-bit data available in the instruction.

Addr11: 11-bit destination address for short absolute jump. Used by instructions AJMP & ACALL. Jump

range is 2 kbyte (one page).

Addr16: 16-bit destination address for long call or long jump.

Rel: 2's complement 8-bit offset (one - byte) used for short jump (SJMP) and all conditional jumps.

bit: Directly addressed bit in internal RAM or SFR

Arithmetic Instructions

Mnemonics Description Bytes Instruction Cycles

ADD A, Rn A A + Rn 1 1

ADD A, direct A A + (direct) 2 1

ADD A, @Ri A A + @Ri 1 1

ADD A, #data A A + data 2 1

ADDC A, Rn A A + Rn + C 1 1

ADDC A, direct A A + (direct) + C 2 1

ADDC A, @Ri A A + @Ri + C 1 1

ADDC A, #data A A + data + C 2 1

DA A Decimal adjust accumulator 1 1

DIV AB Divide A by B

A quotient

B remainder

1 4

DEC A A A -1 1 1

DEC Rn Rn Rn - 1 1 1

DEC direct (direct) (direct) - 1 2 1

DEC @Ri @Ri @Ri - 1 1 1

INC A A A+1 1 1

INC Rn Rn Rn + 1 1 1

INC direct (direct) (direct) + 1 2 1

INC @Ri @Ri @Ri +1 1 1

INC DPTR DPTR DPTR +1 1 2

MUL AB Multiply A by B

A low byte (A*B)

B high byte (A* B)

