

# **INSTITUTE OF AERONAUTICAL ENGINEERING**

(Autonomous)

Dundigal - 500 043, Hyderabad, Telangana

## **COURSE CONTENT**

| CPLD AND FPGA ARCHITECTURES AND APPLICATIONS |                       |              |        |         |          |                   |     |       |
|----------------------------------------------|-----------------------|--------------|--------|---------|----------|-------------------|-----|-------|
| I Semester: M.TECH – ES                      |                       |              |        |         |          |                   |     |       |
| Course Code                                  | Category              | Hours / Week |        |         | Credits  | Maximum Marks     |     |       |
| BESD07                                       | ELECTIVE              | L            | Т      | Р       | С        | CIA               | SEE | Total |
|                                              |                       | 3            | -      | -       | 3        | 40                | 60  | 100   |
| Contact Classes: 48                          | Tutorial Classes: Nil | Р            | ractic | al Clas | ses: Nil | Total Classes: 48 |     |       |
| Prerequisite:                                |                       |              |        |         |          |                   |     |       |

## I. COURSE OVERVIEW:

Programmable logic has become more and more common as a core technology used to build electronic systems. By integrating soft-core or hardcore processors, these devices have become complete systems on a chip, steadily displacing general purpose processors and ASICs. This course will give you the foundation for FPGA design in embedded systems along with practical design skills.

## **II. COURSES OBJECTIVES:**

## The students will try to learn

- I. The operational principles, characteristics of semiconductor devices and circuits.
- II. The principles of operating semiconductor devices for rectification, amplification, conditioning and voltage regularization of signals.
- III. The analytical skills needed to model analog and digital integrated circuits (IC) at discrete and micro circuit level
- IV. The foundations of basic electronic circuits necessary for building complex electronic hardware.

## **III. COURSE OUTCOMES:**

### At the end of the course students should be able to:

- CO 1 Understand the features and architectures of industrial CPLDs with different families.
- CO 2 Understand the features and architectures of industrial FPGAs with different families.
- CO 3 Make use of the programming techniques used in FPGA design methodology.
- CO 4 Design and implement complex real time digital circuits.
- CO 5 Analyze system level design and their application for combinational and sequential Circuits.
- CO 6 Explore the types of programmable logic, SPLDs and CPLDs, their basic structure.

## **IV. COURSE CONTENT:**

#### MODULE - I: INTRODUCTION TO PROGRAMMABLE LOGIC DEVICES: (09)

Introduction, Simple Programmable Logic Devices – Read Only Memories, Programmable Logic Arrays, Programmable Array Logic, Programmable Logic Devices/Generic Array Logic; Complex Programmable Logic Devices – Architecture of Xilinx Cool Runner XCR3064XL CPLD, CPLD Implementation of a Parallel Adder with Accumulation.

## MODULE -II: FELID PROGRAMMABLE GATE ARRAYS: (09)

Organization of FPGAs, FPGA Programming Technologies, Programmable Logic Block Architectures, Programmable Interconnects, and Programmable I/O blocks in FPGAs, Dedicated Specialized Components of FPGAs, and Applications of FPGAs.

## MODULE –III: SRAM PROGRAMMABLE FPGAS: (09)

Introduction, Programming Technology, Device Architecture, the Xilinx XC2000, XC3000 and XC4000 Architectures.

## MODULE -- IV: ANTI-FUGE PROGRAMMED FPGAs: (09)

Introduction, Programming Technology, Device Architecture the Actel ACT1, ACT2 and ACT3 Architectures.

## MODULE -V: DESIGN APPLICATIONS: (09)

General Design Issues, Counter Examples, A Fast Video Controller, and A Position Tracker for a Robot Manipulator, A Fast DMA Controller, Designing Counters with ACT devices, Designing Adders and Accumulators with the ACT Architecture.

## **V. TEXT BOOKS:**

- 1. Stephen M. Trim Berger, "Field Programmable Gate Array Technology," Springer International Edition.
- 2. Charles H. Roth Jr, Lizy Kurian John, "Digital Systems Design," Cengage Learning.

## VII. **REFERENCE BOOKS**:

- 1. John V. Oldfield, Richard C. Dorf, "Field Programmable Gate Arrays," Wiley India.
- 2. Pak K. Chan/Samiha Mourad, "Digital Design Using Field Programmable Gate Arrays," Pearson Low Price Edition.
- 3. Ian Grout, "Digital Systems Design with FPGAs and CPLDs", Elsevier, Newnes.
- 4. Wayne Wolf, "FPGA based System Design", Prentice Hall Modern Semiconductor Design Series.

## VII. E-TEXT BOOKS:

- 1. https://www.gacbe.ac.in/images/E%20books/Grout%20%20Digital%20(Elsevier,%202008).pdf
- 2. http://www.ee.ic.ac.uk/pcheung/teaching/ee2\_digital/fpga%20&%20cpld%20tutorial.pdf