1 4

SUBB A, Rn A A - Rn - C 1 1

SUBB A, direct A A - (direct) - C 2 1

SUBB A, @Ri A A - @Ri - C 1 1

SUBB A, #data A A - data - C 2 1

Logical Instructions

Mnemonics Description Bytes Instruction Cycles

ANL A, Rn A A AND Rn 1 1

ANL A, direct A A AND (direct) 2 1

ANL A, @Ri A A AND @Ri 1 1

ANL A, #data A A AND data 2 1

ANL direct, A (direct) (direct) AND A 2 1

ANL direct, #data (direct) (direct) AND data 3 2

CLR A A 00H 1 1

CPL A A A 1 1

ORL A, Rn A A OR Rn 1 1

ORL A, direct A A OR (direct) 1 1

ORL A, @Ri A A OR @Ri 2 1

ORL A, #data A A OR data 1 1

ORL direct, A (direct) (direct) OR A 2 1

ORL direct, #data (direct) (direct) OR data 3 2

RL A Rotate accumulator left 1 1

RLC A Rotate accumulator left through

carry

1 1

RR A Rotate accumulator right 1 1

RRC A Rotate accumulator right through

carry

1 1

SWAP A Swap nibbles within Acumulator 1 1

XRL A, Rn A A EXOR Rn 1 1

XRL A, direct A A EXOR (direct) 1 1

XRL A, @Ri A A EXOR @Ri 2 1

XRL A, #data A A EXOR data 1 1

XRL direct, A (direct) (direct) EXOR A 2 1

XRL direct, #data (direct) (direct) EXOR data 3 2

Data Transfer Instructions

Mnemonics Description Bytes Instruction

Cycles

MOV A, Rn A Rn 1 1

MOV A, direct A (direct) 2 1

MOV A, @Ri A @Ri 1 1

MOV A, #data A data 2 1

MOV Rn, A Rn A 1 1

MOV Rn, direct Rn (direct) 2 2

MOV Rn, #data Rn data 2 1

MOV direct, A (direct) A 2 1

MOV direct, Rn (direct) Rn 2 2

MOV direct1,

direct2

(direct1) (direct2) 3 2

MOV direct, @Ri (direct) @Ri 2 2

MOV direct, #data (direct) #data 3 2

MOV @Ri, A @Ri A 1 1

MOV @Ri, direct @Ri (direct) 2 2

MOV @Ri, #data @Ri data 2 1

MOV DPTR,

#data16

DPTR data16 3 2

MOVC A,

@A+DPTR

A Code byte pointed by A + DPTR 1 2

MOVC A,

@A+PC

A Code byte pointed by A + PC 1 2

MOVC A, @Ri A Code byte pointed by Ri 8-bit address) 1 2

MOVX A,

@DPTR

A External data pointed by DPTR 1 2

MOVX @Ri, A @Ri A (External data - 8bit address) 1 2

MOVX @DPTR,

A

@DPTR A(External data - 16bit address) 1 2

PUSH direct (SP) (direct) 2 2

POP direct (direct) (SP) 2 2

XCH Rn Exchange A with Rn 1 1

XCH direct Exchange A with direct byte 2 1

XCH @Ri Exchange A with indirect RAM 1 1

XCHD A, @Ri Exchange least significant nibble of A with

that of indirect RAM

1 1

Boolean Variable Instructions

Mnemonics Description Bytes Instruction Cycles

CLR C C-bit 0 1 1

CLR bit bit 0 2 1

SET C C 1 1 1

SET bit bit 1 2 1

CPL C C 1 1

CPL bit bit 2 1

ANL C, /bit C C . 2 1

ANL C, bit C C. bit 2 1

ORL C, /bit C C + 2 1

ORL C, bit C C + bit 2 1

MOV C, bit C bit 2 1

MOV bit, C bit C 2 2

Program Branching Instructions

Mnemonics Description Bytes Instruction

Cycles

ACALL addr11 PC + 2 (SP) ; addr 11 PC 2 2

AJMP addr11 Addr11 PC 2 2

CJNE A, direct, rel Compare with A, jump (PC + rel) if not

equal

3 2

CJNE A, #data, rel Compare with A, jump (PC + rel) if not

equal

3 2

CJNE Rn, #data, rel Compare with Rn, jump (PC + rel) if not

equal

3 2

CJNE @Ri, #data, rel Compare with @Ri A, jump (PC + rel) if

not equal

3 2

DJNZ Rn, rel Decrement Rn, jump if not zero 2 2

DJNZ direct, rel Decrement (direct), jump if not zero 3 2

JC rel Jump (PC + rel) if C bit = 1 2 2

JNC rel Jump (PC + rel) if C bit = 0 2 2

JB bit, rel Jump (PC + rel) if bit = 1 3 2

JNB bit, rel Jump (PC + rel) if bit = 0 3 2

JBC bit, rel Jump (PC + rel) if bit = 1 3 2

JMP @A+DPTR A+DPTR PC 1 2

JZ rel If A=0, jump to PC + rel 2 2

JNZ rel If A ≠ 0 , jump to PC + rel 2 2

LCALL addr16 PC + 3 (SP), addr16 PC 3 2

LJMP addr 16 Addr16 PC 3 2

NOP No operation 1 1

RET (SP) PC 1 2

RETI (SP) PC, Enable Interrupt 1 2

SJMP rel PC + 2 + rel PC 2 2

JMP @A+DPTR A+DPTR PC 1 2

JZ rel If A = 0. jump PC+ rel 2 2

JNZ rel If A ≠ 0, jump PC + rel 2 2

NOP No operation 1 1

Assembly Language Programming Using Data Transfer

An assembly language is a low-level programming language used to write program code in terms of

mnemonics. Even though there are many high-levellanguages that are currently in demand, assembly

programming language is popularly used in many applications.It can be used for direct hardware

manipulations. It is also used to write the 8051 programming code efficiently with less number of clock

cycles by consuming less memory compared to the other high-level languages.

UNIT-V

SYSTEM DESIGNUSING MICROCONTROLLER

https://www.elprocus.com/basics-and-structure-of-embedded-c-program-with-examples-for-beginners/

8051 Timers/Counters

Timers/Counters of the 8051 micro controller. The 8051 has two counters/timers which can be

used either as timer to generate a time delay or as counter to count events happening outside the

microcontroller.

Many of the microcontroller applications require counting of external events such as frequency of

the pulse trains and generation of precise internal time delays between computer actions. Both

these tasks can be implemented by software techniques, but software loops for counting, and

timing will not give the exact result rather more important functions are not done. To avoid these

problems, timers and counters in the micro-controllers are better options for simple and low-cost

applications. These timers and counters are used as interrupts in 8051 microcontroller.

There are two 16-bit timers and counters in 8051 microcontroller: timer 0 and timer 1. Both

timers consist of 16-bit register in which the lower byte is stored in TL and the higher byte is

stored in TH. Timer can be used as a counter as well as for timing operation that depends on the

source of clock pulses to counters

A timer is a specialized type of clock which is used to measure time intervals. A timer that counts

from zero upwards for measuring time elapsed is often called a stopwatch. It is a device that

counts down from a specified time interval and used to generate a time delay, for example, an

hourglass is a timer.

A counter is a device that stores (and sometimes displays) the number of times a particular event

or process occurred, with respect to a clock signal. It is used to count the events happening

outside the microcontroller. In electronics, counters can be implemented quite easily using

register-type circuits such as a flip-flop.

Difference between a Timer and a Counter

The points that differentiate a timer from a counter are as follows −

Timer Counter

The register incremented for every

machine cycle.
The register is incremented considering 1 to 0 transitions at its

corresponding to an external input pin (T0, T1).

Maximum count rate is 1/12 of the

oscillator frequency.
Maximum count rate is 1/24 of the oscillator frequency.

A timer uses the frequency of the internal

clock, and generates delay.
A counter uses an external signal to count pulses.

https://www.elprocus.com/microcontrollers-types-and-applications/
https://www.elprocus.com/types-of-interrupts-in-8051-microcontroller-and-interrupt-programming/
https://www.elprocus.com/8051-microcontroller-architecture-and-applications/

Figure.5.1 Timers & Counters

Counters and Timers in 8051 microcontroller contain two special function registers: TMOD

(Timer Mode Register) and TCON (Timer Control Register), which are used for activating and

configuring timers and counters.

Timer Mode Control (TMOD): TMOD is an 8-bit register used for selecting timer or counter

and mode of timers. Lower 4-bits are used for control operation of timer 0 or counter0, and

remaining 4-bits are used for control operation of timer1 or counter1.This register is present in

SFR register, the address for SFR register is 89th.

Figure.5.2 Timer mode Control (TMOD)

Gate: If the gate bit is set to „0‟, then we can start and stop the “software” timer in the same way. If

the gate is set to „1‟, then we can perform hardware timer.

C/T: If the C/T bit is „1‟, then it is acting as a counter mode, and similarly when set C+

=/T bit is „0‟; it is acting as a timer mode.

Mode select bits: The M1 and M0 are mode select bits, which are used to select the timer operations.

There are four modes to operate the timers.

Mode 0: This is a 13-bit mode that means the timer operation completes with “8192” pulses.

Mode 1: This is a16-bit mode, which means the timer operation completes with maximum clock pulses

that “65535”.

Mode 2: This mode is an 8-bit auto reload mode, which means the timer operation completes with only

“256” clock pulses.

https://www.elprocus.com/8051-microcontroller-8-16-bit-timers-and-counters/

Mode 3: This mode is a split-timer mode, which means the loading values in T0 and automatically starts

the T1.

Mode selection Bits

Timer Control Register (TCON): TCON is another register used to control operations of counter and
timers in microcontrollers. It is an 8-bit register wherein four upper bits are responsible for timers

and counters and lower bits are responsible for interrupts.

TF1: The TF1 stands for „timer1‟ flag bit. Whenever calculating the time-delay in timer1, the

TH1 and TL1 reaches to the maximum value that is “FFFF” automatically.

EX: while (TF1==1)

Whenever the TF1=1, then clear the flag bit and stop the timer.

TR1: The TR1 stands for timer1 start or stop bit. This timer starting can be through software

instruction or through hardware method.

EX: gate=0 (start timer 1 through software instruction)

TR1=1; (Start timer)

TF0: The TF0 stands for „timer0‟ flag-bit. Whenever calculating the time delay in timer1, the

TH0 and TL0 reaches to a maximum value that is „FFFF‟, automatically.

EX: while (TF0==1)

Whenever the TF0=1, then clear the flag bit and stop the timer.

TR0: The TR0 stands for „timer0‟ start or stop bit; this timer starting can be through software

instruction or through hardware method.

EX: gate=0 (start timer 1 through software instruction)

TR0=1; (Start timer)

Time Delay Calculations for 8051 Microcontroller

The 8051 microcontroller works with 11.0592 MHz frequency.

Frequency 11.0592MHz=12 pules

1 clock pulse =11.0592MHz/12

F =0.921 MHz

Time delay=1/F

T=1/0.92MHz

T=1.080506 us (for „1‟ cycle)

1000us=1MS

1000ms=1sec

Procedure to Calculate the Delay Program

1. First we have to load the TMOD register value for „Timer0‟ and „Timer1‟in different modes.

For example, if we want to operate timer1 in mode1 it must be configured as “TMOD=0x10”.

2. Whenever we operate the timer in mode 1, timer takes the maximum pulses of 65535. Then the

calculated time-delay pulses must be subtracted from the maximum pulses, and afterwards

converted to hexadecimal value. This value has to be loaded in timer1 higher bit and lower bits.

This timer operation is programmed using embedded C in a microcontroller.

Example: 500us time delay

500us/1.080806us

461pulses

P=65535-461

P=65074

65074 conveted by hexa decimal =FE32

TH1=0xFE;

https://www.elprocus.com/basics-and-structure-of-embedded-c-program-with-examples-for-beginners/

TL1=0x32;

3. Start the timer1 “TR1=1;”

4. Monitor the flag bit “while(TF1==1)”

5. Clear the flag bit “TF1=0”

6. Cleat the timer “TR1=0”

Example Programs:

Counters in 8051

We can use a counter by keeping C/T bit high, i.e., logic „1‟ in the TMOD register. For better

understanding, we have given one program which uses timer 1 as a counter. Here the LEDs are

connected to 8051 Port 2, and the switch to the timer1 pin P3.5; and therefore, if the switch is

pressed, the value will be counted. Otherwise, an externally connected sensor to this counter pin

as input does this counting operation.

Counter Program

Applications of Timers and Counters in 8051

Digital Counter with 8051

The Digital counter with 8051 is achieved by programming the microcontroller as discussed

above and by attaching a sensor system to it. This object counter uses IR sensor that detects the

obstacle near to it and also enables the pin of the microcontroller 06. When an object passes

through the sensors, then the microcontrollers gets an interrupt signal from the IR sensors and

increment the count which is displayed in the7-segment display.

Digital Counter with 8051

https://www.edgefxkits.com/object-counter-with-7-segment-display
https://www.elprocus.com/8051-microcontroller-architecture-and-applications/

Time delay circuit Using 8051 microcontroller

The below figure shows how the timer operation can be implemented for switching the LEDs in

an effective way. The time delay operation for the set of LEDs is programmed in a

microcontroller in the manner discussed above. Here, a set of LEDs are connected to the port 2

with a common supply system. When this circuit is turned on based on the time delay program in

the microcontroller appropriately, these LEDs are switched on.

Time delay circuit

This is all about the 8051 microcontroller timer and counters with basic programming and

application circuits. We hope that the information of this article might have given you sufficient

data to understand the concept better. Furthermore, any technical doubts on programming 8051

and its circuits, you can contact us by commenting below.

 Serial data communication and its programming

8051 Serial Communication:
Sections
1 Basics of serial communication
2 8051 connection to RS232
3 8051 serial communication programming
8051 and PC:

• The 8051 module connects to PC by using RS232.

• RS232 is a protocol which supports half-duplex, synchronous/asynchronous, serial

communication.

• We discuss these terms in following sections.

https://www.elprocus.com/how-to-program-the-microcontroller/
https://www.elprocus.com/how-to-program-the-microcontroller/
https://www.elprocus.com/how-to-program-the-microcontroller/

Simplex vs. Duplex Transmission
• Simplex transmission: the data can sent in one direction.

– Example: the computer only sends data to the printer.

• Duplex transmission: the data can be transmitted and receive

Half duplex:
 if the data is transmitted one way at a time

• Full duplex:

• if the data can go both ways at the same time.Two wire conductors

•

Parallel vs. Serial:
• Computers transfer data in two ways:

– Parallel

• data is sent a byte or more a time (fast)

• Only short distance between two systems

• The 8-bit data path is expensive

• Example: printer, hard disks

– Serial

• The data is sent one bit at a time (slow)

• Long distance (rarely distortion)

• cheap

• The data can be transferred on the telephone line (by using modem.)

Serial versus Parallel Data Transfer (1/2):

Serial Communication:

• How to transfer data?

– Sender:

• The byte of data must be converted to serial bits using a parallel-in-serial-

out shift register.

• The bit is transmitted over a single data line.

– Receiver

• The receiver must be a serial-in-parallel-out shift register to receive the

serial data and pack them into a byte.

Serial communication uses two methods:
– In synchronous communication,data is sent in blocks of bytes.

– In asynchronous communication, data is sent in bytes.

UART & USART:

• It is possible to write software to use both methods, but the programs can be tedious

and long.

• Special IC chips are made for serial communication:

– USART (universal synchronous-asynchronous receiver-transmitter)

– UART (universal asynchronous receiver-transmitter)

• The 8051 chip has a built-in UART.

8051 Serial Communication:
• The 8051 has serial communication capability built into it.

– Half-duplex

– Asynchronous mode only.

• How to detect that a character is sent via the line in the asynchronous mode?

– Answer: Data framing!

RS232 Standard:
• RS232 is an interfacing standard which is set by the Electronics Industries Association

(EIA) in 1960.

– RS232 is the most widely used serial I/O interfacing standard.

– RS232A (1963), RS232B (1965) and RS232C (1969), now is RS232E

• Define the voltage level, pin functionality, baud rate, signal meaning, communication

distance.

RS232 Voltage Level:
• The input and output voltage of RS232 is not of the TTL compatible.

– RS232 is older than TTL.

• We must use voltage converter (also referred to as line driver) such as MAX232 to

convert the TTL logic levels to the RS232 voltage level, and vice versa.

– MAX232, TSC232, ICL232

MAX232:
• MAX232 IC chips are commonly referred to as line drivers.

RS232 pins:

• Figure 10-4 shows the RS232 connector DB-25.

• Table 10-1 shows the pins and their labels for the RS232 cable.

– DB-25P : plug connector (male)

– DB-25S: socket connector (female)

• Figure 10-5 shows DB9 connector and Table 10-2 shows the signals.

– IBM version for PC.

• All the RS 232 pin function definitions of Tables 10-1 and 10-2 are from the DTE point of

view.

RS232 Connector DB-25:

RS232 Pins (DB-25) for DTE (1/2):

TxD and RxD pins in the 8051:

• In 8051, the data is received from or transmitted to

– RxD: received data (Pin 10, P3.0)

– TxD: transmitted data (Pin 11, P3.1)

• TxD and RxD of the 8051 are TTL compatible.

• The 8051 requires a line driver to make them RS232 compatible.

– One such line driver is the MAX232 chip.

8051 Pin Diagram:

MAX232 (1/2):

• MAX232 chip converts from RS232 voltage levels to TTL voltage levels, and vice versa.

– MAX232 uses a +5V power source which is the same as the source voltage for the

8051.

Inside MAX232:

8051 Serial Communication Programming:
PC Baud Rates:

• PC supports several baud rates.

– You can use netterm, terminal.exe, stty, ptty to send/receive data.

• Hyperterminal supports baud rates much higher than the ones list in the Table.

Baud Rates in the 8051 (1/2):

• The 8051 transfers and receives data serially at many different baud rates by using UART.

• UART divides the machine cycle frequency by 32 and sends it to Timer 1 to set the baud

rate.

• Signal change for each roll over of timer 1

Baud Rates in the 8051:

• Timer 1, mode 2 (8-bit, auto-reload)

• Define TH1 to set the baud rate.

– XTAL = 11.0592 MHz

– The system frequency = 11.0592 MHz / 12 = 921.6 kHz

– Timer 1 has 921.6 kHz/ 32 = 28,800 Hz as source.

– TH1=FDH means that UART sends a bit every 3 timer source.

– Baud rate = 28,800/3= 9,600 Hz

Example:
With XTAL = 11.0592 MHz, find the TH1 value needed to have the
following baud rates. (a) 9600 (b) 2400 (c) 1200
Solution:
With XTAL = 11.0592 MHz, we have:
The frequency of system clock = 11.0592 MHz / 12 = 921.6 kHz
The frequency sent to timer 1 = 921.6 kHz/ 32 = 28,800 Hz
(a) 28,800 / 3 = 9600 where -3 = FD (hex) is loaded into TH1
(b) 28,800 / 12 = 2400 where -12 = F4 (hex) is loaded into TH1
(c) 28,800 / 24 = 1200 where -24 = E8 (hex) is loaded into TH1
Notice that dividing 1/12th of the crystal frequency by 32 is the
default value upon activation of the 8051 RESET pin.
Registers Used in Serial Transfer Circuit:

• SUBF (Serial data buffer)

• SCON (Serial control register)

• PCON (Power control register)

• You can see Appendix H (pages 416-417) for details.

• PC has several registers to control COM1, COM2.

SBUF Register:
• Serial data register: SBUF

MOV SBUF,#’A’ ;put char ‘A’ to transmit
MOV SBUF,A ;send data from A
MOV A,SUBF ;receive and copy to A

– An 8-bit register

– Set the usage mode for two timers

• For a byte of data to be transferred via the TxD line, it must be placed in

the SBUF.

• SBUF holds the byte of data when it is received by the 8051;s RxD line.

– Not bit-addressable

SCON Register:
Serial control register: SCON
SM0, SM1 Serial port mode specifier
REN (Receive enable) set/cleared by software to enable/disable reception.
TI Transmit interrupt flag.
RI Receive interrupt flag.

SM2 = TB8 = TB8 =0 (not widely used)

SM0, SM1:

• SM1 and SM0 determine the framing of data.

– SCON.6 (SM1) and SCON.7 (SM0)

– Only mode 1 is compatible with COM port of IBM PC.

– See Appendix A.3.

SM1 SM0 Mode Operating Mode Baud Rate
0 0 0 Shift register Fosc./12
0 1 1 8-bit UART Variable by timer1
1 0 2 9-bit UART Fosc./64 or Fosc./32
1 1 3 9-bit UART Variable

SM2:
• SCON.5

• SM2 enables the multiprocessor communication for mode 2 & 3.

• We make it 0 since we are not using the 8051 in a multiprocessor environment.

– SM2=0 : Single processor environment

– SM2=1 : multiprocessor environment

REN (Receive Enable):
• SCON.4

• Set/cleared by software to enable/disable reception.

– REN=1

• It enable the 8051 to receive data on the RxD pin of the 8051.

• If we want the 8051 to both transfer and receive data, REN must be set to

1.

• SETB SCON.4

– REN=0

• The receiver is disabled.

• The 8051 can not receive data.

• CLR SCON.4

TB8 (Transfer Bit 8):
• SCON.3

• TB8 is used for serial modes 2 and 3.

• The 9th bit that will be transmitted in mode 2 & 3.

• Set/Cleared by software.

• SCON.2

• In serial mode 1, RB8 gets a copy of the stop bit when an 8-bit data is received.

TI (Transmit Interrupt Flag):
• SCON.1

• When the 8051 finishes the transfer of the 8-bit character, it raises the TI flag.

• TI is raised by hardware at the beginning of the stop bit in mode 1.

• Must be cleared by software.

RI (Receive Interrupt):
• SCON.0

• Receive interrupt flag. Set by hardware halfway through the stop bit time in mode 1.

Must be cleared by software.

• When the 8051 receives data serially via RxD, it gets rid of the start and stop bits and

place the byte in the SBUF register.

• Then 8051 rises RI to indicate that a byte.

• RI is raised at the beginning of the stop bit.

SCON Serial Port Control Register (Bit Addressable):

8051 interrupts

Interrupts are the events that temporarily suspend the main program, pass the control to the

external sources and execute their task. It then passes the control to the main program where it

had left off.

8051 has 5 interrupt signals, i.e. INT0, TFO, INT1, TF1, RI/TI. Each interrupt can be enabled or

disabled by setting bits of the IE register and the whole interrupt system can be disabled by

clearing the EA bit of the same register.

E (Interrupt Enable) Register

This register is responsible for enabling and disabling the interrupt. EA register is set to one for

enabling interrupts and set to 0 for disabling the interrupts. Its bit sequence and their meanings are

shown in the following figure.

EA IE.7
It disables all interrupts. When EA = 0 no interrupt will be acknowledged and EA = 1
enables the interrupt individually.

- IE.6 Reserved for future use.

- IE.5 Reserved for future use.

ES IE.4 Enables/disables serial port interrupt.

ET1 IE.3 Enables/disables timer1 overflow interrupt.

EX1 IE.2 Enables/disables external interrupt1.

ET0 IE.1 Enables/disables timer0 overflow interrupt.

EX0 IE.0 Enables/disables external interrupt0.

IP (Interrupt Priority) Register

We can change the priority levels of the interrupts by changing the corresponding bit in the

Interrupt Priority (IP) register as shown in the following figure.

 A low priority interrupt can only be interrupted by the high priority interrupt, but not

interrupted by another low priority interrupt.

 If two interrupts of different priority levels are received simultaneously, the request of

higher priority level is served.

 If the requests of the same priority levels are received simultaneously, then the internal

polling sequence determines which request is to be serviced.

- IP.6 Reserved for future use.

- IP.5 Reserved for future use.

PS IP.4 It defines the serial port interrupt priority level.

PT1 IP.3 It defines the timer interrupt of 1 priority.

PX1 IP.2 It defines the external interrupt priority level.

PT0 IP.1 It defines the timer0 interrupt priority level.

PX0 IP.0 It defines the external interrupt of 0 priority level.

Interrupt programming in 8051

1. Timer Interrupt Programming: In microcontroller Timer 1 and Timer 0 interrupts are generated
by time register bits TF0 AND TF1. This timer interrupts programming by C code involves:

o Selecting the configuration of TMOD register and their mode of operation.
o Enables the IE registers and corresponding timer bits in it.
o Choose and load the initial values of TLx and THx by using appropriate mode of

operation.
o Set the timer run bit for starting the timer.
o Write the subroutine for a timer and clears the value of TRx at the end of the subroutine.

Let's see the timer interrupt programming using Timer0 model for blinking LED using

interrupt method:

 #include< reg51 .h>

 sbit Blink Led = P2^0; // LED is connected to port 2 Zeroth pin

 void timer0_ISR (void) interrupt 1 //interrupt no. 1 for Timer0

 {

 Blink Led=~Blink Led; // Blink LED on interrupt

 TH0=0xFC; // loading initial values to timer

 TL0=0x66;

 }

 void main()

 {

 TMOD=0x0l; // mode 1 of Timer0

 TH0 = 0xFC: // initial value is loaded to timer

 TL0 = 0x66:

 ET0 =1; // enable timer 0 interrupt

 TR0 = 1; // start timer

 while (1); // do nothing

 }

Real world interfacing of 8051 with external memory

A single microcontroller can serve several devices. There are two ways to do that is interrupts or

polling. In the interrupt method, whenever any device needs its services, the device notifies the

micro controller interrupts whatever it is doing and serves the device. The program which is

associated with the interrupt is called the interrupt service routine (ISR) or Interrupt handler. In

polling, the microcontrollers continuously monitor the status of several devices and serve each of

them as certain conditions are met. The advantage of interrupts is that microcontroller can serve

many devices. Each device can get the attention of microcontroller based on the priority assigned

to it. For the polling method; it is not possible to assign priority. In interrupt method the

microcontroller can also ignore (mask) a device request for service. This is not possible in polling

method. The polling method wastes much of microcontrollers‟ time by polling devices that do not

need service, so interrupts are preferred.

In 8051 TL is compatible. When its need to interface with Input/output device R 232 use interface

circuit MAX 232.

We have seen that a typical 8051 Microcontroller has 4KB of ROM and 128B of RAM (most

modern 8051 Microcontroller variants have 8K ROM and 256B of RAM).

The designer of an 8051 Microcontroller based system is not limited to the internal RAM and

ROM present in the 8051 Microcontroller. There is a provision of connecting both external RAM

and ROM i.e. Data Memory and Program.

The reason for interfacing external Program Memory or ROM is that complex programs written

in high – level languages often tend to be larger and occupy more memory.

Another important reason is that chips like 8031 or 8032, which doesn‟t have any internal ROM,

have to be interfaced with external ROM.

A maximum of 64B of Program Memory (ROM) and Data Memory (RAM) each can be interface

with the 8051 Microcontroller.

The following image shows the block diagram of interfacing 64KB of External RAM and 64KB

of External ROM with the 8051 Microcontroller.

The 8051 Microcontroller Memory Organization, Internal ROM and RAM and how to interface

external ROM and RAM with 8051 Microcontroller.

Expansion of I/O ports

To perform input/output operation Microcontrollers 8051 possess 4 I/O ports each consisting of 8-bit,

which can be configured as input or output. Hence, out of 40 pins only 32 input/output pins are allowed for

the microcontrollers that are connected with the peripheral devices. As microprocessor does not have

inbuilt input/output operation, it can be rectified by using microcontrollers 8051.

 Pin configuration, i.e. the pin can be configured as 1 for input and 0 for output as per the logic

state.

o Input/Output (I/O) pin – excluding port P0 which does not have pull-up resistors built

in, all other circuits within the microcontroller should be connected to one of its pins.

o Input–pinTo a bit of P register logic 1 is applied. The output FE transistor is turned off

and the other pin duly remains connected to the power supply voltage with the help of a

pull-up resistor possessing high resistance.

 Port-0The P0 (zero) port performs two functions −

o Whenever external memory is used then the lower address byte (addresses A0A7) is

applied on it, otherwise all bits of this port are configured as input/output.

o When P0 port is configured as an output then the remaining ports consisting of pins with

built-in pull-up resistor are connected to its end of 5V power supply, the port consisting of

pins had left off this resistor.

Input Configuration

If the port consisting of pin is configured as an input, then it needs to act as “floats”, i.e. the input is

possessed with unlimited input resistance and in-determined potential.

Output Configuration

When the pin is configured as an output, then it acts as an “open drain”. When the logic 0 to a port bit is

applied then the appropriate pin will be connected to ground (0V), and when the logic 1 is applied, the

external output would continue to float.

In this output configuration if the logic 1 (5V) power supply is applied then it is very essential to build an

external pull-up resistor for this configuration.

Port 1

P1 is regarded as a true I/O port as it does not consist of any alternative functions as in P0, but this port

could be configured as general I/O only. It has a built-in pull-up resistor and is completely compatible with

TTL circuits.

Port 2

P2 is also called as “quasi-bidirectional port” because of its output pull-up resistors. It acts similar to P0

when the external memory is applied. Pins of this port used as input/output which occupy addresses

intended for the external memory chip. This port can be used for upper order address byte with addresses

A8-A15 (for external memory). This port acts as general input/output port when memory is not added then

it functions similar to Port 1.

Port 3

Port 3 functions are similar to other ports except that the logic 1 must be applied to bit of the P3 register

which should be appropriate. It is multifunctional port and can be used as simple input/output port.

Pins Current Limitations

 When configuration of pins takes place as an output (i.e. logic 0), then the single port pins can

receive a current of 10mA.

 When these pins are configured as inputs (i.e. logic 1), very weak current is generated by the built-

in pull-up resistors, but it can be activated up to 4 TTL inputs of LS series.

 When all the 8 bits of a port is said to be active, then the total current must be limited to 15mA

(port P0: 26mA).

 When all the ports (32 bits) are said to be active, then the total maximum current must be limited

to 71mA.

Interfacing I/O Devices
Every electrical and electronics project designed to develop electronic gadgets that are frequently used in
our day-to-day life utilizes microcontrollers with appropriate interfacing devices. There are different
types of applications that are designed using microcontroller based projects. In maximum number of
applications, the microcontroller is connected with some external devices called as interfacing devices for
performing some specific tasks. For example, consider security system with a user changeable password
project, in which an interfacing device, keypad is interfaced with microcontroller to enter the password.

https://www.elprocus.com/microcontroller-based-projects-on-8051-avr-and-pic-microcontroller/

Interfacing Devices

Interfacing can be defined as transferring data between microcontrollers and interfacing

peripherals such as sensors, keypads, microprocessors, analog to digital converters or ADC, LCD

displays, motors, external memories, even with other microcontrollers, some other interfacing

peripheral devices and so on or input devices and output devices. These devices that are

interfacing with 8051 microcontroller are used for performing special tasks or functions are called

as interfacing devices.

Interfacing is a technique that has been developed and being used to solve many composite

problems in circuit designing with appropriate features, reliability, availability, cost, power

consumption, size, weight, and so on. To facilitate multiple features with simple circuits,

microcontroller is interfaced with devices such as ADC, keypad, LCD display and so on.

Analog to Digital Converter (ADC)

A to D converter is an electronic integrated circuit used for converting the analog signals into a

digital or binary form. Generally, analog to digital converters takes an input voltage from 0 to

10V, -5V to +5V, etc. and thereby converts this analog input into digital output. Most of the

environmental parameters such as temperature, sound, pressure, light, etc. are measurable in

analog form only. If we consider a temperature monitoring system, then obtaining, examining and

handling temperature data from the temperature sensors is unable with the digital measuring

system. Therefore, this system requires an intermediate device for converting the temperature

from analog to digital data, such that for communicating with the digital system containing

microcontrollers and microprocessors.

Intelligent LCD display:
• We examine an intelligent LCD display of two lines,20 char’s.per line,that is interfaced to

the 8051

Pin out of 16*2 LCD

https://www.elprocus.com/analog-to-digital-adc-converter/
https://www.elprocus.com/peripherals-interfacing-to-the-microcontroller-8051-in-electronics/
https://www.elprocus.com/peripherals-interfacing-to-the-microcontroller-8051-in-electronics/
https://www.elprocus.com/peripherals-interfacing-to-the-microcontroller-8051-in-electronics/
https://www.elprocus.com/8051-microcontroller-architecture-and-applications/
https://www.elprocus.com/peripherals-interfacing-to-the-microcontroller-8051-in-electronics/
https://www.elprocus.com/analog-digital-converters/
https://www.elprocus.com/microprocessor-and-microcontroller/

• The displays contains two internal byte wide registers one for commands(RS=0) and the

second for char. To be displayed(RS=1)

•

Interface Intelligent LCD Circuit with 8051

Data converters:

• Analog to Digital Converters (ADC)

– Convert an analog quantity (voltage, current) into a digital code

• Digital to Analog Converters (DAC)

– Convert a digital code into an analog quantity (voltage, current)

Video (Analog - Digital)

Temperature Recording by a Digital System :

Need for Data Converters:
Digital processing and storage of physical quantities (sound, temperature, pressure etc) exploits
the advantages of digital electronics

– Better and cheaper technology compared to the analog

– More reliable in terms of storage, transfer and processing

• Not affected by noise

– Processing using programs (software)

• Easy to change or upgrade the system

– (e.g. Media Player 7 Media Player 8 ή Real Player)

• Integration of different functions

– (π.χ. Mobile = phone + watch + camera + games + email +

Signals (Analog - Digital):

SAMPLING FREQUENCY (RATE):

• The frequency at which digital values are sampled from the analog input of an ADC

• A low sampling rate (undersampling) may be insufficient to represent the analog signal in

digital form

• A high sampling rate (oversampling) requires high bitrate and therefore storage space

and processing time

• A signal can be reproduced from digital samples if the sampling rate is higher than twice

the highest frequency component of the signal (Nyquist-Shannon theorem)

• Examples of sampling rates

– Telephone: 4 KHz (only adequate for speech, ess sounds like eff)

– Audio CD: 44.1 KHz

– Recording studio: 88.2 KHz

Digital to Analog Converters:

• The analog signal at the output of a D/A converter is linearly proportional to the binary

code at the input of the converter.

– If the binary code at the input is 0001 and the output voltage is 5mV, then

– If the binary code at the input becomes 1001, the output voltage will become

45mv.....

– If a D/A converter has 4 digital inputs then the analog signal at the output can

have one out of 16 values

– If a D/A converter has N digital inputs then the analog signal at the output can

have one out of 2N values.

Characteristics of Data Converters:

1. Number of digital lines

– The number bits at the input of a D/A (or output of an A/D) converter.

– Typical values: 8-bit, 10-bit, 12-bit and 16-bit

– Can be parallel or serial

2. Microprocessor Compatibility

– Microprocessor compatible converters can be connected directly on the

microprocessor bus as standard I/O devices

– They must have signals like CS, RD, and WR

• Activating the WR signal on an A/D converter starts the conversion

process.

3. Polarity

– Polar: the analog signals can have only positive values

– Bipolar: the analog signals can have either a positive or a negative value

4. Full-scale output

– The maximum analog signal (voltage or current)

– Corresponds to a binary code with all bits set to 1 (for polar converters)

– Set externally by adjusting a variable resistor that sets the Reference Voltage (or

current)

5. Resolution

– The analog voltage (or current) that corresponds to a change of 1LSB in the binary

code

– It is affected by the number of bits of the converter and the Full Scale voltage

(VFS)

– For example if the full-scale voltage of an 8-bit D/A converter is 2.55V the the

resolution is:

 VFS/(2N-1) = 2.55 /(28-1) 2.55/255 = 0.01 V/LSB = 10mV/LSB

6. Conversion Time

– The time from the moment that a “Start of Conversion” signal is applied to an A/D

converter until the corresponding digital value appears on the data lines of the

converter.

ADC RESPONSE TYPES:
• Linear

– Most common

• Non-linear

– Used in telecommunications, since human voice carries more energy in the low

frequencies than the high.

ADC TYPES:
• Direct Conversion

– Fast

– Low resolution

• Successive approximation

– Low-cost

– Slow

– Not constant conversion delay

• Sigma-delta

– High resolution,

– low-cost,

– high accuracy

D/A Converter:

• Conversion between the analog and digital world requires the use of integrated circuits

that have been designed to interface with computer

• D/A converter is a generic R-2R type ,based on several commercial models,is connected

to ports 1 to 3

Pin diagram of DAC 0808

 Interfacing DAC with 8051:

Analog to digital converters:
The easiest A/D converters to use are the flash types which make conversions based on an array

of internal comparators

Pin out of ADC0804:

ADC Interfacing with 8051:

Stepper Motor interacting with 8051

Stepper motors are basically two types: Unipolar and Bipolar. Unipolar stepper motor generally has five

or six wire, in which four wires are one end of four stator coils, and other end of the all four coils is tied

together which represents fifth wire, this is called common wire (common point). Generally there are two

common wire, formed by connecting one end of the two-two coils as shown in below figure. Unipolar

stepper motor is very common and popular because of its ease of use.

In Bipolar stepper motor there is just four wires coming out from two sets of coils, means there

are no common wire.

Stepper motor is made up of a stator and a rotator. Stator represents the four electromagnet coils

which remain stationary around the rotator, and rotator represents permanent magnet which

rotates. Whenever the coils energised by applying the current, the electromagnetic field is created,

resulting the rotation of rotator (permanent magnet). Coils should be energised in a particular

sequence to make the rotator rotate. On the basis of this “sequence” we can divide the working

method of Unipolar stepper motor in three modes: Wave drive mode, full step drive mode and

half step drive mode.

Wave drive mode: In this mode one coil is energised at a time, all four coil are energised one

after another. It produces less torque in compare with Full step drive mode but power

consumption is less. Following is the table for producing this mode using microcontroller, means

we need to give Logic 1 to the coils in the sequential manner.

Full Drive mode: In this, two coil are energised at the same time producing high torque. Power
consumption is higher. We need to give Logic 1 to two coils at the same time, then to the next two coils
and so on.

8051 doesn’t provide enough current to drive the coils so we need to use a current driver IC that is
ULN2003A. ULN2003A is the array of seven NPN Darlington transistor pairs. Darlington pair is
constructed by connecting two bipolar transistors to achieve high current amplification. In ULN2003A, 7
pins are input pins and 7 pins are output pins, two pins are for Vcc (power supply) and Ground. Here we
are using four input and four output pins. We can also use L293D IC in place of ULN2003A for current
amplification.

